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Abstract:

This paper presents a novel dynamical model for space tetherdynamics simulation. The proposed
model discretises the cable in a number of elastic rods, which in turn are modeled as a set of equiv-
alent masses. The orbital propagation is performed using a classical Cowell’s method and also
a special perturbation method. The implementation is done within the framework of EcosimPro,
a multidisciplinary simulation tool. A validation of the model is carried out, as well as a case of
application to the de-orbiting of a satellite using an electrodynamic tether.
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1. Introduction

Tethers have been used in space for a number of different purposes: generation of artificial gravity,
formation flying, propulsion, etc [1]. Lately, space situational awareness has fostered the study of
tethers in the context of space debris mitigation and removal. Tethers are considered as parts of
more complex devices such as harpoons or hooks. An additional rationale for the advance in the
accurate simulation of tether dynamics is the promising capabilities of electrodynamic tethers to
de-orbit a satellite efficiently [2, 3, 4]. In fact, accurate simulation of tether dynamics has been
identified as a key aspect to advancing the readiness level ofthe electrodynamic space tethers [5].
The work presented here is intended to provide the space community with a flexible and robust
simulation environment for many of the aforementioned possible applications of space tethers.
The focus in this work, nonetheless, is the simulation of tethered satellites and electrodynamic
tethers in particular.

The dynamics of tethered spacecraft involves nonlinear effects with coupling effects between or-
bital motion, longitudinal, and lateral modes. Different approaches have been considered in the
literature to address the simulation of space tethers: geometric numerical integration, finite ele-
ments method, and assumed modes method [5]. Nevertheless, there is still a need to simulate the
dynamical behavior with required accuracy and an acceptable time consumption, as well as mod-
eling flexibility for simulating different complex tethered configurations or with different accuracy
levels. This work is intended to fulfill this need using a new tether dynamical model and non-casual
and object-oriented modeling.

The space tether system is described in terms of a number of elastic rods, joined by ideal joints.
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The end masses can be modeled as point masses or rigid bodies.The proposed formulation allows
modeling several tethers joined to a same spacecraft. In turn, the flexibility of the non-casual
modeling technique allows us to obtain robust mathematicalmodels for complex physical systems.

A prototype library for the simulation of space tether systems has been developed for the multidis-
ciplinary EcosimPro simulation tool. The core of the library is the orbit propagator of the masses,
based on DROMO method [6], although Cowell’s method can also be used. Common space dy-
namics capabilities are also included as spacecraft attitude dynamics and control. In this way, it
is possible to simulate the whole tethered satellite systemwithin a single simulation framework,
including other coupled systems as control or power systems.

A validation is performed using examples from the literature and experimental results when avail-
able. Finally, a full de-orbiting mission of an electrodynamic tethered system is presented.

2. Tether physical model

In this work, we develop a new formulation for the simulationof space tethered systems. This
formulation allows us to simulate tether systems consisting of two point masses joined by a flexible
tether, but also several tethers connected to a central point mass or to a central rigid body with flying
wheels. The basic component of such models is a tether with a free end and a point mass joined to
the other one. The formulation for such a tether model is developed in2.2..

Let’s consider a massive, flexible (no bending resistance),and extensible tether with natural length
Lu and massmt. We assume that the torsional effects are negligible, and a strain-tension relation
linear on the extension and extension velocity [7]:

T = Eǫ+Dǫ̇ (1)

The proposed model is based on physical discretization of the tether, which is described as a
(selectable,n) number of massive, cylindrical and longitudinally elastic rods, joined by ideal joints.

From a dynamical point of view, each bar is considered as an equivalent dynamic system composed
of two masses joined with a spring-dashpot system (hereafter, TMED). The position of the masses
and the characteristics of the spring are selected so that the equivalent system reproduces exactly
the transversal moment of inertia, and the deformation under external solicitations, of the original
elastic bar. The equivalent system is designed in such a way that its governing equations (momen-
tum and angular momentum) coincide with the original elastic rod governing equations. This way,
the motion of an isolated bar can be described by means of the momentum equations of the two
masses subject to an equivalent system of forces, or the momentum equation for the center of mass
of the bar plus an attitude-like equation. This equivalent model and the equations describing its
motion are described in2.1.

Based on the proposed tether segment model, the model for a tether with a free end and an ending
point mass is presented in2.2.. In the subsequent sections, the equations for the simulation of two
point masses tether systems (2.3.), hub-and-spoke multi-tethered systems (2.4.) and hub-and-spoke
multi-tethered systems with central rigid body (2.5.) are presented.
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2.1. Tether element model: Two-mases equivalent dashpot (TMED)

Let’s consider theith rod, which mass ismi and its unstretched and stretched lengths areLui
and

Lai , respectively. Its equivalent TMED consists of two equal massesm1,i andm2,i (m1,i = m2,i =
mi

2
), joined by a spring-dashpot system, which constants arekmi

andDmi
. Aligned with the masses,

there are two massless rods joining each mass with the endsAi andBi of the bar. The length of
the massless rods is variable, so that the length of the stretched TMED,Lai , is equal to that of the
original elastic bar.

Let’s call di the distance between each mass and the center of mass (Gi) of the system (which, as
in the case of the original elastic rod, is placed in the midpoint of the system), and

ǫi =
Lai − Lui

Lui

(2)

the deformation of the system. In the TMED, the lengths of themassless rods are chosen so that
the relation betweendi and the deformation is:

di =
Lai

2
√
3
=

Lui

2
√
3
(1 + ǫi) (3)

This way, the transversal moment of inertia of the TMED reproduces exactly the one of the elastic
bar:

IGi
=

1

12
mL2

ui

(

1 + 2ǫi + ǫ2i
)

(4)

The elastic constant of the spring and its natural length arechosen to be

kmi
=

√
3
EA

Lui

lNi
=

Lui√
3

(5)

beingE the Young’s modulus of the tether’s material, andA the cross section of the wire.

Equation3 and Eq.5 ensure that when the TMED is stretched with a traction force appliedT on
its ends, its deformation and the accumulated elastic energy coincide with those of the elastic bar
in the same conditions.

Since the cross section of the bar is considered negligible,the system has6 degrees of freedom,
which defines its position and orientation in space and its deformation. Hence, its state can be
defined by means of the coordinates of two different points ofthe system, e.g., the coordinates of
the two equivalent masses. Letr1,i and r2,i be the position vector ofm1,i andm2,i with respect to
an inertial reference frameEx1y1z1. The position of the center of massGi is

rGi
=

1

m
(m1 r1,i +m2 r2,i) =

1

2
( r1,i + r2,i) (6)

Let’s call di the relative position vector of the massm2 with respectGi

di = ( r2,i − rGi
) (7)
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√
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Figure 1. TMED: Relative position vectors (left) and original and equivalent forces systems
(right)

This vector contains information regarding the length and orientation of the bar: its modulus isdi,
which is directly related with the deformation of the bar through Equation3, and the unitary vector
ui, aligned with the bar, defines its orientation:

ui =
di

di
(8)

The position and orientation of the TMED can also be described by the position vector of some
of its points, and the vectordi; Fig. 2.1. summarises some expressions for the relative position
vectors in terms ofdi.

On theith rod in which the tether is discretized, a distributed system of forces (due to the spherical
gravitational force and perturbations) is being applied, with total valueRi =

∫ Bi

Ai
R

dm
i dm and

moment with respectGi MGi
, and the reaction point forces applied on the ends of the barT Ai

andTBi
, due to the action of the rest of the tether over the segment considered. The governing

equations for the motion of the center of mass and for the attitude motion of the elastic bar, are:

mi r̈Gi
= Ri + TA,i + T B,i (9)

dHGi

dt
= MGi

+
Lai

2
u× (TB,i − TA,i) (10)

It is possible to find a combination of point forces which, when applied on the equivalent masses
of the TMED, obtains an equivalent equations system equivalent to that of the original elastic bar
Eq.9-10.

To obtain the equivalent set of equations, it is necessary toapply, on the massm1 (onm2):
• The total of the distributed forces along the correspondinghalf-bar: R1,i =

∫ Gi

Ai
R

dm
i dm

(R2,i =
∫ Bi

Gi
R

dm
i dm onm2)

• The internal forceFEi
u due to the spring (−FEi

u onm2)
• The reactionT A,i, since it is completely transmitted by the massless rod fromAi tom1 (T B,i

onm2)
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• And an additional force−F Ti
, orthogonal toui (F Ti

on m2) so that the moment of the
whole system of forces with respectGi coincides with the total moment acting on the original
bar. Note that the total value of the pair of forces is null. From the previous condition, an
expression forF Ti

can be obtained:

F T = F TP
+ F

∗

T (11)

being

F
∗

T =

√
3− 1

2
¯̄
J(u) ◦ (TB − TA) (12)

and

F TP
= −

1

2d

[

u×MG⊥
+ d ¯̄

J(u) ◦ (RG2 −RG1)
]

(13)

Here,
MG⊥

= −u× (u×MG) (14)

is the component of the moment ofMG orthogonal to the vectoru.

The termF TP
can then be obtained adding the contribution of the different forces acting on the

tether segment:F TP
= F Tg

+ F Ted
+ F Taero

. . .

The tensor¯̄J(u), which removes the parallel component of the vectorx to which it is applied, is
defined as:

¯̄
J(u) = ¯̄I − [u, u] so that ¯̄

J(u) ◦ x = −u× (u× x) (15)

The motion of the bar can be described then by the momentum equations of the TMED masses
subject to the equivalent set of forces:

m1,i
d2 r1,i

dt2
= R1,i + T i,A + Fi,E ui − F T,i (16)

m2,i
d2 r2,i

dt2
= R2,i + T i,B − Fi,E ui + F T,i (17)

It is possible to obtain an equivalent set of equations; fromthe addition of Eq.16 and Eq.17, the
momentum equation of the whole system is obtained

mi

d2 rG,i

dt2
= (R2,i +R1,i) + (T i,B + T i,A) (18)

and from the substraction of the equations, a second order differential equation is obtained for
vectord, which governs the attitude motion and deformation evolution of the bar:

mi d̈i = (R2,i −R1,i)− 2Fi,eu+ 2F ∗

T,i +
¯̄
J2(ui) ◦ (T i,B − T i,A) (19)
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being
¯̄
J2(ui) =

¯̄
I−

(√
3− 1

)

¯̄
J(ui) (20)

Note that Eq.18 coincides with the momentum equation of the original elastic bar (Eq.9). The
moment equation of the original elastic bar (Eq.10) can be obtained (after some algebra) from Eq.
19by taking the vectorial product with respect tou.

2.2. Tether with a free end and a point massmf . Reaction forces calculation

As a first step for the modeling of the whole tethered space system, we focus now in the model of
a tether with a free end and a point ending mass,mf , at rf . The tether is modeled asn TMED
joined to the adjacent bars by means of ideal joints.

The3n restrictions associated with then joints

rB,i = rA,i+1 i = 1, n− 1 rf = rB,n (21)

reduce to3n + 3 the degrees of freedom (dof) of the system (without the joints, the system would
have6n+ 3 dof), and give rise to the existence of the reactions acting in the ends of the bars,TA,i

andTB,i (i = 1, n), which are unknowns:

TB,i = −TA,i+1 i = 1, n− 1 T f = −T B,n (22)

The3n+3 dof fix the status of the tether. Given the position of the freeend with respect an inertial
frame, rA,1, and the orientation and length of each rod,dj, the position of the joints and center of
mass of the bars can be written (similar relations for the velocity and acceleration of such points
can be obtaining through derivation):

rB,i−1 = rA,1 +
i−1
∑

j=1

2
√
3dj rG,i = rA,1 +

i−1
∑

j=1

2
√
3dj +

√
3di (23)

The motion of such system is described by the motion equations of the ending mass and bars:

mf r̈f = Rf + T f (24)

mi r̈G,i = R1,i +R2,i + T A,i + T B,i i = 1, n (25)

mi d̈i = (R2,i −R1,i)− 2Fei u+ 2F TP ,i +
¯̄
J2(ui) ◦ (T B,i − TA,i) i = 1, n (26)

together with the constraints Eq.21 and Eq.22

Equations24, 25and26can be rearranged taking into account the relation of the second derivatives
obtained from Eq.23 to obtain:
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2
√
3mi

i−1
∑

j=1

1

mj

¯̄
J2,j ◦ (TB,j − TA,j) +

(√
3 ¯̄J2,i −

¯̄
I

)

◦ TB,i − (27)

−
(√

3 ¯̄J2,i +
¯̄
I

)

◦ TA,i +mi r̈A,1 = Ri i = 1, n (28)

2
√
3mf

n
∑

j=1

1

mj

¯̄
J2,j ◦ (TB,j − TA,j) + TB,n +mf r̈A,1 = Rf (29)

Where

Ri = Ri − 2
√
3mi

i−1
∑

j=1

1

mj

R
∗

j −
√
3R∗

i (30)

Rf = Rf − 2
√
3mf

n
∑

j=1

1

mj

R
∗

j (31)

groups the effect of all the forces on the bars (elastic and external different from the reactions).
Here we have used:

R
∗

j = (R2,j −R1,j)− 2Fej uj + 2F TP ,j (32)

and
Ri = R1,i +R2,i and ¯̄

J2,i =
¯̄
J2(ui)

The 3n + 3 equations Eq.28-29 are a linear relation between the3n + 6 unknowns r̈A,1, T A,1,
TB,j , and will be referred hereafter asL( r̈A,1,TA,1,TB,j) = Ri.

The motion of the tether with a free endA1 is then described by the equations:

m2,i r̈2,i = R2,i + TB,i − Fe,i ui + F T,i i = 1, n (33)

L( r̈A,1,TA,1,TB,j) = Ri (34)

Note that the mathematical problem is not yet closed, as the acceleration of the free end̈rA,1

is not yet known. For solving the problem,L( r̈A,1,TA,1,TB,j) = Ri must be extended with3
additional conditions providing̈rA,1 or relating it withTA,1 orT B,j. Then, the motion of the tether
can be simulated solving the linear systemL at each time step, and integrating the3n momentum
equations of the equivalent masses and that of the free end.

In the following sections we state the closed equation systems for some typical tether systems.

2.3. Tether with two end point masses

Let’s consider now that the free endA1 of the tether described in the previous section is ideally at-
tached to a point massm0. This mass will be subject to the total of the external forces(gravitational,
third body, etc)R0, and the reaction due to the connection of the tetherT 0.
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Figure 2. Tether with two end point masses model

Then, the whole set of equations describing the motion of thetether connecting the point masses
m0 andmf are:

m0 r̈0 = R0 + T 0 (35)

r0 = rA,1 → r̈0 = r̈A,1 (36)

T 0 = −T A,1 (37)

m2,j r̈2,j = R2,j + TB,j − Fe,j uj + F T,j j = 1, n (38)

L( r̈A,1,TA,1,TB,j) = Ri (39)

This set of equation can be split in three parts:
• The motion equation of the massm0, Eq.35
• The connection equations, representing the ideal constraints, Eq.36 and Eq.37
• The motion equations of the tether with the ending massmf , Equations38-39

Note that Eq.35couples with Eq.39giving a linear system of size3n+ 6 L2m( r̈0,TA,1,TB,j) =
R2m,i, that must be solved each time step during the integration ofthe momentum equations.

2.4. Point massm0 with several connected tethers

Let’s consider now a hub-and-spoke (HAS) multi-tethered system, consisting in a central point
massm0 to whichNt tethers (as the one described in2.2.) are connected. The motion equations
of such a system consist on the momentum equation of the particlem0, and the motion equations
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of each tether:

m0 r̈0 = R0 −
Nt
∑

l=1

T
(l)
A,1 (40)

r0 = r
(k)
A,1 → r̈0 = r̈

(k)
A,1 k = 1, Nt (41)

m
(k)
2,j r̈

(k)
2,j = R

(k)
2,j + T

(k)
B,j − F

(k)
e,j u

(k)
j + F

(k)
T,j j = 1, n (42)

L( r̈
(k)
A,1,T

(k)
A,1,T

(k)
B,j) = R

(k)
i (43)

Now all the linear systems of the tethers couples into a bigger linear systemLHAS( r̈0,T
(k)
A,1,T

(k)
B,j) =

R
(k)
HAS,i of sizeNT (n+3)+3. that must be solved each time step for obtaining the reaction forces.

2.5. Rigid body with several connected tethers

The equations for the hub-and-spoke multi-tethered systemcan be easily adapted for taking into
account the attitude dynamics of a central body. Let’s assume, for example, a rigid body withNw

wheels of massmB, which center of mass is placed atrGB
with respect to the inertial frame. Let

¯̄
JB be its inertia tensor (including the contribution of the wheels) expressed in the non-inertialB
frame, attached to the center of massGB, which rotates with respect to the inertial frame with
angular speedωB. The rigid body hasNt attachment points to which the tethers can be ideally
joined, placed atrB,Attk with respect theB frame. The motion equations of such system are ([8],
[9]):

mB r̈GB
= RB −

Nt
∑

k=1

T
(k)
A,1 (44)

¯̄
JBω̇B = MGB

− ḣw − ωB ×
(

¯̄
JBωB + hw

)

−
NAtt
∑

k=1

rB,Attk × T
(k)
A,1 (45)

ḣw = Mw (46)

Now, due to the attitude dynamics, the geometrical constraints of the attachments (the connection
equations spacecraft-tethers) are more complex than in theprevious cases. Assuming that the
attachment points are fixed with respect the body frameB:

rB,Attk = r
(k)
A,1 → r̈B,Attk = r̈GB

+ ω × (ω × rB,Attk) + ω̇ × rB,Attk = r̈
(k)
A,1 (47)

The motion equations of each attached tether are:

m
(k)
2,j r̈

(k)
2,j = R

(k)
2,j + T

(k)
B,j − F

(k)
e,j u

(k)
j + F

(k)
T,j j = 1, n (48)

0 = L( r̈
(k)
A,1,T

(k)
A,1,T

(k)
B,j) (49)
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For the integration of the motion equations Eq. (44), (45), (46), (48) it is needed now to solve a
bigger linear system for obtaining the reactions on the endsof the bars, the acceleration of the
center of masses of the spacecraft and the rotational acceleration of the spacecraft:

LRB( r̈GB
, ω̇B,T

(k)
A,1,T

(k)
B,j) = R

(k)
RB,i

2.6. Orbit propagation

The methods presented in the previous section involve the computation of the trajectory of one or
several particles, under the influence of a set of forces, representing the external forces applied on
the tether (gravitational, perturbations) or internal (elastic, reactions).

In orbital mechanics applications, the equations of motionthat determine the motion of the particles
are those of the perturbed two body problem. The sources of perturbing forces are both external
and internal. A non exhaustive list of perturbations include inhomogeneous gravitational potential,
electrodynamic forces, internal elastic forces, reactions due to linkages or constraints.

In this work, two methods were tested for the computation of the particle trajectories. Firstly,
Cowell’s method [10] was implemented as a reference approach. This is a classical formulation
based on the direct integration of the momentum equation of the particle expressed in rectangular
coordinates in a inertial reference. Secondly, a special perturbations method, DROMO [6] has been
implemented. This formulation is based on the variation of the parameters and Hansen’s concept
of the ideal frame [11] and it is expected to show better computational performance. Details on the
specific implementation of these methods into the library can be found in future publications.

3. The Space Flight Dynamics and Space Tether simulation libraries

Based on the formulation described in the previous sections, a set of simulation libraries have
been developed in the tool EcosimPro for the simulation of space tether systems and general space
dynamics applications. Both, the presented physical formulation and the libraries, have been devel-
oped taking maximum advantage of the object-oriented and non-causal modeling paradigms [12]
available in EcosimPro.

3.1. EcosimPro

EcosimPro [13], [12] is a multidisciplinary modeling and simulation environment. It is extensively
used by the space industry for the simulation of liquid, solid and hybrid space propulsion systems
[14], spacecraft power systems [15] space electrical propulsion systems, and, more recently,space
dynamics applications [16].

In the context of EcosimPro, the so-calledcomponentscontain a mathematical description of the
corresponding real world component. Components can communicate with each other through the
ports, which define the set of variables to be interchanged betweenthe connected components. This
way, complex systems can be graphically modeled by drag-and-dropping the required components
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and connecting them. Once the model is finished, the tool automatically compiles all the equations
of the different components and theconnection equationscoming from the connected ports, and
creates a closed mathematical equation system after arranging the equations based on internal
algorithms [12], [17]. During this step, it is able of to manage linear and non-linear equation
systems. Once the mathematical problem is closed, different calculations can be performed, such
as the integration of the resulting ODE or DAE system, the calculation of steady solutions, or
optimization calculations with the included solvers (e.g.DASSL, Powell’s hybrid method, etc).
The tool is flexible enough for using external solvers or creating specific calculations.

3.2. Spaceflight Dynamics and Space Tether simulation libraries

The low level functions and components included in the library for astrodynamics calculations
include:

• Low level astrodynamics functions: calendar/time calculations, planetary ephemeris, space
environment (gravitational field, atmosphere, magnetic field, etc), eclipse, etc. Different
levels of detail can be selected depending on the planet.

• Orbit propagation of one or several particles, using Cowell’s method or DROMO method.
• Attitude propagation of rigid bodies with arbitrary numberof momentum wheels.
• Forces and torque calculation of the different perturbation effects.

Following an object oriented approach, a set of components have been developed based on the
above low level functions and components. Among others, this library includes:

• Environment component, for setting the space environment in which the satellite(s) will
evolve. Different degrees of fidelity can be selected for thegravity field, magnetic field,
third body ephemeris, etc

• Kepler particle, for the simulation of a keplerian orbit
• Cowell/DROMO particles, for the orbit calculation of a point mass
• Formation flying particles, for the orbit calculation of several point masses
• Rigid body with flying wheels (using Cowell/DROMO) for the spacecraft orbit and attitude

motion calculation

A detailed description of the space dynamics library and itscapabilities is out of the scope of
the present work and will be introduced in a future publication. Additionally to these general
components, the formulations described in the previous sections have been encapsulated in the
components:

• Tether attachment, encapsulating theconnectionequations Eq.36and Eq.37
• Tether component (Cowell/DROMO), encapsulating the equations of a tether with a free end

as the one described in2.2.
• Nail component, imposing null displacement to the component to which is connected.

This way, complex space tethered systems can be modeled by connecting the corresponding com-
ponents, obtaining the equation systems described in2.3., 2.4. or 2.5..
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Figure 3. Stiefel problem test case. DASSL solver performances with DROMO and Cowell’s
methods. Left: error with respect the exact solution(52). Right: mean number of integration
steps per orbit

Furthermore, the space tether system model can be connectedto other spacecraft subsystems, such
as the control or the power system, modeled with other existing EcosimPro libraries, in order to
simulate the behavior of the complete system.

4. Test cases

4.1. One mass orbit propagation. Stiefel problem

The validation of the orbital propagation core is carried out using a reference problem proposed
by Stiefel & Scheifele [18]. The reference scenario consist of propagating the trajectory of a mass
particle in a high eccentric (e = 0.95) non-equatorial (i = 30◦) initial orbit . The mass particle is
subject to lunar andJ2 perturbations. These perturbations are modeled analytically. The problem
is posed as computing the position of the mass particle after288.12768941 mean solar days (50
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Figure 4. Tether catenary configuration (Left) and internal forces distribution (Right)

orbits), starting from the perigee of the initial orbit:

(x1, y1, z1) = (0.0,−5888.9727,−3400.0) km (50)

(ẋ1, ẏ1, ż1) = (10.691338, 0.0, 0.0) kms−1 (51)

In [18], a detailed description of the problem can be consulted. Asan accurate result, the following
solution is given in the aforementioned reference:

(x1f , y1f , z1f ) = (−24219.0503, 227962.1064, 129753.4424) km (52)

This result was obtained with498 integration steps per orbit. This solution is used to measure
the performance of the propagation methods. The metric of quality is the distance from the final
position obtained by integration and the reference solution (52).

Figure4.1. shows the performances of DASSL integrator with Cowell’s and DROMO methods.
DROMO offers more accuracy (error propagation in Cowell is exponential) and lower computa-
tional cost. Nevertheless, DASSL integrator is less accurate and less efficient when compared to
integration methods as RK7(8), when compared to previous analysis of the reference problem [6].
Therefore, the use of anstiff integrator such as DASSL penalises efficiency and accuracy when
compared to solvers of high accuracy as RK7(8). It is fair to pay this toll because DASSL is capa-
ble of managing stiff problems. It is advisable, however, tocarry out a detailed study comparing
integrators with other test cases in the future.

For the orbit propagation of several particles, a set of trusted results was generated using the already
tested one-particle propagator for different initial conditions for each particle. Then, the trajectory
of the particles was calculated with the specific flight formation component, and compared with
the trusted results, achieving a good accuracy for all the particles.

4.2. Stationary solutions: catenary

The flexibility of the formulation and the non-causal modeling allow defining test cases for which
an analytical solution or experimental results are known. This is the case of the catenary steady
solution.
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Firstly, for the simulation of a pendulum, we extend the formulation of the tether with the condition
of a steady free end:

r̈0 = 0 (53)

r0 = rA,1 → r̈0 = r̈A,1 (54)

m2,i r̈2,i = R2,i + TB,i − Fe,i ui + F T,i i = 1, n (55)

L( r̈A,1,TA,1,TB,j) = Ri (56)

From the graphical modeling point of view, this set of equations are equivalent to the model ob-
tained when the ‘tether component’ is connected with the ‘nail component’.

In order to calculate the steady catenary solution, we must cancel the derivatives of the model,
and compute the valueRf of the external force on the ending massmf so that its position is the
one required by the user. The tool automatically rearrangesthe equations in order to fulfill the
described conditions.

Figure4 show the shape of the tether and the internal forces distribution (reactions and elastic
forces) compared to those of the analytic formulation for a tether of lengthL0 = 1m andEA =
40.06N when the free end and the ending mass are placed horizontallyseparated0.9m at the Earth
surface.

4.3. Test case: tether in circular orbit

For a preliminary validation of the tether in orbit, we consider now the motion of a non-conductive
tether connecting two masses, one of them,m0 being much bigger than the other one,mf . The
center of masses of this system is quite close tom0 and it follows a keplerian orbit. In this specific
case, we consider a circular orbit of radiusr0 = 7400km. Some characteristic phenomena of such
a system were used as reference for the tether validation, for several models with different number
of rods:

• When initially aligned with the local vertical, the tether continues in such relative equilibrium
configuration (not showed in figures)

• When the tether is set initially straight, but forming an in-planeθ0 angle contained in the
orbital plane with the local vertical, it evolves straight in the orbital plane swinging around
the local vertical with frequency

√
3ω.

• When the tether is set initially straight, with an out-of-planeφ0 angle with the orbital plane,
the tether swings around the orbital plane with frequency2ω.

In Fig. 4.3., some selected results are presented for the case of a two rods tether model.

Once the rigid-body oscillation modes of the tether are checked, we set the initial conditions so
that the lateral modes are excited. Fig.4.3. shows the evolution of the in-plane and out-of-plane
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angles for a two rods tether model, in which the higher frequency lateral modes can be observed.

5. Application case: de-orbiting a satellite with an electrodynamic tether

As an application case, we simulate now a de-orbiting mission, in which a1063 kg satellite in an
Earth circular orbit with an altitude of about1000 km and an inclination35o is de-orbited by using
an Aluminum tether of lengthLt = 5km. The ending mass ismf = 392.2kg, so that the tether
is self-balanced [19]. In this first case, the current is set to be constant during the whole mission,
I = 2A, and the magnetic field is modeled as a dipole aligned with theEarth’s rotation axis. Fig.7
shows the evolution of some model parameters during the mission when using a single rod tether
model. The de-orbit lasts for approximately35 days. As the orbit axis decreases, the deformation
induced by the gravity gradient increases. In-plane and out-of-plane oscillations induced by the
electrodynamic forces are bounded through the whole mission (self-balanced tether). The in-plane
angle oscillates around a negative value.

6. Conclusions

A new formulation for the modeling of space tether systems has been developed. The tether is
discretized in a number of elastic rods, and its motion can bedescribed by motion of a set of
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equivalent masses.

The formulation is flexible enough for the simulation of complex multi-tethered systems, with a
rigid body as central body.

Based on the Cowell’s and DROMO orbit propagators, a set of libraries for general space dynamics
applications and space tethers simulation have been developed in the simulation tool EcosimPro,
taking advantage of the object-oriented and non-causal modeling capabilities.

Some preliminary test cases have been run, showing good agreement with known results. A de-
orbiting mission simulation shows that the new tether simulator is a promising tool for the simula-
tion of space tether systems.

Additional test cases are to be presented for the validationof the different capabilities of the sim-
ulator (multi-tethered systems, spacecraft attitude coupling), and specifically for the tether lateral
dynamics simulation with the new tool.

New modeling capabilities, such as varying length tethers,flexible spacecraft effects, additional
perturbing forces or the simulation of the tether system together with other spacecraft systems
(electrical, attitude control), will be presented in future works.
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