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Abstract:

This paper extends a recently proposed formation design methodology for a miniaturized distributed
occulter/telescope (mDOT). In contrast to large-scale missions such as the New Worlds Observer
or Exo-S (NASA), mDOT makes use of micro- and nano-satellites inertially aligned in earth orbit
to reduce mission costs by orders of magnitude. Due to the small telescope aperture, this concept
requires greater instrument integration time (or observation duration) in an environment with
larger differential accelerations. Consequently, a delta-v optimal design of the absolute and
relative orbits represents a mission enabler. The proposed formation design strategy stems from the
fundamental idea that the delta-v cost of observations can be minimized by allowing the formation
to freely drift along the line-of-sight. This paper makes two key contributions to the state of the
art. First, it is demonstrated through high-fidelity numerical simulations that third body, solar
radiation pressure, and atmospheric drag forces have negligible impact on the delta-v cost of
mission operations. Second, the cost associated with a reference mission is characterized as a
function of the location of the science target. This characterization is performed with and without
a constraint that observations are performed with the occulter spacecraft in earth’s umbra. This
constraint ensures that light reflected by the occulter does not overwhelm the signal from the science
target.
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1. Introduction

The astrophysics community has shown increasing interest in detection and characterization of
exoplanets in recent years. While initial discoveries were made with Doppler or barycenter offset
methods, more recent detection efforts rely on precise transit photometry measurements. Most
notably, NASA’s Kepler mission is now responsible for more than one thousand confirmed exoplanet
discoveries [1]. The indirect methods used for most discoveries to date allow scientists to determine
the mass, size, and temperature of a planet, but provide little information about its chemical
composition. The necessary data for this level of characterization can only be acquired via direct
imaging. Spectroscopy data collected from direct images would allow scientists to identify key
biosignature gases such as oxygen, water, and carbon dioxide. The capabilities of guidance,
navigation, and control (GN&C) systems deployed on recent formation flying missions [2, 3, 4]
suggest that it may be possible to directly image exoplanets using a distributed occulter/telescope.
Indeed, studies of the distributed occulter/telescope have resulted in several mission concepts
including Exo-S (NASA) [5] and the New Worlds Observer (NASA) [6], which aim to image
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multiple earth-like planets in the visible spectrum. However, the estimated cost of these missions is
in the billions of dollars.

To minimize the risk associated with such a costly mission, the authors recently proposed a
miniaturized distributed occulter/telescope (mDOT) mission to image exozodiacal dust disks using
two micro- or nano-satellites in earth orbit [7, 8]. This technology demonstrator would serve to 1)
demonstrate the validity of the distributed occulter/telescope concept, 2) facilitate development of
key enabling technologies for a full-scale system, and 3) directly image a small set of targets of
scientific interest. The authors forsee an occulter of diameter no larger than 2 m separated from a
10 cm diameter telescope by several hundred kilometers. The occulter will be designed to suppress
some specified bandwidth in the ultraviolet spectrum (150-400 nm). A novel feature of the proposed
concept is that the spacecraft are allowed to drift along the line-of-sight during observations. Thus,
the GN&C system need only counteract differential accelerations perpendicular to the line-of-sight
during observations.

It is evident that the delta-v cost associated with mission operations should be minimized in order
to maximize the science return of a small-scale mission. To that end, this paper presents two
findings on the delta-v cost of mDOT missions in earth orbit. First, after a concise derivation of the
delta-v optimal formation design recently proposed by the authors [8], it is demonstrated through
high-fidelity numerical simulations that third body, solar radiation pressure, and atmospheric drag
forces have negligible impact on the delta-v cost of nominal operations. Second, the delta-v cost of
a reference mission profile is characterized as a function of the location of the science target. This
characterization is performed with and without a constraint that observations are performed with the
occulter spacecraft in earth’s umbra. This constraint ensures that reflected light from the occulter
does not overwhelm the signal from the science target.

2. Science Target Modeling

Extrasolar planets are not the only high-contrast imaging targets of interest around nearby stars. In
addition to its planetary system, our sun is orbited by asteroids and comets. Collisions and erosion of
these bodies produces the zodiacal dust. This both scatters sunlight and re-emits absorbed sunlight
in the thermal infrared. The integrated light from zodiacal dust is actually a hundred times brighter
than Jupiter - in our solar system, the flux due to dust is Fdisk/Fstar = 10−7 of the luminosity of the
sun. Similar disks have been detected around many nearby stars through thermal emission, which is
observed as excess infrared flux compared to the predicted stellar spectrum (the Vega phenomenon).
These detections show that for many stars the total mass of dust is much higher than in our solar
system, with Fdisk/Fstar as high as 10−3. In most cases, the dust disk has been detected only through
thermal emission at long wavelengths. Visible or near-infrared scattered light has been seen in some
favorable cases (e.g. Beta Pictoris) with coronagraphy, but detecting the scattered light from these
disks would be scientifically extremely interesting. Comparison of ultraviolet to visible and infrared
brightness would help constrain the size of the scattering particles, and polarization properties could
even provide information about their shape [9]. Detecting these disks is therefore both practical
and scientifically compelling. Fig. 1 shows exposure times needed to detect a disk with the same
geometry as that orbiting Beta Pictoris as a function of Fdisk/Fstar for a fiducial telescope model
specified in Tab. 1 and an assumed occulter contrast of 10−7. Since in many cases it is possible to
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identify systems with Fdisk/Fstar > 10−5 via infrared techniques [10], promising science targets can
be identified in advance of a mission.

Figure 1. Necessary exposure time for detection of reference exozodiacal dust disk vs fractional
brightness for fiducial telescope model

Table 1. Fiducial telescope model
Diameter 10 cm
Bandpass 200-300 nm
Throughput of camera 79%
QE of detector 80%
Read noise 3 e−/pixel
Dark current 0.0016 e−/(pixel sec)

3. Proposed Concept Description

It is evident from the discussion in the previous section that scientifically interesting targets may
require several hours of integration time to detect. Considering the limits of small satellite GN&C
systems, conducting such a long observation in one continuous pass in earth orbit is highly impracti-
cal. Thus, the envisioned mission operations strategy includes two phases: 1) a science phase during
which a low-thrust, continuous control system is used to maintain decimeter-level relative position
control while the telescope instrument images the target from within the shadow of the occulter, and
2) a reconfiguration phase during which the formation is reconfigured by a sequence of impulsive
maneuvers to ensure proper alignment at the start of the next science phase. The proposed operations
concept is illustrated in Fig. 2. This operations strategy is inspired by the European Space Agency’s
PROBA-3 solar coronagraph concept [11], but is subject to several distinct challenges. First, the
baseline separation of the mDOT concept is several hundred kilometers, orders of magnitude larger
than the PROBA-3 baseline. Additionally, the mDOT concept is subject to the onboard resource
limitations of micro-/nano-satellites.

It has been demonstrated that it is possible to design a small occulter capable of achieving sufficient
contrast to image exozodiacal dust disks over a small range of separation distances (±1% of the
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Figure 2. Illustration of telescope and occulter orbits (not to scale) noting forced motion control
during the science phase (green) and impulsive control during the reconfiguration phase (red)

baseline [7]). The proposed concept exploits this separation insensitivity by allowing the spacecraft
to freely drift along the line-of-sight during observations. Thus, the GN&C system need only
counteract differential accelerations perpendicular to the line-of-sight.

4. Science Phase Cost Modeling

The following is a concise derivation of the delta-v optimal formation design based on considerations
of science phase maneuvers. First, an analytical formulation of the delta-v cost of a family of
pareto-optimal forced motion control maneuvers is presented. This formulation is used to select the
initial argument of perigee and right ascension of the ascending node (RAAN) that minimizes the
deviation of the formation from the optimal configuration over the expected mission lifetime. For
more detailed discussions of this formation design, the reader is referred to Koenig et al. [8].

4.1. Instantaneous Cost Modeling

Figure 3 illustrates the mDOT formation in earth orbit with relevant design variables. In this model
the inertial position and velocity vectors of the telescope are expressed by r and v, respectively.
A rotating orbit frame (RTN) centered at the telescope is defined by the radial (R, along r), cross-
track (N, along orbit normal), and along-track (T, completes right-handed triad) directions. The
relative position vector of the occulter in the RTN frame, ρρρ , can be decomposed into component
displacements x, y, and z in the R, T, and N directions, respectively. In this model, the inertial
differential acceleration between the occulter and telescope spacecraft, δg, due to spherical earth
gravity is given in the RTN frame by

δg = µ


1
r2 − r+x(

(r+x)2+y2+z2
)3/2

− y(
(r+x)2+y2+z2

)3/2

− z(
(r+x)2+y2+z2

)3/2

 (1)
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Figure 3. Illustration of mDOT formation in earth orbit (not to scale) with relevant design variables

where µ denotes earth’s gravitational parameter. The component of this acceleration orthogonal
to the line-of-sight, δg⊥, is computed by taking the norm of the difference between δg and its
projection onto ρρρ , as given by

δg⊥ = ||δg− δg ·ρρρ
||ρρρ||

ρρρ||= µ

√
y2 + z2

x2 + y2 + z2

[ r
((r+ x)2 + y2 + z2)3/2 −

1
r2

]
(2)

Using the identities ρ =
√

x2 + y2 + x2 and φ = arccos(x/ρ), which can be derived from Fig. 3,
Eq. 2 can be simplified to

δg⊥ = µ sinφ

[ r
(r2 +2rρ cosφ +ρ2)3/2 −

1
r2

]
(3)

Inspection of Eq. 3 reveals that there exist two non-trivial conditions that reduce δg⊥ to zero. The
first condition is given by φ = 0, which corresponds to a formation aligned with the radial direction.
However, because the relative velocity between the spacecraft during an observation must be small,
it is evident that spacecraft aligned in the radial direction will have different mechanical energies. It
follows that these formations are characterized by a large difference in semi-major axis. In order
to perform periodic observations, it is necessary to remove and re-establish this baseline between
science phases. The authors have found from simulations that the delta-v cost of these maneuvers is
impractically large.

The second and more interesting condition that reduces δg⊥ to zero occurs when φ = arccos(−ρ/2r),
which corresponds to a formation characterized by equal radii of the telescope and occulter orbits.
Equivalently, this second condition corresponds to a formation aligned in the along-track/cross-track,
TN, plane defined through curvilinear coordinates [12]. The delta-v cost of the science phase is
minimized by ensuring that the formation remains near this configuration for the duration of a finite
maneuver.

4.2. Separation Drift Modeling

Because the proposed operations strategy only counteracts differential acceleration perpendicular to
the line-of-sight, the spacecraft will tend to drift over the course of a science phase. Indeed, the
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resulting change in separation can be as large as several kilometers for long observations. With
this in mind, the following analysis will demonstrate that the maximum allowable observation
duration depends only on separation drift allowed by the optical system and the orbit radius when
the observation is performed. Let ρ̄ denote the baseline inter-spacecraft separation specified by
the optical system. For two spacecraft with equal orbit radii, the differential acceleration along the
line-of-sight, ρ̈ , is computed from simple trigonometry according to

ρ̈ =−2
µ

r2 sin
(

ρ̄

2r

)
≈−µρ̄

r3 (4)

If it is assumed that ρ̈ is constant over the duration of an observation, the time history of the
inter-spacecraft separation can be modeled as a parabola according to

ρ(t) = ρ(t0)+ ρ̇(t0)(t− t0)+0.5ρ̈(t− t0)2 (5)

where ρ(t) denotes the magnitude of the relative position vector at time t, ρ̇(t) denotes to the
derivative with respect to time of ρ(t), and t0 denotes the start time of the science phase maneuver.
It is desirable to minimize the maximum deviation of ρ(t) from ρ̄ over the course of an observation.
If the maneuver duration is given by ∆t, then the initial separation, ρ(t0), and drift velocity, ρ̇(t0),
that minimize the deviation from the baseline separation are given by

ρ(t0) = ρ̄

(
1− µ∆t2

16r3

)
ρ̇(t0) =

µρ̄∆t
2r3 (6)

According to this model the maximum separation deviation, ∆ρ , normalized by the baseline
separation is given by

∆ρ

ρ̄
=

µ∆t2

16r3 (7)

Finally, if we assume the maximum allowable ratio ∆ρ/ρ̄ is fixed by the optical system, the
maximum allowable observation time, ∆tmax, is given by

∆tmax =

√
16r3

µ

∆ρ

ρ̄
(8)

It is clear that ∆tmax depends only on the orbit radius and the drift tolerance of the optical system.
Additionally, it can be seen that allowing ρ to drift by only 1% is sufficient to ensure that a 1-hour
long observation will not violate optical requirements as long as the orbit radius is at least 30000
km.

4.3. Finite Maneuver Cost Modeling

At this point, it has been established that there exist configurations such that the differential
acceleration perpendicular to the line-of-sight is identically zero. It is now possible to compute the
delta-v cost associated with a finite maneuver, ∆vscience, as given by

∆vscience =

∫ t0+∆t

t0
|g⊥(t)|dt (9)
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If the duration of the maneuver is short compared to the orbit period, it is reasonable to approximate
the evolution of δg⊥ as a linear function given by

δg⊥(t) =
Dδg⊥

Dt

(
t− t0−

∆t
2

)
+δg⊥0

Dδg⊥
Dt

=
δδg⊥

δ r
dr
dt

+
δδg⊥

δρ

dρ

dt
+

δδg⊥
δφ

dφ

dt
(10)

where δg⊥0 and Dδg⊥/Dt denote the differential acceleration perpendicular to the line-of-sight
and its substantial derivative, respectively, evaluated at t = t0 +∆t/2. The total delta-v cost of
the maneuver is minimized by selecting the start time of the maneuver such that δg⊥0 = 0. The
expression of the substantial derivative can be greatly simplified with a few assumptions. First, it
is known from classical Keplerian mechanics [12] that the time rate of change of the orbit radius
at the apogee of an eccentric orbit (corresponding to the maximum orbit radius) or anywhere in a
circular orbit is zero. Thus, the r-dependent terms of the substantial derivative can be neglected.
Additionally, it is known that ρ must be kept nearly constant to satisfy the requirements of the
optical system. Thus, the ρ-dependent terms can also be neglected. The simplified substantial
derivative of the instantaneous cost is given by

Dδg⊥
Dt

=
δδg⊥

δφ

dφ

dt
(11)

which depends only on the behavior of φ . The time evolution of φ is a function of the pointing
vector to an inertial target expressed in the RTN frame. This pointing vector is a function of the
classical Keplerian orbit elements including true anomaly, ν , argument of perigee, ω , inclination, i,
and RAAN, Ω. The transformation between the earth-centered inertial (ECI) and RTN frames is
given by the following sequence of elementary rotation matrices

ρ̂ρρ
RT N = R3(ν)R3(ω)R1(i)R3(Ω)ρ̂ρρECI (12)

where Ri denotes a rotation about the ith axis. With the exception of true anomaly, the orbit elements
evolve very slowly and only due to forces other than spherical earth gravity. For simplicity, the
slowly varying terms are grouped in a vector defined by

ρ̂ρρ
PQR = R3(ω)R1(i)R3(Ω)ρ̂ECI =


√

1− γ2 cosν∗√
1− γ2 sinν∗

γ

 (13)

where ρ̂ρρ
PQR represents the pointing vector to the target expressed in perifocal coordinates. In this

relation, ν∗ denotes the phase angle of the projection of the pointing vector onto the orbit plane and
γ denotes the cross-track component of the pointing vector. This parameterization of the pointing
vector is selected to simplify the following formulations. Substituting Eq. 13 in Eq. 12 yields

ρ̂ρρ
RT N = ρ R3(ν)


√

1− γ2 cosν∗√
1− γ2 sinν∗

γ

= ρ


√

1− γ2 cos(ν∗−ν)√
1− γ2 sin(ν∗−ν)

γ

 (14)

which parameterizes the evolution of the pointing vector in the RTN frame as a function of ν ,
ν∗, and γ . From Eq. 14 it is clear that the motion of the pointing vector to an inertial target is
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characterized by a circle in the radial/along-track plane with a constant offset in the cross-track
direction.

Now that the evolution of the pointing vector to the target has been characterized, the substantial
derivative of δg⊥ can be evaluated. Because φ is the angle between the pointing vector to the target
and the radial direction, it can be expressed as a function of ν , ν∗, and γ as given by

cosφ =
√

1− γ2 cos(ν∗−ν) (15)

Because φ is expressed as a function of ν , the substantial derivative given in Eq. 11 can be expanded
by applying the chain rule, which yields

Dδg⊥
Dt

=
δδg⊥

δφ

dφ

dν

dν

dt
(16)

From Eq. 3, the partial derivative of δg⊥ with respect to φ evaluated at cosφ =−ρ/(2r) is given
by

δδg⊥
dφ

=
3µρ

r3

(
1− ρ2

4r2

)
(17)

From Eq. 15, the derivative of φ with respect to ν evaluated at cosφ =−ρ/(2r) is given by

dφ

dν
=

sin(ν∗−ν)√
(1− γ2)sin2 (ν∗−ν)+ γ2

=

√
1− γ2− ρ2

4r2√
1− ρ2

4r2

(18)

and the time rate of change of ν is given from classical Keplerian mechanics [12] by

dν

dt
=

√
µa(1− e2)

r2 (19)

Combining Eqs. 16-19 yields

Dg⊥
Dt

=
3µρ

r5

√
µa(1− e2)

(
1− ρ2

4r2

)(
1− γ2− ρ2

4r2

)
(20)

Finally, substituting Eqs. 10 and 20 into Eq. 9 yields

∆vscience =

∫ t0+∆t

t0
(t− t0−

∆t
2
)
3µρ

r5

√
µa(1− e2)

(
1− ρ2

4r2

)(
1− γ2− ρ2

4r2

)
dt (21)

which can be evaluated directly. The resulting delta-v cost is given by

∆vscience =
3µρ∆t2

4r5

√
µa(1− e2)

(
1− ρ2

4r2

)(
1− γ2− ρ2

4r2

)
(22)

Equation 22 presents an analytical expression for the delta-v cost associated with a finite forced
motion control maneuver to achieve constant inertial pointing. This expression was developed by
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integrating an analytical expression of the differential acceleration perpendicular to the line-of-sight
due to spherical earth gravity. There are three key assumptions used in this derivation: 1) The
maneuver is centered about a configuration where the instantaneous cost as defined by Eq. 3 is
zero, 2) the orbit radius is constant during the maneuver, and 3) the inter-spacecraft separation is
constant during the maneuver. There are a number of important conclusions that can be drawn from
Eq. 22. First, the delta-v cost depends very strongly on the orbit radius. Thus, the orbit semi-major
axis should be maximized in order to minimize cost. Second, increasing the eccentricity of the
orbit reduces the delta-v cost of a science phase maneuver performed at the apogee. Third, the cost
depends on the parameter γ , which is an analog of the cross-track component of the relative position
vector. Specifically, configurations that satisfy γ2 = 1−ρ2/(4r2) have a delta-v cost of zero to
first order. Maximizing |γ| requires that the pointing vector to the target is perpendicular to the
orbit plane. There are two sets of i and Ω that satisfy |γ|= 1 for an arbitrary science target. These
correspond to cases where the orbit angular momentum vector is either parallel or anti-parallel to
the pointing vector to the target. It should be noted that Eq. 22 only applies to orbits that satisfy
|γ| ≤

√
1−ρ2/(4r2). However, orbits that violate this constraint will remain very close to the

instantaneous zero-cost configuration.

Fig. 4 (left) illustrates the behavior of ∆vscience for 1-hour long observations for an mDOT formation
in a circular orbit with a 500 km baseline separation for a range of orbit semi-major axis and γ

values. It can be seen that unless the formation has a very high value of |γ|, it is essential that the
orbit be as large as possible. To validate the assumptions used in the derivation of Eq. 22, Fig. 4
(right) compares the delta-v cost from the analytical formula with the delta-v cost computed from
high-fidelity numerical simulations with the GRACE Gravity model GGM01S of degree and order
120 [13] for a formation with a 40000 km orbit radius for various values of γ . It can be seen that the
analytical model agrees with simulation results to within 1%.

Figure 4. Optimal science phase delta-v cost for 1-hour observations in a circular orbit vs a and γ

(left) and comparison with simulation (right)

4.4. Secular Drift Effects

The preceding analysis was performed under the assumption that the orbit orientation is constant.
In order to fully minimize the delta-v cost of a multi-orbit mission, it is necessary to select the
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initial orbit such that the deviation from the optimal formation due to J2 effects is minimized.
Specifically, the initial value of the argument of perigee and RAAN should be selected with two
considerations in mind: 1) the maximum difference between the angular momentum vector of the
orbit and the pointing vector to the target over the expected mission lifetime should be minimized,
and 2) the pointing vector to the target at the science phase location (e.g. the apogee of an eccentric
orbit) should closely follow the TN-plane. Before proceeding, it is first insightful to consider the
conventional definition of the pointing vector to a star. The position of a star is frequently described
by two angles: the right ascension, α , and declination, δ . From these angles, the pointing vector to
the science target in the ECI frame, ρ̂ρρ

ECI
target , is given by

ρ̂ρρ
ECI
target =

cosα cosδ

sinα cosδ

sinδ

 (23)

Recall from Eq. 12 that the pointing vectors expressed in the RTN and ECI frames are related by
a sequence of elementary rotations. However, the angular momentum vector of the orbit depends
only on i and Ω. Consider an orbit with an argument of perigee and true anomaly of zero. Under
this assumption, the pointing vector in the RTN frame is given by

ρ̂ρρ
RT N
target = R1(i)R3(Ω)ρ̂ρρECI

target =

 cosΩ sinΩ 0
−cos isinΩ cos icosΩ sin i

sin isinΩ −sin icosΩ cos i

cosα cosδ

sinα cosδ

sinδ

 (24)

Combining the terms in this equation yields

ρ̂ρρ
RT N
target =

 cosδ cos(α−Ω)
cos icosδ sin(α−Ω)+ sin isinδ

−sin icosδ sin(α−Ω)+ cos isinδ

 (25)

The necessary and sufficient condition to align the pointing vector with the angular momentum
vector is that the first two terms of this expression are zero. There are two solutions that meet this
requirement, which are given by

(Ω1, i1) = (α +π/2,−δ +π/2) (Ω2, i2) = (α−π/2,δ +π/2) (26)

These solutions correspond to angular momentum vectors aligned parallel and anti-parallel, respec-
tively, to the pointing vector to the target. The change in the pointing vector to the target in the RTN
frame, ∆ρ̂ρρ

RT N
target , due to a small change in the RAAN, ∆Ω, is given by

∆ρ̂ρρ
RT N
target = ∆Ω

 cosδ sin(α−Ω)
−cos icosδ cos(α−Ω)

sin icosδ cos(α−Ω)

 (27)

Substitution of the first solution from Eq. 26 yields

∆ρ̂ρρ
RT N
target =

−cosδ∆Ω

0
0

 (28)
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We have thus far assumed that the argument of perigee and true anomaly are zero. It is now conve-
nient to generalize this expression to orbits with arbitrary argument of perigee. The perturbation of
the pointing vector in the RTN frame at the apogee of such an orbit is given by

∆ρ̂ρρ
RT N
target = R3(ω +π)

−cosδ∆Ω

0
0

= cosδ∆Ω

 cosω

−sinω

0

 (29)

Finally, the resulting pointing vector to the target at the apogee is given by

ρ̂ρρ
RT N
target =

 cosω cosδ∆Ω

−sinω cosδ∆Ω

1

 (30)

Equation 30 describes the pointing vector to the target in the RTN frame at the apogee of an orbit
where the angular momentum is misaligned with the target due to a RAAN perturbation. This
misalignment introduces a component of the pointing vector in the RT-plane and the direction of
this component depends on the argument of perigee. In order to ensure that the pointing vector
evolves in the TN-plane, the optimal values of the argument of perigee are 90o and 270o.

The above considerations define the ideal values of Ω, i, and ω for a specific science target. Because
J2 causes a secular drift in Ω and ω , the delta-v cost associated with J2 effects is minimized by
simply centering these parameters about their desired values over the expected mission lifetime.
The secular drift per orbit in radians of the RAAN and argument of perigee, denoted ∆Ω and ∆ω ,
are given from the Gauss variational equations [14] by

∆Ω =−3πJ2

( RE

a(1− e2)

)2
cos i ∆ω = 1.5πJ2

( RE

a(1− e2)

)2
(5cos2 i−1) (31)

Now, let Ω∗ and ω∗ denote the desired values of the RAAN and argument of perigee. If the expected
mission duration is N orbits, the ideal choices for the initial values of the RAAN and argument of
perigee, denoted Ω0 and ω0, are given by

Ω0 = Ω
∗−0.5N∆Ω ω0 = ω

∗−0.5N∆ω (32)

It is evident from the preceding analysis that the precession of the orbit due to J2 depends on the
inclination of the orbit, which is specified by the location of the science target of interest. Noting
the dependence of the orbit alignment on Ω, one could conceive an alternative operations strategy
that uses a sequence of maneuvers to counteract the RAAN drift, ensuring that the absolute orbit
of the formation is always optimal. The cost associated with counteracting the RAAN drift over a
single orbit using a maneuver performed at the apogee is given from the Gauss variational equations
[14] by

∆v = 1.5πJ2

√
µ(1− e)
a(1+ e)

( RE

a(1− e2)

)2
sin(2i) (33)

However, comparison with the total delta-v cost of missions using the previously described formation
design strategy reveals that this cost is impractically large.
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5. Earth Umbra Constraint Model

The previous analysis defines the optimal formation for a specified science target of interest.
However, a realized mission may be subject to operational constraints that render deployment of
the formation in the optimal configuration infeasible. Recall that exozodiacal dust disks are several
orders of magnitude more faint than their parent stars. In order to successfully image these disks,
it is imperative that the light reflected from the occulter to the telescope be less intense than the
light from the science target. Thus, it is desirable to minimize the exposure of the occulter to bright
light (e.g. sunlight and earth albedo) during the science phase. One method of accomplishing
this is to ensure that the science phase occurs when the occulter spacecraft is in earth’s umbra.
Implementation of such a strategy constrains both the orbit orientation (Ω, i, and ω), and the time of
year of the mission. The authors previously demonstrated that the cost associated with a reference
mission is very sensitive to inclination and RAAN perturbations, but exhibits low sensitivity to
argument of perigee perturbations [8]. It will now be demonstrated that it is possible to select
an orbit with an apogee in the center of earth’s umbra such that the angular momentum vector is
aligned with the pointing vector to an arbitrary science target, provided that the argument of perigee
and time of year of the mission can be freely selected. Deploying the formation in the resulting
orbit minimizes the cost increase associated with the umbra constraint.

Neglecting small perturbations due to precession and nutation of earth’s rotation axis, the pointing
vector to the sun in the ECI frame, ρ̂ρρ

ECI
sun , traverses a circle over the course of a year. This pointing

vector is given by

ρ̂ρρ
ECI
sun =

 −cos(2πtmission)
−cosε sin(2πtmission)
−sinε sin(2πtmission)

 (34)

where tmission is the amount of time since the vernal equinox measured in years and ε is the angle
between earth’s rotation axis and the ecliptic pole (∼23.5o). The pointing vector to the sun is always
perpendicular to the pointing vector to the ecliptic pole, ρ̂ρρ

ECI
ecliptic, which is given by

ρ̂ρρ
ECI
ecliptic =

 0
−sinε

cosε

 (35)

Placing the orbit apogee in the center of earth’s umbra is equivalent to aligning the eccentricity
vector of the orbit with the pointing vector to the sun. Because the eccentricity vector must also be
perpendicular to the pointing vector to the target to properly align the angular momentum vector,
the ideal direction of the eccentricity vector can be computed by taking the cross product of the
pointing vectors to the ecliptic pole and the science target as given by

ρ̂ρρ
ECI
perigee =±

ρ̂ρρ
ECI
ecliptic× ρ̂ρρ

ECI
target

||ρ̂ρρECI
ecliptic× ρ̂ρρ

ECI
target ||

(36)

Now that the eccentricity vector has been computed, it is necessary to compute the corresponding
argument of perigee. This can be expressed as a function of the location of the science target as
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given by1
0
0

= R3(ω
∗)R1(i)R3(Ω)ρ̂ECI

perigee = R3(ω
∗)R1(−δ +90o)R3(α +90o)ρ̂ρρECI

perigee (37)

Multiplication by R3(−ω∗) yieldscosω∗

sinω∗

0

=

 −sinα cosα 0
−sinδ cosα −sinδ sinα cosδ

cosδ cosα cosδ sinα sinδ

 ρ̂ρρ
ECI
perigee (38)

Finally, if px, py, and pz denote the x, y, and z components of ρ̂ρρ
ECI
perigee, respectively, then the

argument of perigee that centers the apogee in earth’s umbra and the corresponding mission time
are given in closed form by

ω
∗ = arctan

(−px sinδ cosα− py sinδ sinα + pz cosδ

−px sinα + py cosα

)
tmission =

1
2π

arctan
( py

px cosε

)
(39)

For a multi-orbit mission, the initial value of the argument of perigee should be selected to center
the orbit about ω∗ over the expected mission lifetime. Additionally, it is evident that there are two
suitable mission times and corresponding values of ω∗ that properly orient the orbit with respect
to earth’s umbra. These points are exactly six months apart and the corresponding arguments of
perigee are separated by 180o. Figure 5 illustrates how ω∗ varies with the declination and right
ascension of the science target. For clarity, only values between 0o and 180o are shown. It can be
seen that there exist a small family of targets that allow for ω∗ ≈ 90o (green), but for most targets
the required argument of perigee is close to 23o (blue) or 157o (red). These angles correspond to
the angle between earth’s rotation axis and the ecliptic pole and its supplement. It follows that
imposing the constraint that observations must be performed in earth’s umbra will increase the cost
of imaging the majority of science targets.

Figure 5. Plot of argument of perigee that ensures alignment of apogee with earth’s umbra vs α and
δ of the science target

13



6. High-Fidelity Simulation Description

The proposed design strategy is validated through high-fidelity numerical simulations of a reference
mission profile to image various science targets including both science and reconfiguration phases.
It is assumed that each mission simulation includes ten science phases, with nine corresponding
reconfiguration phases. Relevant mission parameters are given in Tab. 2. The implementation of the
science phase and reconfiguration phase simulations are described in the following.

Table 2. Mission simulation parameters
a (km) e ρ̄ (km) ∆t (hr)
24500 0.72 500 1.5

6.1. Science Phase Simulation

The science phase simulation is conducted as follows. First, the orbit of the telescope spacecraft is
specified either from the initial conditions of the mission or from the end state of a reconfiguration
phase simulation. The initial orbit of the occulter spacecraft is specified by enforcing the initial
condition constraints of the science phase, which include: 1) the relative position vector is aligned
with the target, 2) the inertial relative velocity perpendicular to the line-of-sight is zero, and 3)
the initial separation and drift rates are specified to minimize the deviation from the baseline
separation (from Eq. 6). The orbits of the telescope and occulter spacecraft are propagated
using a rigorous force model including contributions from static earth gravity, third body, solar
radiation pressure, and atmospheric drag forces. The models used for each of these contributions
are described in Tab. 3. It is assumed that the spacecraft have perfect knowledge of the relative

Table 3. High-fidelity simulation force models
Force Model Contributions Simulation Model
Static gravity field GGM01S (120x120) [13]
Third-body sun/moon Analytical model [15]
Atmospheric density Jacchia [16]
Solar radiation pressure Cannonball, conical earth shadow

state. Accordingly, the telescope spacecraft applies a continuous thrust that precisely counteracts the
differential acceleration perpendicular to line-of-sight throughout the simulation. This control force
is numerically integrated to compute the total delta-v cost of the maneuver. The implementation of
these simulations is illustrated in Fig. 6.

6.2. Reconfiguration Phase Simulation

To describe the impulsive reconfiguration problem, it is convenient to adopt the relative orbital
elements (ROE) state representation defined by D’Amico and Montenbruck [17]. The definition of
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Figure 6. Science phase simulation flow chart

the ROE state is given by

δααα =


δa
δλ

δex
δey
δ ix
δ iy

=


(ac−ad)/ad

Mc−Md +ωc−ωd +(Ωc−Ωd)cos id
ec cosωc− ed cosωd
ec sinωc− ed sinωd

ic− id
(Ωc−Ωd)sin id

 (40)

where the subscripts c and d denote properties of the chief and deputy spacecraft, respectively.
The reconfiguration phase simulations are based on a closed-form maneuver planning algorithm
valid for orbits of arbitrary eccentricity. This algorithm uses a single cross-track impulse to correct
the out-of-plane ROE (δ ix and δ iy), and a sequence of three along-track impulses to correct the
in-plane ROE (δa, δλ , δex, and δey). This strategy nominally requires two orbits to achieve an
arbitrary change in δααα . For a detailed explanation of the computation of the required maneuvers,
the reader is referred to Koenig et al. [8]. This maneuver planning algorithm is implemented in an
iterative scheme in simulations to account for perturbations as described in the following. First,
the initial state of the reconfiguration problem, δααα i, is computed by applying the osculating to
mean transformation described by Schaub [18] to the relative state at the end of the science phase
simulation. Next, the orbit of the telescope spacecraft is propagated using the described force
model to the start of the next science phase, which is presumed to be centered at the apogee of
the second orbit due to the requirements of the reconfiguration algorithm. At this point, the orbit
of the occulter is specified by applying the initial condition constraints of the science phase. The
desired final state of the reconfiguration problem, δααα f , is computed by applying the osculating to
mean transformation to this desired state. The closed-form reconfiguration algorithm is used to
compute the required impulses to take the formation from δααα i to δααα f and their execution times. To
address the effect of perturbations, the orbit of the occulter spacecraft is propagated to the start of
the next science phase including the computed maneuvers. The true end state, δαααend , is computed
by applying the osculating to mean transformation to the relative state at the end of this propagation.
Next, the maneuver sequence is recomputed with a modified end state, δααα∗f , and the propagation of
the orbit of the occulter spacecraft is repeated. After each propagation, a correction is applied to the
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end state of the computation algorithm as given by

δααα
∗
f = δααα

∗
f +(δααα f −δαααend) (41)

This process is iterated until δαααend converges to δααα f . In practice, this iteration scheme nominally
converges to sub-meter precision within five iterations. The implementation of these simulations is
illustrated in Fig. 7.

Figure 7. Reconfiguration phase simulation flow chart

7. Simulation Results

The described mission simulations are used to determine 1) the contribution of third body, solar
radiation pressure, and atmospheric drag to the total cost of a mission, and 2) the effect of the
location of the science target of interest on the total mission cost. The latter is studied with and
without the constraint that the observations are performed with the occulter spacecraft in earth’s
umbra.

7.1. Third Body, Solar Radiation Pressure, and Atmospheric Drag Perturbations

The effects of third body, solar radiation pressure, and atmospheric drag forces are assessed by
repeating the simulations of a reference mission to image Beta Pictoris (α = 86.75o, δ = -51.07o)
described in Koenig et al. [8]. Accounting only for geopotential forces, this mission has a total
delta-v cost of 2.34 m/s. This includes a 0.17 m/s cost associated with the science phases and 2.17
m/s associated with reconfiguration phases. Applying the centering procedure described above, the
optimal orbit elements for the telescope spacecraft are given in Tab. 4.

Inclusion of solar radiation pressure and atmospheric drag forces requires specification of the
ballistic properties of the spacecraft. According to a concurrent preliminary system design study [19],
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Table 4. Initial telescope orbit specification for reference Beta Pictoris Mission
i (o) ω0 (o) Ω0 (o) ω∗ (o) Ω∗ (o)
39 88.3 357.3 90 356.75

the occulter spacecraft is presently expected to be a micro-satellite with a mass of approximately
150 kg, and a worst-case surface area of 3 m2 with the occulter deployed. The telescope spacecraft
is expected to be a 6U CubeSat with a mass of approximately 10 kg and a surface area of 0.06
m2 on the largest side. It is assumed that both spacecraft have drag and reflectance coefficients of
2. For completeness, simulations of the reference mission were conducted allowing the mass of
each spacecraft to vary by as much as a factor of 2. The differential ballistic coefficient in these
simulations ranges from 20% to 90%. The total mission cost for each of these simulations did
not deviate from the reference cost by more than 4%. It is therefore evident that including these
perturbations has negligible impact on the delta-v cost of the reference mission. Thus, the total
mission cost is driven by J2 effects. However, it is known that third body and solar radiation pressure
forces are nearly invariant with orbit radius. Thus, the costs associated with these perturbations may
be significant if the formation is deployed in a larger orbit.

7.2. Cost vs Science Target Location

Because the total cost of a mission is dominated by J2 effects, it is evident that the cost of imaging a
given science target depends on its location. As shown in Eq. 31, these effects are invariant with Ω.
It follows that the mission cost varies only with the declination of the the target if the earth umbra
constraint is not enforced. To characterize this effect, simulations of the reference mission were
conducted on a set of hypothetical science targets with declination ranging from -90o to 90o. Figure
8 (left) illustrates how the cost breakdown of these simulations varies with |δ |. The total mission
cost varies between 2.0 and 2.8 m/s and is dominated by the reconfiguration cost. The behavior of
the cost profile suggests that the sum of the effects of absolute and differential J2 effects cannot be
simultaneously suppressed given the constraints of the formation design strategy.

Figure 8. Reference mission cost vs δ for optimal mission configuration (left) and eclipse-
constrained missions (right)
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In order to characterize how the mission cost varies with target location subject to the umbra
constraint, a set of simulations was conducted for a set of hypothetical targets that vary in both
right ascension and declination. For each target, the initial RAAN and argument of perigee are
selected to center the orbit about the configuration defined by Eq. 26 and Eq. 39. Figure 8 (right)
shows how the cost breakdown of these simulations varies with |δ |. The dashed lines denote the
minimum cost for each declination value and the solid lines denote the maximum cost. Several
conclusions can be drawn from this plot. First, the worst-case delta-v cost for imaging any target
subject to the umbra constraint is 11.6 m/s, which is still well within the delta-v budget of current
small satellite propulsion systems [20]. Second, the best-case delta-v cost for simulations with |δ |
ranging from 10o to 70o is much larger than the cost associated with the optimal configuration. In
this region the argument of perigee must be close to 23o or 157o, which causes the pointing vector
to the target at the apogee to evolve in the R direction. This results in large increases in both the
science and reconfiguration phase costs. Simulations with |δ | between 70o to 90o instead show a
wide range of possible costs. This is because the required argument of perigee can take on any
value depending on the exact location of the science target. Finally, for targets near the equator
(|δ | ≤ 5o) the total cost can be as low as 0.85 m/s, which is much less than the cost associated
with the proposed formation design strategy for any declination. Furthermore, this minimum cost
occurs when the argument of perigee is 0o or 180o. This is in direct conflict with the argument
of perigee provided by the described formation design strategy. To understand this phenomenon,
consider the following. First, recall that the argument of perigee was specified to ensure that the
pointing vector to the target evolves in the TN-plane. It is evident from Eq. 26 that aligning the
angular momentum vector with an equatorial target requires a polar orbit. Polar orbits do not exhibit
secular drift of Ω, so the angular momentum vector of the orbit will be properly aligned for the
expected mission lifetime regardless of the choice of ω . Additionally, it was found that formations
with an argument of perigee of 0o or 180o are characterized by a near zero difference in semi-major
axis, eccentricity, and inclination. It follows that these formations are not subject to differential
J2 effects. The resulting reconfiguration costs are due only to the secular drift of ω . On the other
hand, formations with an argument of perigee of 90o exhibit a large difference in inclination, which
causes differential J2 effects. The cost associated with these effects is small compared with the
costs associated with allowing the angular momentum vector of the orbit to drift in an unfavorable
manner for all cases except polar orbits.

8. Conclusions

This paper builds upon a novel formation design strategy for a miniaturized distributed occul-
ter/telescope in earth orbit which has been demonstrated to minimize the delta-v cost associated
with both forced motion control and impulsive reconfiguration maneuvers. The design strategy
is based on the idea that the delta-v cost of forced motion control is minimized by allowing the
spacecraft to drift along the line-of-sight. The contribution of this paper to the state of the art is
twofold. First, it was demonstrated that third body, solar radiation pressure, and atmospheric drag
forces have negligible impact on the delta-v cost of nominal operations. Second, the delta-v cost
of a reference mission was characterized as a function of the location of the science target with
and without a constraint that observations must be performed with the occulter spacecraft in earth’s
umbra. These simulations demonstrated that the proposed design strategy minimizes mission costs
for the vast majority of possible science targets. These simulations also demonstrated that equatorial
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targets allow favorable observation conditions with respect to J2 effects. Finally, these simulations
suggest that the cost of imaging an arbitrary science target is well within the delta-v budget of
current small satellite propulsion systems.

The conclusions of this work call for a number of follow-on studies. First, a more detailed study of
the costs associated with mission operations is warranted. Such a study would include the costs
associated with the limitations of realistic guidance, navigation, and control systems (e.g. navigation
and maneuver execution errors) and costs associated with other phases of mission operations such
as formation acquisition. Second, in order to increase the science return of a small-scale mission,
the proposed formation design strategy must be generalized to a mission to image multiple science
targets.

Overall, this paper demonstrates that deployment of a miniaturized distributed occulter/telescope
on micro- or nano-satellites in earth orbit to image an exozodiacal dust disk is feasible with
current propulsion technology provided that the absolute and relative orbits are properly selected.
Deployment of such a mission could demonstrate the validity of the distributed occulter/telescope
concept and provide a valuable science return at a small fraction of the cost of large-scale platforms.
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