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Abstract: This paper presents the options for Gaia disposal through transfer into a heliocentric 

graveyard orbit. The disposal manoeuvre sequence is designed in a high-fidelity dynamical 

model using an energetic approach written in the osculating restricted three-body problem. A 

first manoeuvre is given to leave the Libration Point Orbit, while a second manoeuvre is used to 

decrease the three-body problem energy of the spacecraft. The disposal design is optimised to 

maximise the distance from Earth for a period of 100 years and to minimise the possibility of 

gravitational interaction with the Earth, due to perturbation induced by other planets. Particular 

emphasis is given to the effect of the eccentricity of the Earth’s orbit around the Sun. The 

elliptical restricted three body problem formulation and the results in the full dynamics are used 

to show the dependence of the manoeuvre to the angular position of the Earth-Moon barycentre 

with respect to the Sun at the time of injection into the disposal trajectory. These findings are 

exploited to design a novel disposal strategy that is sustainable and minimises the chance of 

return to Earth on the long term. 

 

Keywords: End-of-life disposal, graveyard orbit, trajectory optimisation, restricted three body 
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1. Introduction 

Libration Point Orbits (LPOs) in the Sun-Earth system are used for astronomy missions, such as 

Herschel, Planck, SOHO, and Gaia, and future missions, such as Euclid, ATHENA, PLATO will 

also use this type of orbits. Indeed, LPOs have a stable geometry with respect to the Sun and the 

Earth, thus offering a vantage point for the observation of the Sun and the Universe, together 

with optimal operating condition in terms of radiation environment, telecoms and thermal design. 

In addition, the amount of propellant to target orbits around the Libration Points L1 and L2 is low 

compared to alternative orbits. 

Recent studies funded by the European Space Agency (ESA) [1-3] highlighted the importance of 

considering the end-of-life disposal since the early stages of the mission design to define a 

sustainable strategy for the disposal with the objective of avoiding interference with the 

Geostationary and Low Earth Orbit protected regions and minimising the event of an 

uncontrolled re-entry within the Earth’s atmosphere several years after the operational mission 

end. Three possible options have been considered for end-of-life disposal of LPOs: disposal 

through a semi-controlled Earth re-entry [4], disposal through impact onto the lunar surface or 

transfer into a graveyard heliocentric orbit. The latter strategy was already implemented for 

ISEE-3/ICE, Planck and Herschel. 

This paper will analyse the options for Gaia disposal through transfer into a heliocentric 

graveyard orbit. The disposal manoeuvre sequence is designed in a high-fidelity dynamical 

model using an energetic approach written in the osculating restricted three-body problem. A 
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first manoeuvre is given to leave the LPO, while a second manoeuvre is used to decrease the 

three-body problem energy of the spacecraft. The disposal design is optimised to maximise the 

distance from Earth for a period of 100 years and to minimise the possibility of gravitational 

interaction with the Earth, due to perturbation induced by other planets. Moreover, the Elliptical 

Restricted Three Body Problem formulation is used to show the dependence on the sensitivity of 

the manoeuvre to the angular position of the Earth-Moon barycentre with respect to the Sun. The 

aim of this work is to understand how the dynamics influences the efficiency of the disposal 

manoeuvre. The findings are exploited to design a novel disposal strategy, based that is 

sustainable and minimises the chance of return to Earth on the long term. 

The paper is organised as follows, Section 2 summarises the method for the heliocentric disposal 

manoeuvre design by closing the Hill’s curves in the Circular Restricted Three Body Problem 

(CRTBP), proposed by Olikara et al. [5] and applied to three ESA missions, namely Herschel, 

SOHO and Gaia in [2]. The trajectory design method considering the high-fidelity dynamical 

model, is presented in Section 3. The optimisation of the manoeuvre sequences is explained in 

Section 3.2, where a novel strategy is devised, based on the analysis of close approaches, which 

allows having a robust and sustainable disposal. Section 4 gives the Gaia mission parameters 

needed for the design of its end-of life. The results are presented in Section 5. The effects of the 

Earth’s eccentricity are also analysed through an analytical approach based on the Elliptical 

Restricted Three Body Problem model in Section 6. 

2. Heliocentric disposal manoeuvre design in the CR3BP 

When considering the disposal of spacecraft in LPOs, the main requirement is that the spacecraft 

does not return to the Earth for at least 100 years after the disposal epoch [3]. As demonstrated 

by analyses performed in the Circular Restricted Three Body Problem (CRTBP), a small 

manoeuvre is enough to inject the spacecraft into the unstable manifold leaving the Earth’s 

vicinity though L2. However, a second manoeuvre is needed to ensure that the trajectory will not 

return towards the Earth. To this aim, an energetic approach in the CRTBP was originally 

proposed by Olikara et al. [6]. This approached was applied to three selected ESA missions in [1-

3]. In these studies, the circular restricted three body problem was adopted, considering the Sun 

and the Earth + Moon as primary masses. 

For any point expressed in the synodic system of the Circular Restricted Three Body Problem 

(CR3BP) the Jacoby constant can be computed as [7]: 

      2 2 2 2 2

syn

1
2 1

S E

J x y z x y
r r

 


 
         

 
s   (1) 

where  
2 2 2

Sr x y z      and  
2 2 21Er x y z      describe the spacecraft position 

from the Sun and the Earth, respectively and  syn x y z x y xs  is the state vector in the 

synodic system. The lightness parameter β is included to consider the effect of solar radiation 

pressure as function of the area-to-mass ratio and the reflective coefficient of the spacecraft. 

One first infinitesimal manoeuvre was considered in [1, 2, 6] to inject the spacecraft into the 

unstable manifold leaving the LPO through L2, and the second manoeuvre was determined 

imposing that the Jacoby constant, once the manoeuvre is given, has to be increased, at least, to 

the value of 
2LJ , to ensure that the Hill’s curve are closed in correspondence of the L2 point, thus 
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preventing the spacecraft to return back to the Earth’s region. Eq. (1) can be evaluated at the 

Libration point L2  to define 
2LJ . 

Considering a trajectory that departs from the LPO through L2, the Hill’s curves are initially 

opened at L2, i.e., 
2LJ J . The velocity after the first manoeuvre for leaving the LPO can be 

computed inverting Eq. (1) as      2 2 2 2 2 2 1
2 1

S E

v x y z x y J
r r

 


  
         

 
 . 

Now, at a position beyond L2, a second manoeuvre is given to close the zero-velocity curves. In 

other words, the required velocity after the manoeuvre can be determined by imposing that 

 synJ s  equals 
2LJ : 

    
2

2 2 2 1
2 1 L

S E

v x y J
r r

 


  
      

 
  (2) 

Since the curves are opened at time 
2vt  and closed at time 

2vt , this means that    2 2v v
 

 : 

the second manoeuvre needs to increase the Jacobi constant (i.e., decrease the energy since 

  2J E  ), therefore the absolute value of the minimum required v  to close the Hill’s curves 

at L2 is 

 
2closure @ Jv v v      (3) 

and it has to be given in the opposite direction to the initial velocity 


v  . 

Note that, given a position in the synodic frame beyond L2, the best condition of curve closure 

would be such that, not only the curves are closed at L2 (i.e., 
2LJ J  ), but a more conservative 

closure is achieved such that 
2LJ J . The most conservative condition is when the velocity after 

the v  manoeuvre is zero: 0v  , which means that the spacecraft is at the boundary of the 

forbidden region, so it is well prevented from reaching L2. This allows defining the most 

conservative condition for closure at the boundary of the forbidden region: 

 
2 2 2

closure @ FRv v x y z       (4) 

Finally, note that, as shown by Olikara et al. [6], it is not possible to close the Hill’s curve at any 

position; in particular in some cases the spacecraft can be, after the v  manoeuvre, inside the 

forbidden regions. Therefore, a filter was added in [3] to identify the boundaries of the forbidden 

regions as 

 
*J J   (5) 

where, J is the Jacoby constant, while *J  is the critical Jacobi constant, i.e., when the velocity in 

the Synodic system is zero: 

  * 2 2 1
( ) 2 1

S E

J x y
r r

 


 
     

 
  

The reader is invited to refer to Olikara et al. [6] for a more detailed explanation of the disposal 

manoeuvre in the CRTBP and to [3] for the result of this analysis on three selected ESA 

missions: Herschel, SOHO and Gaia. 
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3. Heliocentric disposal manoeuvre design in the full-ephemerides model 

The aim of this work is to: 

 design the heliocentric disposal in a full dynamical model; 

 design a robust disposal that prevents the return of the spacecraft to Earth for the following 

100 years at least 

 analyse the effect of the Earth’s eccentricity and the other perturbations on the disposal 

strategy 

 analyse the behaviour of the close approaches between spacecraft and Earth once the 

disposal manoeuvre is given 

3.1. High-fidelity model of the dynamics 

The heliocentric disposal for Gaia was designed in the full dynamical model, considering the 

effects of Solar Radiation Pressure (SRP), the Earth’s oblateness and the planets gravitational 

attraction. For SRP, a cannonball model was used, with the Sun position computed from the 

ephemerides. No eclipses are considered at this stage. The planets considered for the disposal 

design are: Earth, Mercury, Venus, Mars, Jupiter, Moon, and the Sun. NASA Horizon 

ephemerides (JPL_D405) are used with interpolation with Chebyshev polynomials. The 

dynamics is centred at the Earth in an equatorial inertial reference system. 

The trajectory is integrated using a variable order Adams-Bashforth-Moulton PECE (Predict-

Evaluate-Correct-Evaluate) solver, implemented in the Matlab function ode113. 

For the evaluation of the Jacobi constant, for each time step the trajectory is transformed into the 

osculating Restricted Three Body Problem (R3BP), centred at the barycentre of the Sun – Earth 

+ Moon system, with the x-axis in the instantaneous direction from the Sun to the Earth + Moon. 

This means that the x-y plane is not uniformly rotating around the z-axis. 

The position of the spacecraft in the non-dimensional synodic reference rsyn frame is expressed 

as: 

T sid
syn M

k


r
r  

where, M is the direction cosine matrix, rsid is give from Gaia’s ephemeris and k is the Earth-Sun 

distance, E Sr . The velocity is given by deriving rsyn as a function of time and by 

adimensionalising the velocity for the angular velocity: 

 
3

T T T E Ssid sid E S E S
syn sid

E SE S

rv r r v
v M M M r

k k vr

 



 
   
  

  

where E S E Sr r   and E S E S E Sr  v  introducing the hypothesis of mean motion of the 

Earth around the Sun. 

3.2. Disposal manoeuvre design 

Given a starting time t0 and state 0s  on the nominal LPO, a first manoeuvre 1v  is performed to 

leave the LPO along an unstable outbound trajectory. The state on the LPO after 1v  is 

propagated for the time interval 1t  and the first trajectory leg of the trajectory Leg 1 is 

computed in the sidereal reference frame. To ensure that the trajectory is outbound, all the 

trajectories which reach, at any point, a distance from Earth less than 
61.2 10  km are discarded 
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(note that the minimum distance of the nominal LPO from Earth is 61.3667 10  km). Moreover, 

another check is performed on the final state of Leg 1 to ensure its x-component in the synodic 

frame is higher than 
2Lx . 

At this point, a second manoeuvre 2v  is given with the aim of increasing the value of the Jacobi 

constant. The initial state on Leg 2 is propagated up to 0 1 EOLt t t     and the value of the Jacobi 

constant along the second leg  leg 2 leg 2,  synJ s  is calculated through Eq. (1) to compute the 

objective function. The trajectory optimisation is performed using the following optimisation 

parameters: 

 
1 1 1 1v t  

   y   

where 
1v

  is the fraction of the maximum available Δv used in the first manoeuvre, 1  is the 

right ascension (in-plane angle) of the Δv in the synodic frame for the first manoeuvre Δv1, 1  is 

the elevation angle of the Δv in the synodic frame for the first manoeuvre Δv1, 1t  is the time 

interval between the two manoeuvres, limited to a maximum of six months. 

The second manoeuvre 2v  is performed using all the remaining available 2,avlv  rescaled 

considering the efficiency of the manoeuvre (that depends on its direction). At this point two 

considerations can be made: if 
22,avl closure @ Jv v      (where 

2closure @ Jv  is defined in Eq. (3)), the 

closure at L2 is not feasible. Moreover, if seen in the synodic frame, the most conservative case 

would be when avl closure @ FRv v    (in Eq. (4)), which means that, after the second manoeuvre, 

the spacecraft is at the boundary of the forbidden region. Therefore, a check is present to 

guarantee that the 2v  does not exceed closure @ FRv : 2 2,avl closure @ min , FRv v v      .  

Moreover, for the second manoeuvre α2 and β2 are fixed with respect to the velocity measured in 

the synodic system and respectively equal to π and 0 (with respect to the velocity in the synodic 

system). In this case, in fact, we want to increase the value of the Jacobi constant, which 

correspond to decrease the velocity at the beginning of Leg 2. As a consequence we give 2v  

against the velocity itself. 

Of course, fixing the angles of the second manoeuvre is an approximation because: 

 we are in a R3BP osculating synodic frame, therefore it is expected that, due to the presence 

of other perturbations, the direction that decreases the total energy can be off the anti-

tangential direction; 

 the efficiency of the manoeuvre depends on the manoeuvre direction, therefore a manoeuvre 

off the anti-tangential direction may be more efficient in terms of propellant consumption. 

However, this choice allows decreasing the computational time as the parameter space is 

reduced. Finally, note that, both 1v   and 2v  are rescaled according to the efficiency of the 

manoeuvre, which depends on the direction of the manoeuvre with respect to the Δv-to-Sun 

angle, as will be shown in Section 4. The upper and lower boundaries for the design parameter y  

are taken equal to: 

 
 

 
LB

UB

0 2 0.01 365.25

1 2 0.5 365.25

 

 

   

 

y

y
 

The objective function is set equal to 
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 2

leg 2, min

log
LJ

k
J

P     (6) 

where 2010P   is a penalty factor that is assigned to solutions that 

 arrive too close to the Earth (their distance from the Earth is lower than the one between the 

Earth and L2) 

 have allocated for the second manoeuvre a Δv lower than the one required to close the zero-

velocity curve as explained above. 

 have entered the forbidden regions as in Eq. (5). 

Given the definition of  , negative values indicate solutions where the minimum J in the 

monitored points is higher than J at L2. The set of points to check can be defined in two different 

ways: 

 Case 1: all points along the trajectory: 

   leg 2, min leg 2 leg 2,  synminJ J s   

 Case 2: only the points of close approach with the Earth are checked, where close approach 

is defined as a point where: 

 2

leg 2, leg 2,: 0 & 10syn synCA x y     

   leg 2, min leg 2 leg 2,  synmin @CAJ J s   (7) 

The optimisation performed with in the Case 1 is more general, but it was observed that the 

optimiser was never able to find a solution always above 
2LJ  for the entire time window along 

Leg 2. It was therefore preferred to adopt the Case 2 approach in order to improve the solutions 

in the points where is actually relevant to control the energy value of the trajectory. 

The time window chosen for the propagation of Leg 2 was set equal to EOLt  30 years to reduce 

the computational time; the optimised solutions (over 30 years) are then checked again also with 

a longer propagation to cover 100 years of the trajectory evolution. 

Note that another option for the optimisation of the disposal trajectory would have been to 

simply maximise the minimum distance achieved from Earth. This would have simplified the 

manoeuvre computation as the transformation to the osculating synodic system would not be 

required for each time step. However, it was decided not to follow this route as measuring the 

disposal efficiency in terms of J allows measuring the third body effect of the Earth (in terms of 

2leg 2, min LJ J ). The minimum distance achieved from Earth was anyway computed in post-

processing and used as ranking criterion for the solutions. 

The trajectory optimisation was performed using genetic algorithms, considering a population of 

50 individuals and a maximum of 100 generations. The tournament selection is applied to 

identify the best individuals and the mutation is used 10% of the times to maintain genetic 

diversity. The simulation were run in Matlab, with core parallelisation on 12 cores. Each 

simulation required approximately 11 hours computational time. 

The starting time of the disposal phase is not included in the optimisation with the genetic 

algorithm, but it treated performing a grid search along all the possible values considering the 
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given constraints. For each selected stating point, the optimisation with the genetic algorithm is 

launched. Many cases were optimised, corresponding to different starting points on the LPO 

distributed across all the possible values both in time and in true anomaly at the starting point on 

the LPO. 

4. Gaia orbit and spacecraft parameters 

The ephemerides of Gaia spacecraft were provided by ESA, until 17/06/2014, while the 

predicted one were downloaded from NASA Horizon system1. 

4.1. Gaia eclipse avoidance manoeuvre 

The nominal trajectory will have an eclipse at 7167.459 MJD2000 (16/8/2019) and thus an 

eclipse avoidance manoeuvre is implemented by changing the phase angle as derived by 

Canalias [5]. Both in-plane and out-of-plane manoeuvres were implemented. The amplitudes for 

the manoeuvres were computed as the average of the actual amplitudes from the ephemerides in 

the range 2013-Dec-19 to 2019-Jun-20 and the estimated one obtained with the full body 

propagation [4]. Thereafter, the amplitudes are considered as constant. 

Some assumptions are made: 

 The amplitudes used for the manoeuvres are the average of the actual amplitudes from the 

ephemerides in the range 2013-Dec-19 to 2019-Jun-20. 

 No manoeuvre constraints were considered for the eclipse avoidance manoeuvre, rather 

some manoeuvre efficiency are taken into account. 

 After the eclipse avoidance manoeuvre, Gaia orbit is propagated in the linearised model, 

using amplitudes and phases right after the manoeuvre. No orbit control is applied thereafter. 

The reason for this assumption is that this will represent the target orbit for the station 

keeping control. 

 

Figure 1 shows the out-of-plane and the in-plane phase angle manoeuvres. The grey crosses 

represent the evolution on the effective phase plane as from NASA Horizon2, the blue crosses 

represent the evolution with the linearised system; the exclusion zone are marked in black; the 

red dot identifies the point where the manoeuvre starts and the green one where it ends. 

The theoretical Δv for the manoeuvres is computed as in [8] and the values are reported in Table 

1 (Δvth): the out-of-plan manoeuvre is the cheapest and so it is the one implemented. The actual 

Δv (Δvac) is computed considering the thrust efficiency (η), which depends on the Δv to Sun 

angle3 as shown in Figure 2. The out-of-plane manoeuvre was selected and was then refined in 

the full-body problem. The propagation in the full-body problem is carried out for an interval of 

time and then the analytical (linearised) method is applied (this is due to the fact that the full-

body orbit should be controlled). 

                                                 

 
1  Jet Propulsion Laboratory, “Horizons Web-Interface”. [Online]. Available: http://ssd.jpl.nasa.gov/horizons.cgi 

[Last accessed: 03/07/2014] 

2  Jet Propulsion Laboratory, “Horizons Web-Interface”. [Online]. Available: http://ssd.jpl.nasa.gov/horizons.cgi 

[Last accessed: 03/07/2014] 

3 Renk F., personal communication – email, 10 June 2014. 
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a)  b)  

Figure 1. Eclipse avoidance manoeuvre: a) out-of-plane manoeuvre, b) In plane manoeuvre 

 

Table 1. Gaia eclipse avoidance manoeuvres. 

Manoeuvre Δvth [m/s] η [%] Δvac [m/s] Time [MJD2000] Date 

Out-of-plane manoeuvre 

(theoretical) 

12.708 78.35 16.219 7125.591 05/07/2019 

Out-of-plane manoeuvre 

(refined full-body problem) 

10.039 78.35 12.813 7125.183 05/07/2019 

In-plane manoeuvre 

(theoretical) 

21.187 62.86 33.706 7119.302 29/06/2019 

 
Figure 2. Thrust efficiency (η) as function of the Δv to Sun angle. 
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4.2. Gaia disposal requirements 

The requirements for the disposal are: 

 The time window for starting the disposal manoeuvre for GAIA is 1 July 2019 to 31 

December 2020. 

 The manoeuvre efficiency is represented in Figure 2. 

 The propellant constraints are described below. 

The total available v  is measured according to the annual consumption of 1.32 m/s and the 

required v  for the eclipse avoidance manoeuvre of 12.813 m/s for eclipse avoidance (on 

05/07/2019). Since the propellant estimation for the end-of-life of Gaia were updated by the 

operations team during the study, two values were considered for the trajectory design: 

A. Available EOLv  of 343.52014 m/s (corresponding to a propellant mass of 184.8056 kg) on 

06/07/2019 (i.e., after the eclipse avoidance manoeuvre) as in Table 2. 

B. Available EOLv  of 218.74 m/s (corresponding to a propellant mass of 115 kg) on 

06/07/2019 (i.e., after the eclipse avoidance manoeuvre) as in Table 3. 

Finally, note that, in both cases, 0.8 of the maximum available velocity is used as upper limit of 

the available v , as a 20% is left as margin for correction manoeuvres. 

 

Table 2. Gaia Δv of 12.813 m/s for eclipse avoidance on 05/07/2019. 

EOL epoch Available 

Δv [m/s] 

Fuel mass  

[kg] 

Total mass [kg] A m  [m2/kg] *

Rc A m  [m2/kg] 

04/07/2019                       356.2086 192.08 1584.08 0.05158 0.062498 

06/07/2019  343.52014 184.81 1576.81 0.05182 0.062786 

31/12/2020 341.55414 183.68 1575.68 0.05181 0.062831 

 

Table 3. Gaia EOL with 115 kg. 

EOL 

epoch 

Available 

Δv [m/s] 

Fuel 

@EOL 

[kg] 

Total mass 

[kg] 

Area-to-mass 

[m2/kg] 

Cr* Area-to-mass 

06/07/2019 218.74 115 1507 0.054222179774300 0.065694658874829 

5. Results for Gaia heliocentric disposal 

This section presents the results of the heliocentric disposal for Gaia. Particular emphasis is 

given to highlight correlations between the optimised trajectory and the position of the Earth + 

Moon around the Sun when the manoeuvre is initiated. Indeed, as will be clear, this is an 

important parameter which influences the effectiveness of the disposal. We will indicate this 

parameter in terms of the true anomaly of the Earth + Moon around the Sun at time t0, which is 

when the spacecraft leaves the LPO. Note that in the figures of the following subsections each 

point represents a fully optimised solution. 

5.1. Results Gaia disposal design: Case 2.A 

The first set of results consider a maximum available EOLv  of 343.52 m/s (corresponding to a 

propellant mass of 184.81 kg) on 06/07/2019 (i.e., after the eclipse avoidance manoeuvre) as in 
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Table 2. Moreover, for what concern the cost function to be minimised the case 2 was considered 

(see Section 3.2), which means that the cost function in Eq. (6) was checked on the points of the 

trajectory corresponding to close approaches as in Eq. (7) (see Table 4). 

 

Table 4. Optimisation constraints of Run 1. 

Cost function: J evaluated at close approaches 
EOLv  Simulation name 

  leg 2, min leg 2 leg 2,  synmin @CAJ J s  343.52014 m/s v 11 

Case 2 Case A  

 

Figure 3 shows the value of the cost function in Eq. (6) as function of the true anomaly of the 

Earth + Moon around the Sun at time t0, which is when the spacecraft leaves the LPO. A 

negative value of the cost function represents a more robust solution, as can be also seen from 

Figure 4, which represents the value of the minimum value of the Jacobi constant at close 

approaches as defined in Eq. (7) (dot symbol), the average value of the Jacobi constant over 

following close approaches (cross symbol) and the value of the Jacobi constant at the minimum 

distance from Earth (circle symbol). The solutions in Figure 3 and Figure 4 are colour-coded 

with respect to the minimum distance that each trajectory achieves from the Earth during the 

disposal time interval EOLt  . After the disposal manoeuvre 2v  is given, it is also possible to 

rank the disposal trajectories according to the minimum distance from Earth that the spacecraft 

attains along leg 2 (i.e., during EOLt ). This is recorded in Figure 5, where is interesting to note 

that a higher minimum distance from Earth is attained by those solutions which leave the LPO in 

correspondence of the Earth + Moon at a range of 180 to 360 degrees about the Sun. For all the 

solutions, the minimum distance from Earth is around 64 10  km and leg 2, minJ  is always above 

2LJ . From Figure 3 to Figure 5 it is also interesting to note the comparison between the solution 

optimised over EOL 30 yearst   (a) and the verification, through numerical integration, of the 

solution over 100 years (b). In this case, as expected, some of the correlation with the initial 

position of the Earth + Moon around the Sun is lost (as the solution is only optimised above 30 

years not 100 years). Moreover, it is possible to see that the minimum distance from Earth is 

slightly decreased (i.e., between 
63 10  km and 

64 10  km), but always well above the L2 to Earth 

distance, therefore, in all cases, a safe and robust disposal is achieved. If we look at the measure 

2leg 2, min LJ J , we can note that, in some cases over 100 years (see Figure 3b and Figure 4b), the 

Hill’s curve are open in correspondence of some close approaches. However, as shown in Figure 

5b, the spacecraft is far away from L2. Figure 6 represents the value of the Jacobi constant for 

each trajectory (i.e., initial time of the disposal). In particular, for each trajectory we show the 

minimum Jacobi constant over the subsequent close approaches (dot symbol), the average value 

of the Jacobi constant over following close approaches (cross symbol) and the value of the 

Jacobi constant at the minimum distance from Earth (circle symbol). The colouring code shows 

the initial position of the Earth + Moon around the Sun. Figure 7 aims at characterising the close 
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approaches. In particular, for each solution, the true anomaly of the Earth + Moon in 

correspondence of leg 2, minJ  and or the minimum distance of Gaia from the Earth are shown with 

a blue dot and a red cross respectively. Focusing on the simulation for 100 years, it is possible to 

note that leg 2, minJ  is attained when the Earth + Moon is in the first quadrant (i.e., Earth0 90f   

degrees) or in the fourth quadrant (i.e., Earth270 360f   degrees), whereas the true anomaly of 

the Earth + Moon at the minimum distance Gaia-Earth shows a quasi-linear behaviour with the 

initial position of the Earth around the Sun. 

 

  
a) Optimisation with EOL 30 yearst    b) Verification with EOL 100 yearst   

Figure 3. Gaia heliocentric disposal: cost function depending on the angular position of the 

Earth + Moon when the disposal is initiated. 

  
a) Optimisation with EOL 30 yearst    b) Verification with EOL 100 yearst   

Figure 4. Gaia heliocentric disposal: Jacobi constant as function of the angular position of the 

Earth + Moon when the disposal is initiated. 
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a) Optimisation with EOL 30 yearst    b) Verification with EOL 100 yearst   

Figure 5. Gaia heliocentric disposal: minimum distance from Earth as function of the 

angular position of the Earth + Moon when the disposal is initiated. 

 

  
a) Optimisation with EOL 30 yearst    b) Verification with EOL 100 yearst   

Figure 6. Gaia heliocentric disposal: Jacobi constant as function of the time when the 

disposal is initiated. 
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a) Optimisation with EOL 30 yearst    b) Verification with EOL 100 yearst   

Figure 7. Gaia heliocentric disposal: true anomaly of the Earth + Moon in correspondence of 

Jmin and of rmin. 

The next set of figures characterise the manoeuvre design selected via the optimisation. Figure 8 

characterise the second 2v   manoeuvre. For all the solution 1t  is always around 5.8 months 

(Figure 8a) and the 2v  is given when the Earth + Moon is around the apogee (Figure 8b). 

Figure 9 represents for each solution the in-plane and out-of-plane angle of the first manoeuvre 

(in the synodic system). As it could be expected an in-plane angle between -90 and +90 degrees 

is chosen. 

  
a) b) 

Figure 8. Gaia heliocentric disposal: second manoeuvre. A) Δt1 at which Δv2 is given. B) True 

anomaly of the Earth in correspondence of when Δv2 is given. 
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Figure 9. Gaia heliocentric disposal: in-plane and out-of-plane angle of the first manoeuvre 

(in the synodic system). 

Finally Figure 10 shows how the maximum available v  is divided between the first and the 

second manoeuvre, also considering the efficiency. For each solution is it is shown the 

theoretical value of 1v  (dot symbol) and the actual value after the efficiency evaluation (cross 

symbol). The theoretical value of 2v  is added to 1v  (circle symbol) to obtain the maximum 

available (black dot) as for all the simulation the whole available v  is used. The actual value of 

2v  , after efficiency evaluation is added on top to 1v  (with a x symbol). The reason why 2v  

before and after efficiency is quite different may be due to the fact the direction of the second 

manoeuvre was fixed in the synodic system, but also due to the fact that in general a higher ratio 

is left to the second manoeuvre with respect to the first one. It is interesting to note how the 

allocation of available propellant between first and second manoeuvre depends on the time the 

spacecraft is injected on the disposal trajectory. 

 
Figure 10. Gaia heliocentric disposal: Δv manoeuvre allocation. 
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5.1.1. Representative disposal solution departing on 7669 MJD2000 

A representative solution4 for disposal is here described. The same set of data and figures are 

available for all the solutions presented in the following sections. The selected solution departs 

from the LPO on 7669.19272665 MJD2000, corresponding to 2020/12/30 at 16:37:31.58, 

corresponding to a true anomaly of the Earth + Moon about the Sun of 356 degrees  . The 

optimal design parameter for this solution is  37.74 deg 0.16 deg 173.0. 383561  d ys  a y . 

Figure 11 represents the evolution of the Jacobi constant along the disposal trajectory, in blue 

along the Leg 1 and in red along the Leg 2. It is possible to see the oscillations in the Jacobi 

constant due to the rotation of the Earth + Moon around the Sun (high-frequency oscillations 

scanned by crosses and x symbols represent the Earth’s apogees and perigees). From the close-

up in Figure 12 it is possible to see that the perigees falls close to the local minima of J (green 

cross symbols), the apogee in correspondence of the local maxima of J (red x symbols). Figure 

11 shows also longer period oscillations that depend on the evolution of the trajectory in the 

Synodic system. In particular the maximum peaks are when the spacecraft is in the positive-x 

plane, the minimum peaks are when the spacecraft is in the negative-x plane. This means that the 

Hill’s curves tend to be more open when the spacecraft is far away from the Earth (i.e., -x axis of 

the synodic plane) as J is below the value of the J at L2. Along Leg 2, the condition at close 

approaches are also superimposed with a cyan cross and black dot. The condition of close 

approaches is also visible in Figure 13 that represents the distance between Gaia and the Earth 

and in Figure 14 that shows a close-up of the trajectory in the synodic system in vicinity of the 

L2 point. As can be seen, the spacecraft is always outside the Hill’s curves with respect to the L2 

point. The trajectory can be also represented in the Sun-centred inertial system (see Figure 15b) 

to appreciate that the disposal manoeuvres moves the spacecraft on an orbit which is far the 

Earth orbit. Leg 1 of the disposal is the equivalent to the transfer orbit from the Gaia orbit to the 

red orbit (i.e., Leg 2). 

 
Figure 11. Gaia heliocentric disposal on 7669 MJD2000: Jacobi constant along the disposal 

trajectory. 

                                                 

 
4 Run identifier: 1101. 
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Figure 12. Gaia heliocentric disposal on 7669 MJD2000: close-up of the Jacobi constant 

along one part of the disposal trajectory. 

 

 
Figure 13. Gaia heliocentric disposal on 7669 MJD2000: distance from Earth along the 

disposal trajectory. 
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a) b) 

Figure 14. Gaia heliocentric disposal on 7669 MJD2000: a) trajectory in the synodic 

system, b) close-up at L2. The back circle is the Earth, the green line the LPO, the blue line 

leg 1 of the trajectory, the red line represents leg 2 of the trajectory. 

  
a) b) 

Figure 15. Gaia heliocentric disposal on 7669 MJD2000: a) trajectory in the synodic system 

and b) trajectory in the Sun-centred ecliptic inertial system. 

5.2. Results Gaia disposal design: Case 2.B 

The second set of results consider a maximum available EOLv  of 218.74 m/s (corresponding to a 

propellant mass of 115 kg) on 06/07/2019 (i.e., after the eclipse avoidance manoeuvre) as in 
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Table 3. The cost function to be minimised is still computed on the points of the trajectory 

corresponding to close approaches as in Eq. (7) (see Table 5). 

 

Table 5. Optimisation constraints of Run 2. 

Cost function: J evaluated at close 

approaches 
EOLv  Simulation 

name 

  leg 2, min leg 2 leg 2,  synmin @CAJ J s  218.74 m/s v 11 B 

Case 2 Case B  

 

The optimisation was performed for different starting time from the LPO, corresponding to 

different values of the true anomaly of the Earth + Moon around the Sun at time t0. The value of 

the cost function in this case is lower in magnitude than case in Section 5.1 as now the maximum 

available v  for disposal is lower. The disposal trajectories are then ranked according to the 

minimum distance from Earth in that the spacecraft attains along Leg 2 (i.e., during EOLt ) in 

Figure 16 (to be compared to Figure 5).  In this case the minimum distance is very close to 63 10  

km and leg 2, minJ  is always above 
2LJ  for the 30 years simulation. It is interesting to note the 

comparison between the solution optimised over EOL 30 yearst   (Figure 16a) and the 

verification, through numerical integration, of the solution over 100 years (Figure 16b). The 

minimum distance from Earth goes down to 62 10  km, but always well above the L2 to Earth 

distance, therefore, in all cases, a safe disposal is achieved. If we look at the measure 

2leg 2, min LJ J , we can note that, in some cases over 100 years, the Hill’s curve are open in 

correspondence of some close approaches. However, as shown in Figure 16b, the spacecraft is 

still away from L2. 

 

  
a) Optimisation with EOL 30 yearst    b) Verification with EOL 100 yearst   

Figure 16. Gaia heliocentric disposal: minimum distance from Earth as function of the 

angular position of the Earth + Moon when the disposal is initiated. 
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6. Effect of the Earth’s eccentricity 

In Section 3, the method for computing the manoeuvre required to close the zero-velocity curves 

in the CR3BP is summarised. As shown by [3, 6], the required increment in the Jacoby constant, 

ΔJ, depends on the distance of the spacecraft from the Earth. The required Δv is thus dependent 

on the selected trajectory, belonging to the unstable manifold, departing from the LPO and to the 

point along the trajectory in which the disposal manoeuvre is given. 

When the effect of the Earth’s orbit eccentricity is included, a margin in the Δv must be taken 

into account. Indeed, an additional energy term to the relative mechanical energy needs to be 

considered and the analytic representation of the zero velocity curves became problematic. In 

this case, as shown by Soldini et al. [9], depending on the approximation chosen for representing 

the zero-velocity curves, it can be difficult to predict whether, after the second manoeuvre, the 

zero velocity curves are effectively closed or not. This is due to the non-autonomous nature of 

the equations of motion in the Elliptical Restricted Three Body Problem (ER3BP), where an 

energy constant that describes the dynamics does not exist. Indeed, in the ER3BP, the energy 

along a trajectory depends on the initial true anomaly of the Earth when the spacecraft is injected 

on the unstable manifold, while it is conserved along a selected trajectory [9]. 

In ER3BP, the equations of motion are written in a non-dimensional, non-uniformly rotating and 

pulsating coordinates, where the motion of the Earth + Moon around the Sun is described by an 

ellipse under the two body approximation [7]. After the transformation of the orbit of Gaia from 

sidereal (i.e., full ephemeris model) to ER3BP synodic system, the modified Jacoby constant in 

the ER3BP is defined as: 

  
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where e is the eccentricity of the Earth’s orbit around the Sun and f is the true anomaly Ω and W 

are defined respectively as: 
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We can recognise in the right-hand side of Eq. (8) the first two terms, which are equal to the 

CR3BP case in Eq. (1) (with 0e   in the definition of the potential energy   and in the 

pulsating coordinates), while the integral term represents the additional term to be added to the 

relative mechanical energy with respect to the CR3BP case [9]. 

In the ER3BP, the manoeuvre for closure of the Hill’s curves at L2 is defined similarly to the 

CR3BP in Eq. (2) and the velocity after the manoeuvre in the ER3BP assumes the form: 
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Note that, the location of the libration points is known and an analytical expression of the Jacoby 

constant for the libration points exists, 
23ER BP LJ , [9]. Thus, the condition of disposal is here 

express as for the CR3BP as 
23 3ER BP ER BP LJ J .  No approximations are here introduced because 

the additional energy along a selected trajectory can be computed numerically and it remains 

constant.  
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As mentioned before, the non-autonomous nature of the equations does not allow to find the 

exact representation of the zero velocity curves; thus, an approximated solution is needed. A 

comparison of different approximations of the zero velocity curves is given in [9], where it was 

demonstrated that the condition 
23 3ER BP ER BP LJ J  holds and that after the closure the spacecraft 

reaches the energy of the pseudo libration point.  

6.1. Analysis in the ERTBP 

To perform an analysis on the long-term effect of the Earth’s eccentricity, the constraints on the 

disposal manoeuvre in Section 4.2 are now relaxed. Four departures epoch for leaving Gaia orbit 

are selected, when the Earth + Moon barycentre is at 0f   0 deg (i.e., Earth + Moon at perigee), 

0f  90 deg, 0f  180 deg (i.e., Earth + Moon at apogee) and 0f  270 deg. Note that the 

departing Δv on these manifold was not optimised in this case. For each solution, the dynamics is 

integrated for 15 years and the Δv required to close the curves along the trajectory in the ER3BP 

is computed at each time step using the ER3BP approximation and compared with the same 

solutions in the CR3BP. As for the C3RBP, a filter to identify the forbidden region is here 

included. 

  
a. Departure for f0 = 0 deg. b. Departure for f0 = 90 deg. 

  
c. Departure for f0 = 180 deg. d. Departure for f0 = 270 deg. 

 

Figure 17. Δv required for disposal along the selected departure trajectory from Gaia’s 

orbit. The dashed line is the Δv required in the CR3BP approximation, while the black 

continuous line is the approximation in the ER3BP. Along the disposal trajectory of the 

spacecraft, it is also shown the position of the Earth+Moon at the pericentre (circle) and 

apocentre (star). 

Figure 17 shows a comparison of the required Δv in the CR3BP (dashed line) and the ER3BP 

(black continuous line) approximations respectively. The solution is similar for manoeuvre times 
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close to the LPO departure, where the discontinuity in the solution is due to the discarded 

solutions that after the deployment are in the forbidden region. In both cases, the solutions are 

oscillating along the disposal trajectory due to the effect of the spacecraft distance from the 

centre of mass that for the Sun – Earth + Moon system is circa in the Sun. When the spacecraft is 

far away from the close approach, that in this case appended after 15 years, the peaks in the 

required Δv have a repeating behaviour for the CR3BP, while a drift in the peaks and different 

amplitude of the peaks can be spotted for the ER3BP approximation. This can be explained since 

the solution in the required Δv in the ER3BP depends on the distance of the spacecraft from the 

centre of mass, on the Earth true anomaly and the position angle with respect to the barycentre of 

the synodic system. It is important to note that with a more accurate model, the required Δv can 

be very different from the CR3BP thus an uncertainty analysis of the probability of re-entry at 

the close approach is required when considering a high fidelity model. 

7. Conclusions 

The paper proposes a strategy for the design of the heliocentric disposal of Libration Point Orbits 

in the full-dynamical model. An energy method is applied to decrease the energy below the 

energy of the Libration point L2, to close the way through the gateway for an Earth re-entry. The 

verification of the change in the Jacobi constant for the energy design approach is applied only in 

correspondence of close approaches to optimise the available v  on board for achieving a 

sustainable and robust disposal in the following 100 years. A possible improvement of the 

optimisation consists in removing the constraints on the value of the angles for the second 

manoeuvre α2 and β2: as this should reduce the efficiency loss observed in Figure 10. Moreover, 

in a future work, the optimisation will be run on the full time window of 100 years: in this case, 

the results for the Case B formulation (check only on the close approaches) should tend towards 

the results of the Case A (check on all points) as more close approaches are registered. To this 

aim a fast numerical propagator for the trajectory in the full dynamics model is currently under 

development. 
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