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Abstract: Frozen eccentricity orbits are common in Earth Observation missions flying in  Low 
Earth Orbit (LEO) since these missions typically require altitude control. The frozen eccentricity 
concept is based on the existence of values for the argument of perigee and the eccentricity for 
which the Earth’s potential long-periodic perturbation nullifies. These are the so-called frozen 
eccentricity values. In the vicinity of these stability points the eccentricity vector describes a 
rotation at nearly constant angular velocity; this known behaviour is the basis of most passive 
eccentricity control strategies. When other perturbations are considered, the evolution of the 
eccentricity vector adopts a more complex pattern. In particular, the disturbing effect of the 
Solar Radiation Pressure (SRP) is clearly visible when the eccentricity vector is close to the 
frozen value. Commonly used eccentricity control algorithms determine iteratively corrections to 
the eccentricity vector based on full-perturbations-model numerical integrations. However, the 
analytical derivation of the eccentricity vector motion taking into account the Earth’s potential 
and the SRP perturbations is of high advantage in the design of efficient eccentricity control 
strategies. This paper presents such an analytical approach to the eccentricity control problem, 
analysing the SRP perturbation effect with and without eclipse conditions. Applications of this 
result to the eccentricity control problem for ESA missions Sentinel-1 and 2 are provided. 
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1. Introduction 
 
Most Earth Observation payloads are designed to perform regular observations of the same areas 
on the Earth’s surface. Applying comparative techniques to the acquired data is often possible 
only when altitude variations between data takes are below a required threshold. This 
requirement drives the selection of the mission’s operational orbit as well as the design of the 
operational orbit maintenance strategy. The selection of frozen eccentricity orbits is suitable to 
keep control on the long term evolution of the eccentricity vector caused by the Earth’s potential 
perturbation and by doing that controlling changes in altitude. Frozen eccentricity orbits have a 
mean argument of perigee close to 90 degrees combined with an eccentricity value that reduces 
the effect of the Earth’s potential perturbation to zero. When the eccentricity vector is in the 
vicinity of this point, its long-periodic variation describes a rotation at constant angular velocity 
around this stability point [1], [2]. 
 
As already mentioned, the frozen eccentricity concept relies on the perturbation from the Earth’s 
potential, which in LEO is the main one. However, when other perturbations are considered, the 
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evolution of the eccentricity vector adopts a more complex pattern. In particular, the disturbing 
effect of the Solar Radiation Pressure (SRP) is clearly visible when the eccentricity vector is 
close to the frozen value. Neglecting higher order terms it can be demonstrated that the 
perturbation in the eccentricity vector due to the SRP can be approximated by a 
seasonal-dependent constant drift in the ex, ey plane. The seasonal dependency is given by the 
orientation of the Sun direction with respect to the orbital plane. Orbit control strategies 
commonly make use of full-force-model numerical integrations to correct regularly the 
eccentricity vector during the operational phase. These corrections make use of the selected 
frozen eccentricity to passively achieve the eccentricity control as part of the maintenance of the 
semi-major axis. Nonetheless, the analytical derivation of the eccentricity vector motion taking 
into account the Earth’s potential and the SRP perturbations is of high advantage in the design of 
efficient eccentricity control strategies, specially when a full passive eccentricity control is not 
possible due to strict constraints in altitude variations. 
 
This paper is concerned with such an analytical approach. In section 2 the effect of the SRP force 
on the eccentricity vector is modelled as the effect of a constant force on a Keplerian orbit. 
Section 3 considers the known problem of the Earth’s potential perturbation in the eccentricity 
vector and its motion in the vicinity of the frozen eccentricity. The combined effect of both 
perturbations is presented in section 4 and applications to the ESA Copernicus missions 
Sentinel-1 and Sentinel-2 are given in section 5. 
 
In the notation used throughout this paper vectors are represented as a  in the equations or using 
bold letters in the text. 
 
2. Effect of the SRP on the eccentricity vector 
 
This section is dedicated to model the perturbation of the SRP in the eccentricity vector. In the 
analysis presented hereinafter the following is assumed: 
 
- The force exerted by the SRP on the main body can be neglected with respect to that on the 

orbiting body. This is true since the ratio Surface/Mass is usually several orders of magnitude 
higher for the latter. 

- The seasonal change in magnitude and direction of the SRP force with respect to a reference 
frame fixed to the orbit is much slower than the orbital period. 

- The SRP is a constant force acting all along the orbit in a direction defined from the Sun to 
the Earth. 

  
Based on these assumptions the SRP force (per unit mass) can be expressed as a constant vector, 
as shown in Eq. 1, by its Cartesian components in the frame {ux, uy, uz} fixed to the orbit, with 
uz in the direction of the angular momentum, ux in the direction of the eccentricity vector, and uy 
completing a right-handed frame. The effect of the SRP shall be computed as a perturbation to a 
Keplerian orbit, assumed as zeroth order solution. Therefore the {ux, uy, uz} can be considered 
fixed. In the same frame, the position and velocity vectors can be expressed as a function of the 
true anomaly as shown in Eq. 2 and 3. 
 
 zzyyxx uuu 

γγγγ ++=  (1) 
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Following the Gauss form of the variational equations, the change in angular momentum and 
eccentricity vector caused by a small perturbing acceleration can be expressed as shown in Eq. 6 
and 8. 
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Eq. 10 and 11 show the effect of the perturbing acceleration component perpendicular to the 
orbital plane. It is observed that this component of the perturbation makes the eccentricity and 
angular momentum move as a rigid body. Additionally, an order of magnitude of the eccentricity 
drift can be extracted from Eq. 10, which is smaller by a factor of e than the one induced by a 
coplanar acceleration, as it will be shown later. 
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The change in the eccentricity vector due to the component of γ contained in the orbital plane can 
be derived from Eq. 8 by making use of Eq. 2, 3, 5 and 6. This results in the eccentricity vector 
variation expressed in Eq. 12 and 13. 
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The eccentricity change given in the previous equations can be averaged over an orbit revolution. 
If no eclipse along the orbit is assumed (i.e. the effect of the perturbing acceleration is active all 
along the orbit) and neglecting terms of the order of O(pe2) the average eccentricity vector 
change is given by Eq. 17 and 18. Notice that the resulting eccentricity variation is perpendicular 
to the perturbing acceleration by a π/2 negative rotation. 
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Eclipse conditions can be included in this formulation by adding a correction to the results 
derived in Eq. 17 and 18. In order to simplify the process, terms of the order of O(pe) have been 
neglected. This assumes circular orbits, which is the main focus of this work. Nevertheless, if the 
results are to be applied to eccentric orbits, the terms of the order of O(pe) can be easily added 
following an analogous process. The eclipse correction term is obtained by integrating the right 
hand side of Eq. 15 and 16, with opposite sign, between the limits of the eclipse. Let θ1 and θ2 be 
respectively the true anomalies at the eclipse start and end. Then, the correction term is given by 
Eq. 19 and the average eccentricity vector variation takes the form shown in Eq. 20. Note that the 
correction term is also in the direction of a π/2 rotation negative rotation with respect to the 
direction of the coplanar component of the perturbing acceleration. As expected, the correction 
due to the eclipse depends on the difference θ2 - θ1, i.e. the eclipse length, and vanishes when 
this difference is zero. 
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3. Earth’s potential perturbation in the eccentricity: The Frozen Eccentricity 
 
This section summarizes briefly the well known mathematical results behind the frozen 
eccentricity principle and describes the generation of frozen eccentricity reference orbits for 
Earth Observation missions. 
 
The main perturbing force of the eccentricity vector in LEO is the Earth’s potential, in particular 
the Zonal Harmonics J2 and J3. From Vallado [1] the long-term variations in the eccentricity and 
argument of perigee are given in Eq. 21 and 22.  
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It can be seen that ω  nullifies at the critical inclination iw, or when the term in square brackets is 
zero. By fixing values for a and i, which are normally imposed by other mission requirements, a 
relation between e and ω can be found, which  makes the rate in argument of perigee zero. On 
the other hand, the rate in eccentricity is nullified for equatorial orbits and orbits at the critical 
inclination (i=0 or i=iw), or if the argument of perigee 90 or 270 degrees. Since most Earth 
Observation missions operate in polar orbits the value of the frozen eccentricity results in: 
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By linearizing the motion of the eccentricity vector given by Eq. 21 and 22 in the vicinity of its 
frozen value it can be demonstrated that it describes a rotation about that point. The angular 
rotation of this motion is derived in M.  Rosengren [2] and is given in Eq. 25 and 26, and it 
depends on the orbit semi-major axis and inclination. Figure 1 depicts the value of the rotational 
period as a function of the semi-major axis, assuming Sun-synchronous relation between a and i. 
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Figure 1: Rotational period around the frozen eccentricity 

 
3.1 Frozen eccentricity reference orbits 
 
The results on the frozen eccentricity presented above have been derived considering the effect 
of the J2 and J3 zonal harmonics. Earth’s potential harmonics of higher degree and order have an 
influence on the precise value of the frozen eccentricity as well, leading to slightly different 
positions than the one given by Eq. 23 and 24. In practice, the computation can be done 
numerically using precise models of the Earth’s potential following different approaches. 
M. Ronsengren [2] suggests an iterative algorithm to achieve frozen eccentricity, which is based 
on the assumption that in a first approximation the eccentricity vector moves as described above 
with the J2 and J3 harmonics plus a perturbing term. For missions with a ground-track repeat 
pattern the method that is currently used in ESOC FD is embedded in the generation of the 
missions’ reference orbit that is used for orbit control purposes. The reference orbit is created 
with a propagation that only includes a detailed model of the Earth’s potential. The critical point 
for the eccentricity is found by running an optimization in which the osculating eccentricity is 
constrained to be the same at the start and at end of the repeat cycle. Notice that the cycle start 
and end are at the same position in an Earth-Fixed reference frame. Since the length of the repeat 
cycle is much shorter than the rotation period about the frozen eccentricity (See Eq. 25) the 
optimization converges to an orbit with no long-periodic variations in the eccentricity vector. By 
controlling the spacecraft orbit close to this reference the short-periodic eccentricity variations 
are nearly the same as those of the reference orbit. That is, they are not visible when computing 
the relative osculating eccentricity vector with respect to the reference at correlative points in the 
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repeat cycle (nearly the same Earth-Fixed position). On the other hand, the osculating 
eccentricity vector relative to the reference is subject to the long-periodic variations undergone 
by the analysed orbit, which are treated in this paper. 
 

 
Figure 2: Osculating eccentricity vector of a reference orbit (left), an orbit following the 

reference (centre) and relative (right) 
 
4. Combined effect of the Earth’s potential and the SRP perturbations in the eccentricity 
vector 
 
In sections 2 and 3 the eccentricity vector variation has been characterized due to both, the SRP 
and the Earth’s potential perturbations respectively. The former induces an eccentricity drift 
given by Eq. 20, which is perpendicular to the projection of the SRP force onto the orbital plane. 
On the other hand, the study of the Earth’s potential perturbation predicts the existence of a 
stability point, the frozen eccentricity, and the motion in the vicinity of this point can be modeled 
as a rotation at constant angular velocity. This section tackles the combined effect on the 
eccentricity vector of both perturbations. 
 
Let {i, j, k} be an orthonormal base, with i in the direction of the line of nodes, k in the direction 
of the angular momentum and j completing a right handed frame. In this reference the 
eccentricity can be expressed by means of its (ex,ey) components in the {i, j} space. Let r be the 
position of an arbitrary eccentricity value with respect to the frozen eccentricity (e0x, e0y), let Ω 
be the angular velocity of the eccentricity due to the Earth’s potential perturbation about the 
frozen eccentricity, and let vSRP be the eccentricity drift induced by the SRP perturbation. The 
combined effect can be expressed by Eq. 30, which is a system of two ordinary differential 
equations. It can be integrated taking into account the dependency of vSRP with respect to the 
SRP force, which is a function of time (notice the seasonal position changes of the Sun with 
respect to the {i, j, k} frame). However, a qualitative analysis of this equation  yields interesting 
results. 
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Equation 30 shows that the eccentricity moves within the {i, j} plane, and that the field of 
velocities is as that of a rigid body. Therefore, very powerful results from plane motion 
kinematics can be used in its study, in particular the concept of Instant Centre of Rotation (ICR). 
In the field of velocities defined by Eq. 30 a point with null velocity exists, the position of that 
point is given by solving the right-hand side of Eq. 30 equal to 0. Let ρ be position of an 
arbitrary eccentricity value with respect to the ICR. The motion of the eccentricity vector with 
respect to the ICR is given by Eq. 33, which represents a rotation about the ICR with an angular 
velocity equal to Ω, which is that of the problem with just the Earth’s potential perturbation. 
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The ICR is not a static point, its motion is given by Eq. 31. Given a model for γ the vector 

SRPv can be derived from Eq. 20 and the position of the ICR can be computed at any time. In 
general, the trajectory of the ICR varies from mission to mission and is strongly dependent on 
the orientation of the orbital plane. Understanding the motion of the ICR for a given mission 
enables the design of efficient eccentricity control strategies.  
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5. Application Examples 
 
This section provides examples of the theory that has been presented so far. Two 
Sun-synchronous spacecraft with different orbital plane orientations have been selected. The 
computations of the SRP force have been done using the IERS model [3]. All eccentricity plots 
shown in this section represent eccentricity vectors with respect to their reference orbits. 
 
5.1. Sentinel-1 mission 
 
Due to its tight orbit control requirements Sentinel-1 serves as a good application example, as a 
mission where strict eccentricity control is required. The spacecraft is controlled following a 
Sun-synchronous dusk-dawn orbit (see Tab. 1). The eccentricity vector is kept within 8.427E-6 
units with respect to the reference orbit and Orbit Control Manoeuvres (OCM) are executed on a 
weekly basis. Typically the sizes span from 1 to 10 mm/s in delta-v (in-plane). Further details on 
the Sentinel-1 orbit control can be found in M. A. Martin Serrano [4]. 
 

Table 1: Sentinel-1 figures 
Local Time of Descending Node (Sun-synchronous) 6:00 h 
Repeat ground-track pattern 175 orbits in 12 days 
SRP coefficient 1.3 
SRP reference surface  38 m2 
Spacecraft mass  2148 kg 
Rotation period about the frozen eccentricity 115.20 days 
Eclipse duration 0 to 1135 s 

 
In spite of the dusk-dawn orientation, which minimizes the size of the SRP force projection onto 
the orbital plane, the relatively large reflectance area and the strict control requirements pose a 
challenge for the eccentricity control. Figure 3 depicts for a time span of one year the behaviour 
of an orbit where the eccentricity vector has not been actively controlled. The trajectory is the 
result of the SRP and Earth’s potential perturbations together. The positions of the ICR have 
been represented in Fig. 4 in intervals of one month, plus both Equinoxes and Solstices. The 
motion of the ICR suggests an eccentricity control strategy close to the upper part of the control 
area during the Summer Solstice period, targeting eccentricity changes towards the positive ex 
axis, as seen in Fig. 5, to compensate its natural evolution. The eccentricity vector is kept as 
close as possible to the upper threshold in order to reduce the drift, choosing a control path 
compatible with the one-week orbit control cycles. As soon as the ICR returns into the control 
area after the Summer Solstice period (Fig. 6), eccentricity changes will be aimed at following it 
down on its way to the Winter Solstice position. The Winter Solstice position is not as critical as 
the one in Summer due to its proximity to the control threshold. After the Winter Solstice period, 
the ICR will be followed up towards its position at the Summer Solstice repeating the process 
again.  
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Figure 3: Uncontrolled Sentinel-1 eccentricity vector - 1 year 

 

 
Figure 4: ICR positions for Sentinel-1 
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Figure 5: Sentinel-1 eccentricity vector in routine during Summer Solstice 

 

 
Figure 6: Sentinel-1 eccentricity vector in routine after Summer Solstice 
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5.2. Sentinel-2 mission 
 
The tolerance in altitude variations for the Sentinel-2 mission is wider than for Sentinel-1. In this 
case the eccentricity vector has to be kept within 5.56E-5 units with respect to the reference 
orbit. However, the control is affected by limitations in the possible locations of OCMs, which is 
constrained to a range of arguments of latitude approximately 180 degrees in size (from 236.8 
deg to 53.7 deg). This constrains the directions in which eccentricity variations can be applied to 
a semi-plane in the (ex, ey) space. OCMs are executed after periods of 30 days or longer, 
depending on the solar activity. Figure 7 depicts the motion of the eccentricity vector with 
respect to the reference orbit, where the eccentricity vector of the analysed orbit has not been 
controlled. Notice that the trajectory described by the eccentricity vector is almost closed, which 
is possible since the rotational period is a divisor of one year. The positions of the ICR have been 
depicted in Fig. 8 in steps of months plus both Equinoxes and Solstices. The control of the 
eccentricity vector in routine is done close to the ICR as it is shown in Fig. 9. OCMs are planned 
such that the distance to the ICR is reduced, if this cannot be done due to the constraints on the 
manoeuvre locations, either a double manoeuvre (no eccentricity change) or a single manoeuvre 
with a convenient change in phase around the ICR can be executed. 
 

Table 2: Sentinel-2 figures 
Local Time of Descending Node (Sun-synchronous) 10:30 h 
Repeat ground-track pattern 143 orbits in 10 days 
SRP coefficient 1.3 
SRP reference surface 12 m2 
Spacecraft mass 1150 kg 
Rotation period about the frozen eccentricity 122.38 days 
Eclipse duration 2040 s 
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Figure 7: Uncontrolled Sentinel-2 eccentricity vector - 1 year 

 

 
Figure 8: ICR positions for Sentinel-2 
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Figure 9: Sentinel-2 eccentricity control in routine 
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