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Abstract: The ultimate purpose of this study is to obtain approximate analytical solution of low 

thrust trajectory for the spacecraft which continuous thrust system is equipped with such as 

electric propulsion. Generally, analytical solution of low thrust trajectory is not exist because 

input is continuous. Approximate Analytical solution of low thrust trajectory is so valuable that it 

is used not only as rough estimate of fuel consumption and flight time in early mission analysis but 

also as initial solution of high cost numerical calculation for low thrust trajectory such as 

non-linear programming. In order to obtain approximate analytical solution coordinate 

transformation is valid as some previous studies. However, these studies ignore the optimality of 

low thrust trajectory based on variational method which introduces adjoint valuables. The method 

changes optimization problem to solving the two boundary problem including state and adjoint 

vector. Therefore, this study aims to obtain approximate analytical solution using coordinate 

transformation of state and adjoint valuables and this paper proposes that analytical solution in 

linearized region is extended to non-linear region in circle-to-circle transfer problem as the first 

step for achieving this purpose. 
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1. Introduction 

 

Recently, many deep space exploration missions have been enabled by electric propulsion 

systems. Japan Aerospace Exploration Agency (JAXA) succeeded in Hayabusa mission thanks 

to the electric propulsion systems which obtain much higher specific impulse than chemical 

propulsion systems. It is expected the electric propulsion systems will play an important role in 

future deep space exploration because they are useful for large energy which is required to 

change trajectories and for enrichment of observation equipment enabled by reduction of fuel 

consumption. 

In order to design optimal low thrust trajectories by electric propulsion systems numerical 

calculation is inevitable even if the spacecraft (S/C) is influenced only by central body because 

continuous thrust is given to the S/C. Generally, non-linear programming is widely used to 

obtain the optimal solution of low thrust trajectories with continuous thrust such as Direct 

Collocation with Non Linear Programming (DCNLP) [1]. Although non-linear programming can 

optimizes with high versatility and find the solution for various problem with uniform method, 

convergence time is so long that it is not fit to when analyzed space is very large such as first step 

analysis for missions. Almost all non-linear programming method depends on the initial solution 

largely and can find local minimum solution if the initial solution is not appropriate. Then, the 

approximate analytical solution of low thrust trajectories is very valuable because it is useful for 

approximate estimation of fuel consumption and flight time in early mission analysis which has 
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large search space. Moreover, if the approximate analytical solution is used as initial solution for 

numerical optimization, it can contribute to find global minimum solution remarkably. The 

ultimate purpose of this study is to obtain approximate analytical solution of low thrust 

trajectories. 

It can be expected that coordinate transformation is valid to obtain approximate analytical 

solution of low thrust trajectories because some previous studies assumed that low thrust 

trajectories are designed using alternating rotational coordinates [2, 3]. These studies make 

designing of low thrust trajectories easy using coordinate transformation and shape-based 

method which determines the trajectory shape before deriving thrust history [4, 5]. However, 

these methods ignore optimality of trajectories based on variational method. Variational method 

which introduces adjoint valuables can change optimization problem to two boundary problem 

including state vector and adjoint vector. Therefore, this study aims to obtain approximate 

analytical solution using coordinate transformation of state and adjoint valuables and this paper 

proposes that analytical solution in linearized problem is extended to non-linear problem as the 

first step for achieving this purpose. In this paper circle-to-circle transfer problem is considered.  

 

2. Extension of Linear Analytical Solution 

 

2.1. Equation of Motion and Linear Analytical Solution 

 

Circle-to-Circle transfer problem is considered (Fig. 1). The distance between S/C and central 

body and the phase of S/C are represented by r and θ respectively. Equations of motion are Eq. 1~3 

where the velocity is (u, v) respect to (r, θ). It is presumed that the magnitude of thrust is constant 

and mass change is negligible during navigation. Ψ indicates the angle of thrust direction which is 

input. 

 

�̇� = 𝑢                                        (1) 
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𝑣2

𝑟
−

𝜇
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+ 𝑇sin𝜓           (2) 

�̇� = −
𝑢𝑣

𝑟
+ 𝑇cos𝜓                (3) 

 

 
Figure 1.  Circle–to-Circle Transfer with continuous thrust (Earth to Mars) 

 

In the case that the S/C is near the initial orbit Eq. 1~3 are linearized to Eq. 4~6 using initial orbit’s 

rotation angular velocity.  
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�̇� = 𝑢                                                 (4) 
�̇� = 2𝑛𝑣 − 3𝑛2𝑟 + 𝑇sin𝜓           (5) 
�̇� = −2𝑛𝑢 + 𝑇cos𝜓                      (6) 

 

It is presumed that the flight time is minimized and cost function is∫ 1
𝑡𝑓

0
dt. Hamiltonian is given 

in Eq. 7 which satisfies the condition of optimality ∂𝐻/𝜕𝜓 = 0 according to variational method. 

Adjoint valuables are indicated by λ. Diffrential equations are given in Eq. 8 with optimal 

hamiltonian 𝐻0, therefore, linearized optimal input is obtained by Eq.9 analytically. 

 

𝐻 = 1 + λ𝑟𝑢 + 𝜆𝑢(2𝑛𝑣 + 3𝑛2𝑟 + 𝑇sin𝜓) + 𝜆𝑣(−2𝑛𝑢 + 𝑇cos𝜓)   (7) 

𝜆𝑟 = −
∂𝐻0

𝜕𝑟
, 𝜆𝑢 = −

∂𝐻0

𝜕𝑢
, 𝜆𝑣 = −

∂𝐻0

𝜕𝑣
         (8) 

tan 𝜓 =
𝜆𝑢

𝜆𝑣
=

sin(𝑛𝑡 + 𝜙)

2 cos(𝑛𝑡 + 𝜙) + 𝐶
                   (9) 

 

Optimal trajectories are obtained by solving two boundary problem that constant 𝜙 and  𝐶 in 

Eq.9 converge terminal velocity 𝑢(𝑡𝑓) and  𝑣(𝑡𝑓). 

 

2.2. Functional Type of Analytical Solution 

 

Subsequently, it is considered that linearized analytical solution in Eq. 9 is extended to non-linear 

region and the method of the extension is explained in this section. The change from constant 

𝜙 and 𝐶 in Eq.9 to functions can extend linearized solution. The patched conic method in which 

two different trajectories which are calculated separately are connected is one of the most famous 

methods of deigning trajectories [6]. In this paper patched conic method of low thrust trajectories 

are used for determining function type of extended analytical solution. After two low thrust 

trajectory are calculated in in the region that the change of the distance to central body is small 

(𝑟𝑖 → 𝑟𝑖 + Δ𝑟 and 𝑟𝑖+1 + Δ𝑟) with the angle of thrust direction in Eq.9, these adjacent two 

trajectories are combined. Thus, patched conic method is utilized continuously from initial orbit 

to terminal orbit like shown in Fig.2 and constant 𝜙 and  𝐶 are determined as each boundary 

conditions of velocity are satisfied. We can guess the function type of new 𝜙 and  𝐶 included in 

extended analytical solution cased on the history of the constant 𝜙 and  𝐶 . Note that the 

calculation of low thrust trajectories with Ee.9 in 𝑟 → 𝑟 + Δ𝑟 is correct precisely because Eq.9 

is valid in linearized system. 

 

 
Figure 2.  Patched Conic of Low Thrust Trajectories 
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Calculation conditions are shown in Tab. 1. Transfer trajectories from the Earth to the Mars are 

calculated and each boundary condition at patch point is referred to the optimal trajectories 

calculated by DCNLP. Figure. 3 shows the relation between constant 𝜙, 𝐶 and the distance from 

the Sun 𝑟. It is found that 𝜙 is decreasing function against 𝑟 except for T=100 mN case in Fig. 

3. 𝜙 is also decreasing function against time t similarly. Some tendencies of 𝐶 and r that is 

united against different thrusts cannot be found. Therefore, the function types of 𝜙 and 𝐶 are 

presumed Eq.10. 𝜙 is a linear decreasing function and 𝐶 is a constant value.  

 

𝜙 = 𝜙0 + 𝜙1(𝑟 − 𝑟0), 𝐶 = 𝐶0  where  𝜙1 < 0       (10) 
 

In Eq. 10 𝑟0 indicates the radius of the initial orbit. In order to design low thrust trajectories 

Eq.9 and 10 are used as the angle of thrust. The two boundary problem of which initial values are 

𝜙0 and 𝐶0 is solved using the Matlab function fminsearch for unconstrained minimization of 

the error of the terminal velocity. The flight time as cost function is evaluated when 𝜙1 varies. 

The condition whether the boundary condition is satisfied or not is that the error of the terminal 

velocity is less than 10 [m/s] and it is confirmed that the error of the terminal velocity can be 

converged to 0 if this condition is satisfied and the calculation is conducted with shorter time width 

of integral. In this paper the angle of thrust which is Eq. 9 that Eq.10 is substituted to is called 

extended analytical solution.  

 

 
Table 1.  Calculation Condition 

Departure Planet Earth 

Target Planet Mars 

Mass of S/C 500 kg 

Thrust 50, 65, 75, 100 mN 

 

 
Figure 3.  The Relation between 𝝓, 𝑪 included in linear analytical solution and the 

distance from S/C to the Sun r 
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3. Flight with Extended Analytical Solution 

 

In this section the result of the designing low thrust trajectory using extended analytical solution 

which is defined in prior section is shown. Figure. 4 shows that the error against DCNLP 

solution of flight time which is the cost function when the extended analytical solution is used as 

thrust profile. In the left hand side figure thrust is set in 65 [mN]. The plot of 𝜙1 = 0 indicates 

linear analytical solution is utilized. The comparison between linear analytical solution case and 

extended analytical solution with which the flight time is minimized in 𝜙1 = −3.9 case can 

find that the error against DCNLP solution of flight time is improved from 18% to 0.7%. The 

right hand side figure shows 5 cases thrusts are 35, 50, 65, 80, 100 [mN]. Blue plot indicates 

linear analytical solution and red plot indicates extended analytical solution of which the error 

against DCNLP solution is minimized. It is found that the errors are less than 1 % in all cases. 

This result shows this extended analytical solution of the angle of thrust can give more accurate 

optimal low thrust trajectory than linear analytical solution in various thrust magnitude cases. 

Figure 5 shows three states and the angle of thrust profiles compared between DCNLP and linear 

analytical and extended analytical solutions. This figure reveals extended analytical solution is 

closer to optimal DCNLP solution than linear analytical solution in all profiles. It is shown that 

linear analytical solution with small thrust cannot satisfy the boundary condition and there are no 

solution. Thus, this simple extended analytical solution that depends on 𝑟  linearly can 

contribute not only optimality of trajectory but also extension solution space. 

 

 

 
Figure 4.  The Error of Flight Time against DCNLP Solution  

(Left Hand Side: Thrust is 65 [mN] Case 

Right Hand Side: Optimal Solutions of 5 Thrust Cases using Extended Analytical solution 

are plotted (35, 50, 65, 80, 100 [mN])) 
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Figure 5.  Comparison of State and Angle of Thrust 

(DCNLP, Extended Analytical Solution, Linear Analytical Solution) 

 

 
Figure 6.  The Error of Flight Time against DCNLP Solution  

(Thrust is 35 [mN] Case) 
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4. Discussion 

 

Although it is difficult to determine the function type of 𝐶 included in Eq. 9 with patched conic 

of low thrust trajectories, it is presumed that 𝐶 is given in Eq. 11 in the same way as 𝜙. 

 

𝜙 = 𝜙0 + 𝜙1(𝑟 − 𝑟0), 𝐶 = 𝐶0 + 𝐶1(𝑟 − 𝑟0) (11) 

 

Figure 7 shows the change of angle of thrust when 𝜙1 and 𝐶1 are changed respectively. It is 

found that 𝜙1 changes the period of the angle of thrust and 𝐶1 changes the amplitude of the 

angle of the thrust. Figure 8 shows the angle of thrust profile compared between DCNLP 

solution and linear analytical solution (𝜙1, 𝐶1) = (0, 0) and (𝜙1, 𝐶1) = (−5.2, 0) which is 

optimized in terms of only 𝜙1 and (𝜙1, 𝐶1) = (−5.2, 1.5) which is optimized in terms of both 

𝜙1 and  𝐶1. Each case is named A~D shown in Tab. 2. In Fig. 8 D is closer to DCNLP case A 

than C and the error of amplitude of C is larger than D. However, because the flight times of C 

and D are hardly different shown in Tab. 2, the amplitude of angle of thrust is not related to the 

cost function at all. In the B case because not only amplitude but period are different from 

DCNLP largely, the time when the plus and minus of angle of thrust changes is also different and 

the flight time of B case is much longer than DCNLP shown in Tab. 2. Thus, In the view point of 

optimality the period of the angle of thrust, that is, the time when the plus and minus of angle of 

thrust changes is dominant. Therefore, the phase of Eq.9 𝜙 is much more important than the 

constant of Eq.9 𝐶 in terms of optimality. 

 
Figure 7.  The Role of Constant Terms of Analytical Solution in Angle of Thrust 

 
 

Table 2.  Error of Flight Time against DCNLP in Different Conditions 

 Error of Flight Time against DCNLP 

A: DCNLP 0.0% 

B: (𝜙1, 𝐶1) = (0, 0) 7.6% 

C: (𝜙1, 𝐶1) = (−5.2, 0) 0.9% 

D: (𝜙1, 𝐶1) = (−5.2, 1.5) 0.5% 
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Figure 8.  Comparison of Angle of Thrust in Different Conditions 

 

5. Conclusion 

 

In circle-to-circle transfer problem approximate analytical solution of the thrust profile of low 

thrust trajectory which is constrained to maintain thrust in constant which is obtained by 

linearizing one constant term of linear analytical solution in terms of radius 𝑟 gives high accurate 

solution of which error of cost function against DCNLP solution is less than 1%. In the case that 

the magnitude of thrust is small if linear analytical solution of thrust profile is utilized, there is no 

solution which can satisfy the boundary condition in rendezvous problem. However, even if thrust 

is small, accurate extended analytical solution can be obtained by searching the optimal coefficient 

of linear function about 𝑟 in angle of thrust profile.  
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