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Abstract:

This paper presents a novel dynamical model for space telyreamics simulation. The proposed
model discretises the cable in a number of elastic rods, niturn are modeled as a set of equiv-
alent masses. The orbital propagation is performed usin¢pasical Cowell's method and also

a special perturbation method. The implementation is doitleirthe framework of EcosimPro,

a multidisciplinary simulation tool. A validation of the whel is carried out, as well as a case of
application to the de-orbiting of a satellite using an etedlynamic tether.
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1. Introduction

Tethers have been used in space for a number of differenbpesp generation of artificial gravity,
formation flying, propulsion, etcl]. Lately, space situational awareness has fostered thg sfu
tethers in the context of space debris mitigation and remaohathers are considered as parts of
more complex devices such as harpoons or hooks. An additiati@nale for the advance in the
accurate simulation of tether dynamics is the promisingabdipies of electrodynamic tethers to
de-orbit a satellite efficiently?, 3, 4]. In fact, accurate simulation of tether dynamics has been
identified as a key aspect to advancing the readiness leveédlectrodynamic space tethebg [
The work presented here is intended to provide the space coitynwith a flexible and robust
simulation environment for many of the aforementioned fssapplications of space tethers.
The focus in this work, nonetheless, is the simulation did¢etd satellites and electrodynamic
tethers in particular.

The dynamics of tethered spacecraft involves nonlineaceffwith coupling effects between or-
bital motion, longitudinal, and lateral modes. Differeippeaoaches have been considered in the
literature to address the simulation of space tethers: gad@mmumerical integration, finite ele-
ments method, and assumed modes metbpd\evertheless, there is still a need to simulate the
dynamical behavior with required accuracy and an acceptithe consumption, as well as mod-
eling flexibility for simulating different complex tethedeonfigurations or with different accuracy
levels. This work is intended to fulfill this need using a nether dynamical model and non-casual
and object-oriented modeling.

The space tether system is described in terms of a numbeasticctods, joined by ideal joints.
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The end masses can be modeled as point masses or rigid bbaéegroposed formulation allows
modeling several tethers joined to a same spacecraft. i tbe flexibility of the non-casual
modeling technique allows us to obtain robust mathematicalels for complex physical systems.

A prototype library for the simulation of space tether sysiehas been developed for the multidis-
ciplinary EcosimPro simulation tool. The core of the lilyrés the orbit propagator of the masses,
based on DROMO method], although Cowell’'s method can also be used. Common space dy
namics capabilities are also included as spacecraft @gtittynamics and control. In this way, it

is possible to simulate the whole tethered satellite systéimn a single simulation framework,
including other coupled systems as control or power systems

A validation is performed using examples from the literatand experimental results when avail-
able. Finally, a full de-orbiting mission of an electrodyma tethered system is presented.

2. Tether physical model

In this work, we develop a new formulation for the simulatiminspace tethered systems. This
formulation allows us to simulate tether systems congisiirtwo point masses joined by a flexible
tether, but also several tethers connected to a centralipaiss or to a central rigid body with flying
wheels. The basic component of such models is a tether witteaehd and a point mass joined to
the other one. The formulation for such a tether model is ldpesl in2.2.

Let's consider a massive, flexible (no bending resistarzs®) extensible tether with natural length
L, and massn,. We assume that the torsional effects are negligible, arichengension relation
linear on the extension and extension velochy [

T = Fe+ D¢ (1)

The proposed model is based on physical discretization eftéther, which is described as a
(selectablep) number of massive, cylindrical and longitudinally elasbds, joined by ideal joints.

From a dynamical point of view, each bar is considered as aivalgnt dynamic system composed
of two masses joined with a spring-dashpot system (here@®4ED). The position of the masses
and the characteristics of the spring are selected so teadghivalent system reproduces exactly
the transversal moment of inertia, and the deformation uexiernal solicitations, of the original
elastic bar. The equivalent system is designed in such ahedyts governing equations (momen-
tum and angular momentum) coincide with the original etastd governing equations. This way,
the motion of an isolated bar can be described by means of timeemtum equations of the two
masses subject to an equivalent system of forces, or the mtamesquation for the center of mass
of the bar plus an attitude-like equation. This equivalentei and the equations describing its
motion are described iR.1.

Based on the proposed tether segment model, the model fthrea teith a free end and an ending
point mass is presented :2. In the subsequent sections, the equations for the siralafitwo
point masses tether systerds3), hub-and-spoke multi-tethered systeigl() and hub-and-spoke
multi-tethered systems with central rigid bod%.) are presented.
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2.1. Tether element model: Two-mases equivalent dashpot MIED)

Let’s consider theth rod, which mass is:; and its unstretched and stretched lengths/greand
L,,, respectively. Its equivalent TMED consists of two equabs®an, ; andms; (my,; = ma,; =
“5t), joined by a spring-dashpot system, which constants,arandD,,,. Aligned with the masses,
there are two massless rods joining each mass with the #4ndsd B; of the bar. The length of
the massless rods is variable, so that the length of thek&@{TMED,L,,,, is equal to that of the
original elastic bar.

Let’s call d; the distance between each mass and the center of gssf the system (which, as
in the case of the original elastic rod, is placed in the mikpof the system), and

Lo, — Ly,

- ®)

€ =

the deformation of the system. In the TMED, the lengths ofrttassless rods are chosen so that
the relation betweed; and the deformation is:

Ly, Ly,
di = = o 1 + €; 3
NN (1+e) ©)
This way, the transversal moment of inertia of the TMED rejpices exactly the one of the elastic
bar:
1
Ig, = ﬁmLii (14 2¢ +€) 4)

The elastic constant of the spring and its natural lengtitlaosen to be

EA Ly,
o Iy, = — 5

being E the Young’s modulus of the tether's material, atithe cross section of the wire.

Equation3 and Eq.5 ensure that when the TMED is stretched with a traction fopg@iad 7" on
its ends, its deformation and the accumulated elastic greamgcide with those of the elastic bar
in the same conditions.

Since the cross section of the bar is considered negligiidesystem haé degrees of freedom,
which defines its position and orientation in space and iferdetion. Hence, its state can be
defined by means of the coordinates of two different pointhefsystem, e.g., the coordinates of
the two equivalent masses. Let; and r,; be the position vector of:; ; andm, ; with respect to
an inertial reference framex,y,z;. The position of the center of maé&s is

1
TG, = . (miri; +mare;) = 5 (r1;+ 7ra;) (6)
Let’s call d; the relative position vector of the mass with respect;
di = (ry; — ra,) (7)
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Figure 1. TMED: Relative position vectors (left) and original and equivalent forces systems

(right)

This vector contains information regarding the length anentation of the bar: its modulus i,
which is directly related with the deformation of the bamihgh Equatior8, and the unitary vector
u;, aligned with the bar, defines its orientation:

d;

u; = d_ (8)

The position and orientation of the TMED can also be desdriibethe position vector of some
of its points, and the vectod;; Fig. 2.1. summarises some expressions for the relative position
vectors in terms ofd;.

On theith rod in which the tether is discretized, a distributed eysof forces (due to the spherical
gravitational force and perturbations) is being appliedhwvotal valueR; = |, LRdmdm and
moment with respeats; M., and the reaction point forces applied on the ends of thelbar
andT 5, due to the action of the rest of the tether over the segmerdidered. The governing
equations for the motion of the center of mass and for theud#timotion of the elastic bar, are:

m;te, = Ri+T4;+Tg;, 9)
dH ..
dth = Mg, (Tp,; — Tas) (10)

It is possible to find a combination of point forces which, wtagplied on the equivalent masses
of the TMED, obtains an equivalent equations system ecqgivab that of the original elastic bar
Eq.9-10.

To obtain the equivalent set of equations, it is necessaapply, on the mass:; (onm.):
e The total of the distributed forces along the correspondhalf-bar: R, ; = ff_’i RI™dm
(Rgﬂ' = fGBL Rfmdm on mg)
e The internal forces, u due to the spring< £z, u onm,)
e Thereactiorl 4 ;, since it is completely transmitted by the massless rod fono m, (T'5;
on mg)



e And an additional force-F'1,, orthogonal tow; (F'1, on my) so that the moment of the
whole system of forces with respe€t coincides with the total moment acting on the original
bar. Note that the total value of the pair of forces is nullorfrthe previous condition, an
expression foF';, can be obtained:

Fp=Frp, + F5 (11)
being
Fr= P (o @y - 1) (12
d
" Fr, = —% ux Mg, +dJ(u)o (R, — Re,) (13)
rere Mg =—ux(ux Mg) (14)

is the component of the moment 8f ; orthogonal to the vectou.

The termF'1,, can then be obtained adding the contribution of the diffeferces acting on the
tether segmentt'r, = Fr, + Fr,, + Fq,,,, ...

The tensoﬁ( u), which removes the parallel component of the vectaio which it is applied, is
defined as:

il

(u)=I—[u,u] sothat J(u)ox=—ux(ux ) (15)

The motion of the bar can be described then by the momentusmttiegs of the TMED masses
subject to the equivalent set of forces:

d? T

M oe = R, +Tia+ Fpu — Fr, (16)
d2 T2,
m2,iW = Ry;+T,p—F,gu,+ Fp; (17)

It is possible to obtain an equivalent set of equations; ftbenaddition of Eq.16 and Eql7, the
momentum equation of the whole system is obtained

d2 7"(;72'
dt?

and from the substraction of the equations, a second oréferatitial equation is obtained for
vector d, which governs the attitude motion and deformation evotutf the bar:

=(Ro;i+Ry;)+ (Tip+T;4) (18)

m;

mid; = (Rg; — Ry;) — 2F cu+ 2F7, + jz( w;)o (Tip—T; a) (19)
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being

Jo(w) =T (V3-1) J(w) (20)

Note that Eq18 coincides with the momentum equation of the original etastir (Eq.9). The
moment equation of the original elastic bar (B@) can be obtained (after some algebra) from Eq.
19 by taking the vectorial product with respectto

2.2. Tether with a free end and a point massn,. Reaction forces calculation

As a first step for the modeling of the whole tethered spacesysve focus now in the model of
a tether with a free end and a point ending massg, at r;. The tether is modeled asTMED
joined to the adjacent bars by means of ideal joints.

The3n restrictions associated with thgoints
TBi = TAitl t=1,n—1 Ty=Tgn (21)

reduce tdBn + 3 the degrees of freedom (dof) of the system (without the gitite system would
have6n + 3 dof), and give rise to the existence of the reactions actirtbe ends of the bar¥; 4,
andT ', ( = 1,n), which are unknowns:

Tp;=-Thrin t=1,n—-1 Ty=-Tpn, (22)

The3n + 3 dof fix the status of the tether. Given the position of the &ed with respect an inertial
frame, r 4 1, and the orientation and length of each ralj, the position of the joints and center of
mass of the bars can be written (similar relations for theaig} and acceleration of such points
can be obtaining through derivation):

i—1 i—1
Tpi-1= TAz1 -+ Z 2\/§dj Tgi:i= Tan -+ Z 2\/§ dj + \/édZ (23)
j=1 j=1

The motion of such system is described by the motion equabbthe ending mass and bars:

m;i; =Ry +T; (24)
m; ’FG,Z‘ = Rl,i + RQ’i + TA,z' + TB,i t=1n (25)
m; dz = (RQJ' — Rl,i) — 2Fei u + 2FTp,i -+ jg( ’U/Z) o) (TB,i — TAJ‘) 1= 1,n (26)

together with the constraints E2[1 and Eq.22

Equation24, 25and26 can be rearranged taking into account the relation of thergkderivatives
obtained from Eg23to obtain:



i—1

1 = - =
2\/§mZ Z EJQJ' e} (TB,j — TA,j) -+ (\/gJQ’i — I) e} TB,i — (27)

—(\/gjg7i—|—i>OTA7i—|—mi'l.’:A71 = R, 1=1,n (28)

2v/3m Z mij'-:b,j o(Tp; —Ta;)+Tpn+msiar = Ry (29)
j=1
Where
R; = R;—2V3m, i min; —V3R; (30)
j=
R; = R;—2V3my i minj. (31)
j=1

groups the effect of all the forces on the bars (elastic anereal different from the reactions).
Here we have used:
R;k = (R2,j — Rl,j) — 2F8j ’U,J + QFTP,j (32)

and

R, =R, + Ry, and jQ,i = j2( u;)

The 3n + 3 equations Eg28-29 are a linear relation between tBe + 6 unknowns# 41, T 41,
T ;, and will be referred hereafter &8 741, T 41, T ;) = R,.

The motion of the tether with a free end is then described by the equations:

me;iTo; = Roi+Tp;—Feiu, + Frp; 1=1,n (33)
L( ’i’;A,bTA,laTB,j) - R’Z (34)

Note that the mathematical problem is not yet closed, as ¢heleration of the free endf 4 ;
is not yet known. For solving the problem(#4,,T4:1,T ;) = R; must be extended with
additional conditions providing 4 ; or relating it withT" 4 ; or T ;. Then, the motion of the tether
can be simulated solving the linear systémat each time step, and integrating themomentum
equations of the equivalent masses and that of the free end.

In the following sections we state the closed equation syster some typical tether systems.

2.3. Tether with two end point masses

Let's consider now that the free enl of the tether described in the previous section is ideally at
tached to a point mass,. This mass will be subject to the total of the external fo(geavitational,

third body, etc)R,, and the reaction due to the connection of the teiher
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Figure 2. Tether with two end point masses model

Then, the whole set of equations describing the motion ofetteer connecting the point masses
mo andm are:

moTo = Ro+ T (35)

o= TA1— To= Ta1 (36)

Ty=-Ty, (37)

Mo To; = Rej+Tp;—F.;u;+ Fr, j=1n (38)
L(#41,Ta1,Tp;) =R, (39)

This set of equation can be split in three parts:
e The motion equation of the mass), Eq.35
e The connection equations, representing the ideal consdrdtq.36 and Eq.37
e The motion equations of the tether with the ending magsEquations38-39

Note that Eq35 couples with Eq39 giving a linear system of siz& + 6 Lo, (70, T a1, Tp;) =
Rom.i» that must be solved each time step during the integratitieofomentum equations.

2.4. Point massn, with several connected tethers
Let's consider now a hub-and-spoke (HAS) multi-tetherestesy, consisting in a central point

massm, to which N, tethers (as the one described?ii2) are connected. The motion equations
of such a system consist on the momentum equation of thelegarti, and the motion equations



of each tether:

N
mo 'I.’:O = RO - Z TEQI (40)
Ty = frff)l — Ty = frff)l k=1 N; 41
k k k) (K ke .
myl i) = RS + T, — F® W™ + FE j=1n (42)
k k k)
L(#, T4, 1)) = RY (43)

Now all the linear systems of the tethers couples into a biygear systen. ; 45 ( 7o, Tf,)l, Tg"”)j) =
RE!}’ASJ of size Ny (n+ 3) + 3. that must be solved each time step for obtaining the reattices.

2.5. Rigid body with several connected tethers

The equations for the hub-and-spoke multi-tethered sysembe easily adapted for taking into
account the attitude dynamics of a central body. Let's agsdion example, a rigid body withV,,
wheels of mass:z, which center of mass is placed a¢,, with respect to the inertial frame. Let

J 5 be its inertia tensor (including the contribution of the eI} expressed in the non-inertial
frame, attached to the center of masg, which rotates with respect to the inertial frame with
angular speedrz. The rigid body hasV; attachment points to which the tethers can be ideally
joined, placed atr 5 41, With respect theés frame. The motion equations of such system a8g ([

[9)):

N
mp e, = Rp— Y T4 (44)
k=1
_ _ Natt
JB‘-;JB = MGB — hw —wp X <JBwB + hw> — Z TB7Att/c X Tff,)l (45)
hw =M, (46)

Now, due to the attitude dynamics, the geometrical congsaif the attachments (the connection
equations spacecraft-tethers) are more complex than ipréngeous cases. Assuming that the
attachment points are fixed with respect the body frdne

() .. o . (k)
TB A, = Tyy — TBAw, = Tap TW X (WX Tpaw) +WX Tpaw, = Ty 47)

The motion equations of each attached tether are:
k k) k k k .
myl i) = RY) + T, — F¥ W™ + FE j=1n (48)

0=L( rff)l, T;}l, ) (49)
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For the integration of the motion equations E44)( (45), (46), (48) it is needed now to solve a
bigger linear system for obtaining the reactions on the eridbe bars, the acceleration of the
center of masses of the spacecraft and the rotational aatiefeof the spacecratft:

LRB( TGy Wh, Tf,)h T(Bf,)j) = R%J)B,z

2.6. Orbit propagation

The methods presented in the previous section involve thguatation of the trajectory of one or
several particles, under the influence of a set of forcesesemting the external forces applied on
the tether (gravitational, perturbations) or internaagic, reactions).

In orbital mechanics applications, the equations of matiat determine the motion of the particles
are those of the perturbed two body problem. The sourcesrtirpeng forces are both external
and internal. A non exhaustive list of perturbations inelithomogeneous gravitational potential,
electrodynamic forces, internal elastic forces, reastidue to linkages or constraints.

In this work, two methods were tested for the computationhef particle trajectories. Firstly,
Cowell's method 10] was implemented as a reference approach. This is a clagsigaulation
based on the direct integration of the momentum equatioheoparticle expressed in rectangular
coordinates in a inertial reference. Secondly, a specréig®mtions method, DROM@b] has been
implemented. This formulation is based on the variatiorhefparameters and Hansen’s concept
of the ideal frame11] and it is expected to show better computational perforraabetails on the
specific implementation of these methods into the librarylmafound in future publications.

3. The Space Flight Dynamics and Space Tether simulation Ifaries

Based on the formulation described in the previous sectiarset of simulation libraries have
been developed in the tool EcosimPro for the simulation atspether systems and general space
dynamics applications. Both, the presented physical ftatimn and the libraries, have been devel-
oped taking maximum advantage of the object-oriented andcaosal modeling paradigms?]
available in EcosimPro.

3.1. EcosimPro

EcosimPro13], [12] is a multidisciplinary modeling and simulation environmbelt is extensively
used by the space industry for the simulation of liquid,dalnd hybrid space propulsion systems
[14], spacecraft power systemEq space electrical propulsion systems, and, more recespice
dynamics applicationslf)].

In the context of EcosimPro, the so-calleoimponentgontain a mathematical description of the
corresponding real world component. Components can conuaenwith each other through the
ports which define the set of variables to be interchanged betieertonnected components. This
way, complex systems can be graphically modeled by dragdamgping the required components
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and connecting them. Once the model is finished, the toohaatioally compiles all the equations
of the different components and thennection equationsoming from the connected ports, and
creates a closed mathematical equation system after argatige equations based on internal
algorithms [L2], [17]. During this step, it is able of to manage linear and noedinequation
systems. Once the mathematical problem is closed, diffesdaulations can be performed, such
as the integration of the resulting ODE or DAE system, thewdation of steady solutions, or
optimization calculations with the included solvers (e[@ASSL, Powell’'s hybrid method, etc).
The tool is flexible enough for using external solvers or ttngespecific calculations.

3.2. Spaceflight Dynamics and Space Tether simulation librées

The low level functions and components included in the hprfar astrodynamics calculations
include:

e Low level astrodynamics functions: calendar/time caltaies, planetary ephemeris, space
environment (gravitational field, atmosphere, magneticl fietc), eclipse, etc. Different
levels of detail can be selected depending on the planet.

e Orbit propagation of one or several particles, using Cdsvalethod or DROMO method.

o Attitude propagation of rigid bodies with arbitrary numlaémomentum wheels.

e Forces and torque calculation of the different perturbegiffects.

Following an object oriented approach, a set of componesie been developed based on the
above low level functions and components. Among others lithiary includes:

e Environment component, for setting the space environmenthich the satellite(s) will
evolve. Different degrees of fidelity can be selected for dhevity field, magnetic field,
third body ephemeris, etc
Kepler particle, for the simulation of a keplerian orbit
Cowell/DROMO patrticles, for the orbit calculation of a ppmass
Formation flying particles, for the orbit calculation of seal point masses
Rigid body with flying wheels (using Cowell/DROMO) for theagecraft orbit and attitude
motion calculation

A detailed description of the space dynamics library andtdgabilities is out of the scope of
the present work and will be introduced in a future publimati Additionally to these general
components, the formulations described in the previoussechave been encapsulated in the
components:

e Tether attachment, encapsulating to@nectiorequations Eg36 and Eq.37

e Tether component (Cowell/DROMO), encapsulating the agonsaif a tether with a free end
as the one described 2.

¢ Nail component, imposing null displacement to the compbt®which is connected.

This way, complex space tethered systems can be modelechbgcting the corresponding com-
ponents, obtaining the equation systems describ@din2.4. or 2.5.
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Figure 3. Stiefel problem test case. DASSL solver performases with DROMO and Cowell’s
methods. Left: error with respect the exact solution(52). Right: mean number of integration
steps per orbit

Furthermore, the space tether system model can be conrieatter spacecraft subsystems, such
as the control or the power system, modeled with other exjdticosimPro libraries, in order to
simulate the behavior of the complete system.

4. Test cases

4.1. One mass orbit propagation. Stiefel problem

The validation of the orbital propagation core is carried asing a reference problem proposed
by Stiefel & Scheifele18]. The reference scenario consist of propagating the t@gof a mass
particle in a high eccentrie:(= 0.95) non-equatoriali = 30°) initial orbit . The mass particle is

subject to lunar and, perturbations. These perturbations are modeled andlytiddne problem
is posed as computing the position of the mass particle 2812768941 mean solar days (50
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Figure 4. Tether catenary configuration (Left) and internal forces distribution (Right)

orbits), starting from the perigee of the initial orbit:

(z1,91,21) = (0.0, —5888.9727, —3400.0) km (50)
(21,71, 41) = (10.691338,0.0,0.0) km s+ (51)

In [18], a detailed description of the problem can be consultecarAaccurate result, the following
solution is given in the aforementioned reference:

(z1f, 915, 215) = (—24219.0503, 227962.1064, 129753.4424) km (52)

This result was obtained with98 integration steps per orbit. This solution is used to measur
the performance of the propagation methods. The metric alitgus the distance from the final
position obtained by integration and the reference satu6Q).

Figure4.1. shows the performances of DASSL integrator with Cowell’d &@ROMO methods.
DROMO offers more accuracy (error propagation in Cowellxdpanential) and lower computa-
tional cost. Nevertheless, DASSL integrator is less atewaad less efficient when compared to
integration methods as RK7(8), when compared to previoalysis of the reference probler@]]
Therefore, the use of astiff integrator such as DASSL penalises efficiency and accurdgnw
compared to solvers of high accuracy as RK7(8). It is fairayp fhis toll because DASSL is capa-
ble of managing stiff problems. It is advisable, howeverdory out a detailed study comparing
integrators with other test cases in the future.

For the orbit propagation of several particles, a set ot&aigesults was generated using the already
tested one-particle propagator for different initial citimehs for each particle. Then, the trajectory
of the particles was calculated with the specific flight fotima component, and compared with
the trusted results, achieving a good accuracy for all thiegbes.

4.2. Stationary solutions: catenary
The flexibility of the formulation and the non-causal modglallow defining test cases for which
an analytical solution or experimental results are knowhisTs the case of the catenary steady

solution.
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Firstly, for the simulation of a pendulum, we extend the fatation of the tether with the condition
of a steady free end:

7o = 0 (53)
Ty = Ta1— To= Tai (54)
mo;To; = Ro;+Tp;—F.;u;+ Fr; t=1,n (55)

R, (56)

L( ,i;A,lv TA,la TB,j)

From the graphical modeling point of view, this set of eqoiagi are equivalent to the model ob-
tained when the ‘tether component’ is connected with thé tzanponent’.

In order to calculate the steady catenary solution, we maistel the derivatives of the model,
and compute the valuR of the external force on the ending massg so that its position is the
one required by the user. The tool automatically rearratigesquations in order to fulfill the
described conditions.

Figure4 show the shape of the tether and the internal forces disivibreactions and elastic
forces) compared to those of the analytic formulation foetaer of lengthl, = 1m andEA =
40.06 N when the free end and the ending mass are placed horizose¢plrated.9m at the Earth
surface.

4.3. Test case: tether in circular orbit

For a preliminary validation of the tether in orbit, we calesi now the motion of a non-conductive
tether connecting two masses, one of thewy,being much bigger than the other one;. The
center of masses of this system is quite close§@nd it follows a keplerian orbit. In this specific
case, we consider a circular orbit of radiys= 7400km. Some characteristic phenomena of such
a system were used as reference for the tether validatiosef@ral models with different number
of rods:

e When initially aligned with the local vertical, the teth@rtinues in such relative equilibrium
configuration (not showed in figures)

e When the tether is set initially straight, but forming anplanef, angle contained in the
orbital plane with the local vertical, it evolves straightthe orbital plane swinging around
the local vertical with frequency/3w.

e When the tether is set initially straight, with an out-o&pé¢, angle with the orbital plane,
the tether swings around the orbital plane with frequehcy

In Fig. 4.3, some selected results are presented for the case of a tatetber model.

Once the rigid-body oscillation modes of the tether are kbécwe set the initial conditions so
that the lateral modes are excited. Mg3. shows the evolution of the in-plane and out-of-plane

14
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angles for a two rods tether model, in which the higher fregyédateral modes can be observed.
5. Application case: de-orbiting a satellite with an electodynamic tether

As an application case, we simulate now a de-orbiting mmssiowhich al063 kg satellite in an
Earth circular orbit with an altitude of abol®00 km and an inclinatio5° is de-orbited by using

an Aluminum tether of lengtll, = 5km. The ending mass is:; = 392.2kg, so that the tether

is self-balancedl9]. In this first case, the current is set to be constant dutiegithole mission,

I = 2A, and the magnetic field is modeled as a dipole aligned witlEtrén’s rotation axis. Figl
shows the evolution of some model parameters during thaanisghen using a single rod tether
model. The de-orbit lasts for approximatély days. As the orbit axis decreases, the deformation
induced by the gravity gradient increases. In-plane anebbptane oscillations induced by the
electrodynamic forces are bounded through the whole nmigself-balanced tether). The in-plane
angle oscillates around a negative value.

6. Conclusions

A new formulation for the modeling of space tether systenstieen developed. The tether is
discretized in a number of elastic rods, and its motion cawldsxribed by motion of a set of
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equivalent masses.

The formulation is flexible enough for the simulation of cdexpmulti-tethered systems, with a
rigid body as central body.

Based on the Cowell's and DROMO orbit propagators, a sebadilies for general space dynamics
applications and space tethers simulation have been gmatia the simulation tool EcosimPro,
taking advantage of the object-oriented and non-causatetmggcapabilities.

Some preliminary test cases have been run, showing goodragreg with known results. A de-
orbiting mission simulation shows that the new tether satarlis a promising tool for the simula-
tion of space tether systems.

Additional test cases are to be presented for the validatidhe different capabilities of the sim-
ulator (multi-tethered systems, spacecraft attitude og) and specifically for the tether lateral
dynamics simulation with the new tool.

New modeling capabilities, such as varying length tethiéegjble spacecraft effects, additional
perturbing forces or the simulation of the tether systenetiogr with other spacecraft systems
(electrical, attitude control), will be presented in fiewvorks.
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