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Abstract: The work presented in the paper concerns the analysis of monocular vision based 
navigation techniques enabling autonomous operations around an asteroid at close range to 
characterize its gravity field. The paper focuses on the state estimation layer and performs a 
comparison of two different SLAM methods (EKF-SLAM and Sparse Bundle Adjustment) from 
accuracy, computational cost and robustness points of view. This work continues with a 
parametric sensitivity analysis for a generic orbiting scenario. In the last stage, the inclusion 
of the vision layer in the navigation system is analyzed and evaluated. Current results are 
synthesized and discussed.  
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1. Introduction 

In recent years, there has been a growing interest in the space community for the Near Earth 
Objects and particularly the Potentially Hazardous Asteroids (PHA) which possible impact 
with Earth could be catastrophic given their size. CNES initiated in 2012 a mission concept 
study devoted to the scientific analysis of the asteroid 99942 Apophis in the perspective of its 
close encounter with Earth in April 2029. Among the various objectives that included the in-
situ analysis on the surface with a dedicated lander, the determination of the asteroid gravity 
field added strong requirements on the vehicle maneuvering autonomy, in particular the 
capability to navigate for a long duration over the asteroid at very close range.  

So far, all missions to asteroids or comets have relied on some extensive involvement of 
ground analysts to navigate the probe. In missions like JAXA’s Hayabusa [1] and ESA’s 
Rosetta[2], the man-in-the-loop process was concerning the mapping of the celestial object 
surface and included also the probe localization. Lately, NASA missions like Near Shoemaker 
[3] and Dawn [4] have introduced more autonomy on-board by implementing automatic 
landmark recognition techniques but the lenghty and tedious task of mapping the asteroid 
remained on the ground. For future and more challenging missions, the desire to reduce the 
operator load and increase the navigation robustness in case of tracking loss leads to the use 
of techniques that can perform at the same time localization and mapping of landmarks that 
are detected in the field of view.  

This trend can be supported by recent developments in the Simultaneous Localization And 
Mapping (SLAM) domain that have triggered numerous implementations in the robotics field 
for both wheeled mobile vehicles and UAVs. So far, the most popular SLAM approach uses a 
standard Extended Kalman Filter to estimate recursively the vehicle state and the location of 
visual features. More recently, the Structure From Motion (SFM) approach that relies initially 
on global optimization has been adapted into efficient sequential methods that perform sparse 
Bundle Adjustment (BA). Some studies showed also that the sequential bundle adjustment 



(BA-SLAM) approach could outperform EKF-SLAM in accuracy at a reasonable 
computational cost.   

The purpose of this paper is to compare the relative merits of these two SLAM techniques for 
the specific scenario of asteroid orbiting and investigate possible hybridation solutions. First, 
the analysis is focused on state estimation assuming particular vision performances and relies 
on some evaluation framework specially designed to emulate various navigation scenarios and 
perform parametric study. In a second stage, a SURF feature detection and tracking 
functionality is integrated in the navigation process to confirm the validity of the analysis 
results in presence of simulated asteroid images and illustrate the system behavior 
performance. 

The paper is organized as follows: in Section 2, the mission concept, the technical background 
and the scope of the problem are explicited. After a presentation of the navigation 
assumptions, Section 3 describes the implementation of the two candidate SLAM methods 
and details their comparative analysis on a test case that is representative of orbiting 
scenarios. Next, Section 4 is devoted to the assessment of the complete navigation system 
combining the image processing and state estimation layers : the experimental testbed and 
scenario are detailed, the results are described and discussed. Finally, the main lessons are 
summarized in a conclusion where current limitations and perspectives for further work are 
presented.   
 

2. Background 

2.1 Reference mission concept 

Apophis 99942 discovered in 2004 belongs to the Potential Hazardous Asteroid population 
that is steadily growing and must be monitored with close attention through ground 
observation means. The Apophis Earth flyby in 2029 will thus offer a great opportunity to 
acquire a better knowledge of this type of objects and investigate the feasability of mitigation 
techniques.  For that purpose, CNES initiated in 2012 a mission concept study involving a 
rendezvous with the asteroid to analyze its interior structure using seismic or radar sounding 
techniques [5]. The different scientific scenarios required operations at medium to close range 
(down to a few hundreds of meters) and the most challenging one concerned the 
characterization of the gravity field that was not compatible with flyby or hovering 
trajectories. The mission concept study was actually terminated in 2014 but internal R&D 
work was pursued at CNES in the guidance and navigation domain to assess the technical 
feasibility of the autonomous orbiting operations for gravimetry. 

Table 1 : Apophis characteristics 
Characteristics Value Comment 

Diameter 375 +/- 15 m 2014 observations 

Mass 4.4 < m  < 6.2 10
10

 kg Based on geometrical model 

Spin 30.4 h Tumbling motion 

Albedo geometrical 0,30 +/- 0.06 Herschell data 

Aphelion / perihelion 1.0985 AU  / 0.7460 AU  

 
Achieving the gravimetry of Apophis constitutes a tough challenge considering its low gravity 
field. In previous missions such as Near Shoemaker or Dawn, the gravimetry has been 
performed around objects with diameters ranging from tens to hundreds of kilometers (35 km 
for Eros, 530 km and 950 km for Vesta and Ceres). The body attraction was therefore large 
enough compared to the others perturbations to place the spacecraft on some orbital 



trajectories and ensure long duration periods with no actuation. In the case of small bodies 
like Apophis, the impact of solar radiation pressure becomes prominent and limits drastically 
the capability to find quasi-stable orbits. It remains possible anyway to limit this impact by 
inserting the spacecraft on a low terminator orbit (Figure 1.a) that benefits from some 
cancellation effect.  Preliminary studies have shown that actuation free trajectories could be 
achieved for weeks with a low collision risk assuming initial altitudes around 2 km (Figure 
1.b). However, the lower the altitude, the higher the risk of collision for a given duration. 
Considering the gravimetry accuracy requirements, the orbit altitude should be in the 500 m 
range which implies some spacecraft autonomy at the navigation and guidance levels to 
maximize the free trajectory duration in a safe manner. The paper will focus on the navigation 
aspects. 
 

  
Figure 1.1: Terminator orbit.  The Sun is  

orthogonal to the orbital plane and exerts a torque 
on the orbital angular momentum that is almost 

averaged out  over one period 

Figure 1.2 : Terminator trajectory evolution 
20 days horizon - 2km initial altitude. The 

orbital plane orientation slowly rotates and the 
eccentricity increases until collision occurs. 

2.2 Navigation 

The major difficulty when navigating around small bodies comes from the need to achieve 
localization within a poorly known environment that requires some extensive mapping. In the 
most ambitious missions flown so far, the two processes of mapping and localization have 
been separated.  First, using numerous images of the body, the ground analysts perform the 
tedious task of selecting landmarks and building a database that is uploaded to the spacecraft. 
In a second phase, the spacecraft can use these landmarks as navigation tie-points by running 
automatic landmark recognition and tracking algorithms.  NEAR Shoemaker that orbited and 
landed on Eros in 2001 relied successfully on a database of craters (images from multiple 
points of view) that constituted the prominent population of features on this asteroid. Later, 
more advanced landmark descriptors were developed for the Dawn mission that performed 
low altitude orbiting around Vesta in 2011 and Ceres in 2015: the local region surrounding 
any distinct feature is represented by a landmark map (L-map) that captures both elevation 
and albedo information. Using the L-maps, reference landmark images can then be rendered 
on-board and compared with real images. This approach allows improving the robustness of 
the tracking process but the building of any L-map requires a large collection of images of the 
same landmark with different lighting conditions.  

Getting rid of the operator while achieving at least the same level of robustness constitutes a 
major challenge that has been addressed in multiple studies [6,7]. EKF-SLAM has been the 
preferred method so far for computing considerations and has been evaluated in conjunction 
with various feature detection and tracking algorithms. Since automatically detected features 
are more sensitive than L-maps to viewpoint change and incident light variations, the typical 



solution to achieve robustness is to take benefit from statistical effects by the processing of a 
large number of features. These circumstances may prove more favorable to alternative 
techniques such as BA-SLAM and it is therefore relevant to analyze the respective pros and 
cons of these two methods in some parametric way for the particular context of asteroid 
orbiting. The main characteristics of these techniques are briefly discussed in the sequel.   
 
SLAM filtering: The EKF-SLAM method that is known to be computationally efficient for 
small number of features presents a major advantage: the direct availability of the camera and 
landmark position uncertainty from the state covariance matrix. First, this information helps 
to detect anomalies such as filter divergence and allows triggering corrective action if needed. 
In addition, when the filter is coupled to some vision system, the uncertainty measure enables 
to reduce the search region during the features tracking process which robustness and 
computing efficiency can then be enhanced. The general practice to achieve accuracy and 
robustness consists in using all possible a priori information on the camera dynamics as well 
as inertial sensor measurements to predict the camera state for each image acquisition [8]. 
Some implementations however manage to get satisfactory estimation results with a motion 
modelled as a Gaussian random walk [9].   

For monocular vision, EKF-SLAM has to manage new landmarks whose distance uncertainty 
cannot be properly represented as a gaussian distribution. The widely accepted solution to 
tackle this problem is the Anchored Homogeneous Point parametrization [10] that introduces 
the landmark inverse depth in the state vector. This converts however in a larger vector size 
that carries 6 variables for each landmark instead of 3 for a Euclidean point. The current 
technique to limit the corresponding memory usage and computing complexity consists in 
switching to the Euclidean representation after a given reduction of the distance uncertainty. 
Another EKF-SLAM weakness comes from its rather high sensitivity to measurement errors 
due to spurious matches of landmarks in consecutive images. Some improvement of the filter 
robustness can be achieved by different methods such as the active search that limits feature 
extraction in regions where they are more likely to be found [11], the Joint Compatibility 
Branch and Bound Test [12], and the 1-Point RANSAC algorithm [13]. 

BA-SLAM: The original BA represents a very efficient method to estimate the location of 
landmarks and the camera by processing numerous observations in a batch mode. While this 
implementation operates on the complete graph that links all observation points to all the 
visible landmarks, the sparse BA processes data from only a subset of views at each 
estimation step. To achieve computing efficiency, a solution is to perform estimation on a 
sliding window that captures information from a given spatial or temporal horizon without 
any consideration of the measurements value. Some enhancement of this method consists in 
selecting the number of views that conserve the least possible redundant information and 
various studies have attacked this problem [14]. The main advantage of the BA method that 
processes measurements from various viewpoints is its higher accuracy and better robustness 
to spurious matches that are being averaged out. In addition, BA that relies on non linear 
optimization through Gauss Newton methods is less sensitive to errors in the predicted camera 
motion and some implementations simply assume no motion between two consecutive 
observations [15]. Conversely, a possible weakness of BA w.r.t. EKF-SLAM is the lack of 
explicit representation of the estimated state uncertainty even though gaussian random 
variables are actually modelled in the process. Getting access to the state covariance matrix 
adds therefore a significant computational overhead that can be an impediment to the 
application of landmark active search methods. Another limitation comes forward in 
monocular navigation: the camera and landmark depth information is only known with a scale 
ambiguity factor unless some known object can be identifed in the scene and used as depth 



reference. Finally, BA is also subject to drift since the reference object cannot be kept forever 
in the number of views used in the estimation process. New references within the current 
visible landmark population need to be initialized using depth estimated information and this 
will induce some error increase over time. It has been shown in a previous study [16] that the 
computational complexities of the EKF-SLAM and BA-SLAM are respectivey O(N²) and 
O(NM2 +M3), with N being the number of processed features and M the camera views 
number. In addition, this study stated that sequential BA could outperform EKF-SLAM in a 

large variety of situations since it can make a better use of the computation capability in terms 
of accuracy.   

Vision layer: SLAM approach credibility is tightly correlated to the vision layer ability to 
detect and track features robustly and with an acceptable computational cost. In the computer 
vision domain, new algorithms for automatic feature detection and tracking have emerged and 
show some enhanced robustness in presence of image transformations and variations of 
lighting conditions. These algorithms belong to the group of Local Invariant Feature detectors 
and the most popular ones in the litterature are SIFT, SURF and ORB [17,18,19]. These 
algorithms allow to detect some distinctive image features (edges, corners, blobs, ..) and build 
some synthetic representation of the local neighbourhood that is stored in a so-called 
descriptor. To achieve some invariance to vewpoint changes and facilitate the feature 
matching process, the feature model assumes that the local region is planar and this 
constitutes of course the technique main limitation when areas with significant relief are 
observed. The matching process relies on the comparison of descriptors that have been 
designed to be the most distinctive and regarded as potential IDs: the process consists in 
searching for each feature in image A what is the candidate from image B providing the 
minimum descriptor difference (score). To reduce the probability of returning false matches, 
Lowe [20] proposed some constraint to be satisfied: a candidate is selected if the ratio 
between its score and the second best remains below a given threshold. In addition, the 
resulting matches can be filtered through the application of a RANSAC algorithm that allows 
rejecting outliers assuming some image homographic transformation.  
 

3. Description and evaluation of state estimation methods 

3.1. Problem description:  

The representation of the different motions require the definition of the following reference 
frames (see Figure 2.1) 

• Asteroid Centered inertial Reference Frame ACRF :  J2000 frame translated to the 
asteroid assumed center of mass 

• Camera frame  RC : z axis aligned with the camera boresight,  x axis along the sensor 
vertical and y axis along the horizontal (see Figure 2.2) 

• Initial location reference frame R0 :   J2000 frame translated to the camera origin 
• Asteroid body frame RA : origin at the assumed center of mass (axes definition 

indifferent)  

The reference scenario considered for analysis can be summarized by the following set of 
assumptions: 

• The probe is flying around the asteroid on a circular orbit 
• The asteroid motion is perfectly known 



• The initial position of the spacecraft (SC) is perfectly known in ACRF at the first 
frame 

• the asteroid is assumed spherical with an isotropic distribution of landmarks 
• the landmarks visibility is taken into account considering the relative landmark- 

camera geometry and the camera field of view 
• the vision layer is simulated by introducing a certain rate of landmark disappearance 

that is proportional to the amplitude of the viewpoint change 

   
 

 
 
 

 

Figure 2.1 : Reference frames Figure 2.2 : Camera coordinates  
 

3.2. Description of the BA-SLAM implementation 

In this section we are considering the version of the BA-SLAM that processes at each 
iteration step a constant number of views. The estimation concerns two types of information: 
the camera poses associated to the different views and the positions of landmarks that have 
been observed in at least two consecutive views. The state vector x is represented as follows: 

� � ���, …… , ��, 	�, …… , 	
��      (1) 
 
with vectors li representing cartesian landmark positions expressed in the initial reference 
frame and camera poses Tj composed of a vector of 3D cartesian coordinates in the initial 
reference frame and a quaternion indicating orientation with respect to the initial reference 
frame. As regards the observation vector y, each one of the p landmarks provides 2 bearing 
angles only since the vision is monocular. The observation vector dimension is therefore 2p 
with p < mN as the landmarks are observed multiple times. 
 
The optimization task consists in finding the state x that represents the best fit to the 
observations. The cost function takes the form of a scalar product of an error vector function : 
 ��� � �� � ���������� � �����       (2) 

where f�x� is the reprojection vector of landmarks in the camera frames corresponding to a 
given state x and Wf is the weight matrix taking into account the measurement uncertainty.   



Since c(x) is a quadratic function that approximates the null value when reaching its 
minimum, iterative Gauss-Newton optimisation is actually applicable. This method consists in 
computing at each iteration the state increment that solves the following equation: 

��������	������� � �������	��	����         (3) 

where Jf(x) is the jacobian matrix of the reprojection vector f(x). To improve convergence, 
our implementation relies on some efficient adaptation of this method named Levenberg-
Marquard (LM) [20]. The equation to be solved has an augmented matrix including a 
damping term λ which is scaled to ensure cost reduction while keeping the matrix semi 
positive :  

���������	����� � ����� � �������	��	����           (4) 

Keyframe management: The principle of the method is to restart the optimization process 
each time a new image is acquired. To limit the algorithm complexity, it is therefore required  
to use a limited number of frames that compose a so-called sliding window. The process 
consists in managing a graph that stores the current camera pose and a fixed number of poses 
acquired in the past. All the other frames and observations are ignored in the optimization 
process but stored for later use. The selection of the right keframes constitutes here a key 
issue. We tend to favor large intervals between consecutive views since it yields the benefit of 
a large observation base. Conversely, it reduces the number of landmarks being observed in 
multiple views which affects the estimation performance. It is therefore understood that a 
tradeoff value depending on the landmark distribution can be found and this is one of the 
purposes of the analysis performed in section 4.  
 
 

 

 

 

Figure 2.1 : Sliding window with quasi 
constant angular amplitude between views 

Figure 2.2 : Window with variable angular 
amplitude 

 
Two frame management strategies have been considered. Here, we focus on the steady mode 
and we do not detail the window initial construction that is straightforward. For the sake of 
clarity we assume that the number of frames being processed at every step is equal to 4.  



The first strategy illustrated on Figure 2.1 consists in keeping a constant angular offset 
between consecutive views. Whenever a new leading frame 	 !"�	is acquired after a certain 
camera displacement, another set of trailing frames {	�!"�, 	#!"�, 	$!"�} is selected in the 
stored map to produce increments of identical amplitude. Since the observation base is 
maintained quasi constant and close to the optimum value, the estimation performance can be 
maximized. 
In the second stratedy shown on Figure 2.2, the window structure is only modified by the shift 
of the leading frame since the trailing frames are generally kept the same. Periodically, the 
whole window structure needs to be updated when the distance betwen the two last frames 	$!	and 	 !	cannot ensure a proper landmark connectivity. When this occurs, the first window 
frame is lost and the new sequence is obtained by shifting the frame number as follows: 	�!"� � 	#!	, 	#!"� � 	$!,		$!"� � 	 !. The window size gets therefore reduced before growing 
again and the estimation efficiency is likely to be impacted accordingly. However, this 
strategy has the important merit of sparing memory with respect to the previous one since the 
useful data history is always kept in the window frames. Benefiting also from the advantage 
of simplicity, this method has been chosen for our implementation.      
 
Camera motion : The BA-SLAM algorithm can be used without any motion model and the 
method in that case consists in initializing the optimization process by setting the new pose 
equal to the previous one. This is the typical method in photogrammetry applications where 
the knowledge of the camera velocity can be either ignored or reconstructed a posteriori via 
data smoothing techniques. In our context, the velocity information is needed to perform on-
board guidance and it must be reconstructed by some independant estimator. The most 
efficient technique consists in using a dynamic model of the vehicle that integrates the 
asteroid attraction and the solar radiation pressure as it is done in a typical navigation system. 
This model can be therefore used in a propagator that will provide the predicted position of 
the next frame. To keep the estimated velocity accurate, the predicted position needs to be 
updated using the output of the BA-SLAM algorithm according to a scheme further detailed 
at the end of the section.            
 
BA-SLAM steps : In order to achieve proper convergence in the most difficult cases and 
particularly when there is a low quality motion model or no model at all, it is common to 
divide the bundle adjustment process in three optimization steps which progressively update 
the graph. The process being carried out at each new image frame acquisition is the following: 

Preparation phase:  
• Extract landmark measurements; 
• Set new camera pose according to the motion model and append to state vector; 
• Manage camera poses and views according to the selected strategy – this step 

involves the verification the graph connectivity is adequate (sufficient landmarl 
overlap between views)  

1. Perform Motion-Only BA: An adjustment is performed over the current camera pose 
only, using current measurements and current best estimation of landmark states. This 
step effectively serves the purpose of a motion model; 

2. Perform Structure-Only BA: An adjustment of the landmark positions only is 
performed using information from the free views; 

3. Perform Full BA: Using state estimations of the two previous steps, a full joint 
optimization over the sparse graph is performed. Assuming the motion and structure 
updates have succeeded, the state should already be close to the minimum, and 
convergence shall be reached in relatively few steps. 



 
In presence of a good quality motion model, steps 1 and 2 can be skipped to reduce the 
computational complexity while preserving the estimator performance. 
 
Depth gauge management: To tackle the scale ambiguity problem, the depth of one of the 
initial frame landmarks is assumed to be known and is used afterwards as a gauge. For that 
purpose, the retroprojection error vector from equation (2) is augmented with a quantity 
representing the difference between the predicted distance of this particular landmark noted as ��	and the gauge value as observed in frame 	�: 
 

� � ���� � % �& � �&���� � �'���, 	�, ��(      (5) 

 
This gauge from frame 	� can be used in the optimization process as long as the connectivity 
with the last acquired view can be maintained. With a fixed number of views, the connectivity 
is lost when the camera displacement reach a limit value that depends directly on the asteroid 
local aspect and the feature detection and tracking performance. When this limit is reached, it 
is necessary to select a new landmark which depth will be considered as reference. Since this 
information has been obtained through the estimation process and carries some error, a depth 
bias is introduced in the subsequent optimization steps and will propagate until the next gauge 
change. In absence of range measurement or external update, the depth error is due to drift 
with a behaviour similar to some random walk process. 
 
Motion propagator update: After each BA-SLAM iteration step, a new estimate of the 
current camera position is available and this information is used in our implementation to 
update the state of the camera motion estimator running in parallel. Assuming a perfect 
camera attitude knowledge, a simple 6 states EKF filter can be used to estimate the position 
and velocity expressed in the ACRF asteroid inertial frame. The dynamic model is the 
following one: )* � +,- ) � ./,0 � 1        (6) 

where ) and )* are the position and acceleration vectors, 2 the assumed asteroid gravitational 
constant, ./,0 the acceleration due to solar radiation pressure and 1 sums up all the non 
modelled forces. Considering the high cost of computing the camera position uncertainty, we 
implement a filter with a constant Kalman gain [19]. 
 
3.3. Description of the EKF-SLAM implementation     

With respect to BA-SLAM, the EKF carries a lighter state vector since it ignores the previous 
camera poses along with the landmarks not visible any more in the current image: 
 � � �34 , ��, …… , ����       (7) 
  
In general, the current camera state 34 is represented by a 13-element vector composed of the 
6 position and velocity coordinates expressed in the ACRF frame, the attitude quaternion with 
respect to the same frame and the angular rate expressed in the camera frame.  
When using monocular vision, the absence of distance measurement implies to use a 
landmark state representation that does not affect negatively the filter convergence. Linearity 
is therefore paramount and the Anchored Modified Polar Point representation approaches this 
objective by defining a landmark with the following 6-element vector: 



 �5 � �6, 7, 8, 	9�          (8) 
 
T0 is referred as the anchor and represents the camera position in the ACRF frame when the 
landmark is added in the state vector. The u,v parameters are the landmark pixel coordinates 
in the camera frame when observed from the anchor position and the parameter ρ is the 
inverse of the distance between the landmark and the anchor position. Using an inverse 
distance parameter allows to represent within bounds any potentially unlimited uncertainty 
and preserve also the Gaussian character of the measurement distribution. 
 
The EKF-SLAM sequential process includes the two typical steps encountered in any 
Extended Kalman Filter: (1) State Prediction and Covariance Propagation using some motion 
model, (2) State and Covariance Update when new measurements get available. In addition, 
the EKF-SLAM process includes a third and specific operation corresponding to State 
Management: this operation includes the addition of new landmarks in the state vector as well 
as the removal of landmarks no more visible – it involves also the associated modification of 
the covariance.    
 
State Management: Throughout the orbiting of the asteroid, new landmarks keep appearing 
in the camera field of view and have to be considered by the filter in order to pursue the 
mapping and preserve the camera position observability. The first step of the landmark 
initialization consists in producing an augmented state vector by appending the landmark 10-
element vector to the current state: �:;<= � ��:, 6, 7, 8, 	�        (9) 

where 8 represents an initial guess of the landmark inverse distance and T is the estimated 
camera pose with 7 elements. 

Since the landmark distance can typically take any value from 0 to the distance of the asteroid 
surface, this parameter can be considered part of the estimator configuration along with its 
associated uncertainty >?	that is chosen large enough to guarantee its later convergence to the 
true value. The landmark state covariance @&& 	is then initialized according to the following 
formulas : @&& � A&ABC 	@BB 	 A&ABC

� � >&          (10) 

 

>& � D>� 00 >? 0$F$0$F$ 0$F$G        (11) 

where  @BB represents the covariance of the current camera state,  
A&ABH		is the partial derivate of 

the landmark state �	with respect to the camera state 34 and >� is the direction measurement 
uncertainty.  
  
Gauge Fixing and the Scale Problem: With monocular vision, the EKF-based SLAM 
estimator faces the same scale ambiguity problem as BA-SLAM does. In our implementation, 
we apply therefore a similar approach to fix the gauge at the start of the estimation. This 
consists in assuming that the range of one of the landmarks visible in the first image can be 
measured with sufficient accuracy. To that purpose, the initial guessed parameter 89 of 
Equation (9) is set with the measured inverse range 8∗ � 1/� and the covariance component 



>?	in >& is set with its associated small uncertainty value. In subsequent time steps, the 
propagation of this precise information to the new camera pose and landmark states allows to 
keep the scale constrainted. 
 
4. Comparative evaluation of the SLAM methods  

These two methods have been implemented in the Matlab environment for the quick 
prototyping capability and to benefit particularly from the Optimization toolbox. Considering 
that both methods are prone to drift, the evaluation will focus on the evolution of the 
estimation error over time. To perform a relevant method comparison, we are considering a 
reference estimation scenario that is detailed hereafter: 

• the motion around the asteroid is circular and the difference of anomaly between all 
consecutive image frames is constant : ∆a 

• the number of landmarks detected in every image frame is constant : N1 
• the landmark ‘repeatability ratio’ for the ∆a angular increment is constant : k2 
• the motion prediction error between two consecutive image frames is constant and 

proportional to the displacement : λ  
• the bearing measurement error is constant for all landmarks (3σ) : εm 
• the initial position is assumed perfectly known 
• the camera attitude is assumed perfectly known as well as the camera parameters 
• the number of views considered in the BA-SLAM process : M 

1:  The landmark population is uniform on the asteroid and the density is adapted to provide 
      in average a specific number of landmarks per frame N   
2: Considering a group of N landmarks detected in frame k and visible in frame k+1, the  
    ‘repeatability ratio’ is the number of landmarks successfully tracked in frame k+1 divided 
     by N 

4.1 BA-SLAM behaviour 

The analysis starts with a characterization of the BA-SLAM method focused on its sensitivity 
to the most critical parameters: the number of views (M) and the number of landmarks 
detected per view (N). The performance criteria considered are the camera position errors 
after 1 and 2 revolutions (1 revolution lasts about one day). The test conditions are 
summarized on Table 2: 

Table 2 : BA-SLAM characterization 
Parameter Value / test 1 Value / test 2 

Number of landmarks/view  : N [10, 15, 20, 25] 15 
Displacement /view : ∆a 2 ° 2 ° 
Landmark repeatability : k 0.90 0.90 

Motion prediction  : λ 0.5 0.5 

Bearing measurement error : εm 2 pixels 2 pixels 
Number of views : M 5 [3, 5, 7, 9] 
Max between 2 consecutive views 30 ° 20 ° 
Minimum connectivity between views 3 landmarks 3 landmarks 

 
Due to the dispersion of results, 100 Monte Carlo simulations are run per test case and 
performance focusing on the camera position estimation is summarized by the mean error 



value and error standard deviation after 1 and 2 revolutions. The BA-SLAM behaviour is 
illustrated on Figures 3.1 and 3.2 in a simulation run with 5 views and 15 landmarks: they 
show the evolution of the camera position error norm and the landmark position RMS error 
(only the landmarks processed at the current step are considered). The effect of the 
initialization of new landmarks can be clearly observed by the sudden increase of the 
landmark position error. 

Figure 3.1: BA-SLAM performance 
Camera position RMSE error 

Figure 3.2: BA-SLAM performance 
Landmark position RMSE error 

 
 

  
Figure 4.1: Influence of the number of landmark 

Error after 1 and 2 revolutions 
Figure 4.2: Influence of the number of views 

Error after 1 and 2 revolutions 
 
The benefit of tracking a larger number of landmarks is illustrated on Figure 4.1 with a 60% 
reduction of the position error after 1 or 2 revolutions when going from 10 to 20 landmarks. 
The improvement is barely noticeable going up to 25 landmarks where only a reduction of the 
dispersion can be observed. Similarly, increasing the number of views from 3 to 7 provides a 
40% reduction of the position error as illustrated on Figure 4.2 but increasing it any further 
does not bring any improvement. A thorough analysis is currently underway to better 



understand why some performance stall is observed for a certain number of landmarks and 
views.   
 
 

4.2 EKF-SLAM behavior 

The EKF-SLAM behaviour is illustrated on Figures 5.1 and 5.2 that show the evolution of the 
camera position error and the landmark position RMS error. The configuration is done 
according to Table 2 general parameters (except specific BA-SLAM ones) and with 15 
landmarks per view. At the beginning, the uncertainty is generally increasing faster than BA-
SLAM but is reduced afterwards thanks to the filter convergence. 

  
Figure 5.1: EKF-SLAM performance 

Camera position RMSE error 
Figure 5.2: EKF-SLAM performance 

Landmark position RMSE error 
 
4.3 Performance comparison 
The comparison is performed between EKF-SLAM and the BA-SLAM implementation with 
5 views. We consider 3 cases corresponding to different numbers of landmarks per view (10, 
15 and 20) and 100 Monte Carlo simulations are run per case. Performance metrics include 
the mean cycle execution time, the RMS error for all the landmarks observed, the norm of the 
camera position error after 1 revolution. For reference, simulations were performed in a 32 bit 
Matlab environment running on a 2.40 GHz processor.  

Table 3: Comparison synthesis 
Case Metric EKF-SLAM BA-SLAM 

(5 views) 
10 

landmarks 
Cycle Execution time (s) 
Landmark RMSE (m) 
Camera position error norm (m) 

0.020 
3.72 +/- 1.9 
25.0 +/- 25.8 

0.077 
8.33 +/-2.2  
17.08 +/-9.5 

15 
landmarks 

Cycle Execution time (s) 
Landmark RMSE (m) 
Camera position error norm (m) 

0.049 
2.72 +/- 2.1 

24.07 +/- 20.0 

0.118 
7.21 +/-2.6 

17.42 +/-10.3 
20 

landmarks 
Cycle Execution time (s) 
Landmark RMSE (m) 
Camera position error norm (m) 

0.119 
1.45 +/-1.8  
8.98 +/- 5.4 

0.158 
5.48 +/- 1.47 
10.25 +/- 7.6 



As predicted, the EKF-SLAM implementation is less computationally-intensive than BA-
SLAM but this advantage gets smaller when the number of landmarks increases. This comes 
as expected at the price of a lower accuracy and particularly when the number of landmarks 
per view is less than 20.  At this stage, the execution time metric must be considered carefully 
since the cost of the image processing was not accounted for. This topic is addressed in next 
Section.   

5. Experiment 

In the previous section, both SLAM algorithms have been characterized using simulated 
landmark measurements. This type of data was produced by setting specific values to 
parameters like the feature distribution on the surface, the level of noise in pixel coordinates, 
and the percentage of tracked features between views.  The purpose of this experiment is to 
improve the analysis relevance through the addition of the feature detection and tracking 
algorithms into the system. 
  
Image Generation:  To simulate Apophis images, we used a powerful open source product: 
the 3D computer graphics Blender software [20].  This product provides a convenient API in 
Python language to design the scene, control the position of the different objects, and export 
screenshots of the field of view. A script has been developped to recreate the trajectory of our 
reference scenario, export the field of view as an image at every time step, and export a text 
file containing the true camera pose information and relevant simulation parameters for 
further analysis. Figure 4.1 shows a typical output image, here obtained at an altitude of 600 
m and a field of view of 30° x 30°. The shape model of asteroid Apophis was simplified down 
to a sphere of 190 m radius, on which is mapped a relatively high resolution texture 
completely unrelated to the actual surface of Apophis. The spherical shape is used in our 
analysis in order to provide an easy access to the ground truth of landmark positions, knowing 
the true camera poses. In addition, the lighting conditions representative of a terminator orbit 
have been taken into account (only one asteroid hemisphere is lit).  

  

Figure 6.1: Simulation of the asteroid aspect Figure 6.2:  Landmarks detected on the 
asteroid surface (30 best scores) 

Image processing: The implementation is based on the OpenCV SURF algorithm that has 
been integrated within a Matlab S_Function. Figure 6.2 shows an example of features that this 
algorithm can detect in images of the asteroid surface. Here only 30 features with the highest 



strength response are shown for clarity, but over 1500 were actually detected. We can observe 
that the strongest features are naturally attracted to high-contrast regions of the surface that 
are located in the region that benefits from the best lit conditions. The repeatability of this 
detector has been evaluated on the simulated images and the ratio is around 90-95% 
considering 5° viewpoint changes. 

As regards feature matching between successive views, it is performed in two steps. The first 
one relies on the SURF matching functionality that computes the Euclidian distance between 
descriptors and returns the pairs of features with the shortest distance. To filter the incorrect 
matches, we apply afterwards a matrix based RANSAC criteria taking advantage of the 
images epipolar geometry. This algorithm implemented from the RVCTools toolbox [21], 
allows producing the largest set of matches that agree on the same transformation between 
two images. This filtering is highly efficient to remove outliers but this benefit comes at the 
expense of a certain amount of inliers that are also rejected.  
Even though this method is rather computationally expensive, it has been preferred to the 
popular active search approach that relies on the position uncertainty knowledge and is thus 
applicable only in combination with the EKF-SLAM algorithm. It must be noted that the 
computational cost of the feature detection and matching algorithms averages 3 to 4 s in our 
implementation and outweighs by far the cost of the estimation part. 
 
Vision layer coupling with the estimation algorithms: The feature detection and matching 
algorithms have been coupled to the BA-SLAM and EKF-SLAM to assess their performance 
in more realistic conditions. For this experiment, the implementation is not a true integration 
since measurements are fed to the estimators but the vision layer does not benefit from the 
estimated state. The vehicle trajectory corresponds to 2 revolutions on a terminator orbit, 
images are acquired every 5° anomaly increment. The asteroid being fixed, a total of 72 
images allow creating a sequence that can simulate a perpetual and continuous motion. Using 
the same set of measurement data, multiple simulations can be run by selecting different 
initial poses in the sequence. Figure 7.1 and 7.2 show the behavior of both estimators for 6 
different runs corresponding to initial poses separated by 60° anomaly increments. 

  
Figure 7.1 : BA-SLAM performance Figure 7.2 : EKF-SLAM performance 

Even though both estimators remain functional, some performance degradation with respect 
to the analysis in section is observed with a noticeable increase in the mean error and standard 



deviation characteristics. The impact is the most significant on the EKF-SLAM behavior that 
shows a quasi divergence on one of the simulation cases. This degradation can be explained 
by an irregular landmark distribution covering a smaller part of the field of view, the larger 
amplitude of the measurement noise and the presence of a few remaining outliers. The drift 
magnitude that is observed seems acceptable at this stage since it is assumed that some 
navigation update from the ground can be performed every two revolutions (roughly 2 days). 

6. Conclusion 

This study has focused on the feasibility of using monocular vision-based estimation 
techniques in the context of navigation and mapping while operating in close proximity of an 
asteroid. The main goals of the study were to implement, test and compare the performance of 
two distinct SLAM navigation techniques: a sequential Bundle Adjustment algorithm (BA-
SLAM) that performs optimization over multiple views and a classical Extended Kalman 
Filter (EKF-SLAM) which is more adapted to real-time execution. First, a parametric study 
was performed to compare the methods in presence of a virtual visual layer. The preliminary 
results showed that BA-SLAM is functional starting with 3 views only, yields better 
performance than EKF-SLAM in similar conditions for a computational cost only a few times 
higher. In absence of range measurement or external position updates, both estimators are 
subject to drift during the orbital motion and the error amplitude can be rather dispersed after 
a few revolutions. As expected, tracking a larger number of landmarks enabled to reduce the 
drift and the dispersion and some improvement was also obtained to some extent by 
increasing the number of views. The work was completed with the coupling of both 
estimators to a vision layer processing simulated asteroid images and this allowed to confirm 
the performance behavior of both methods in more representative conditions. This showed 
also that the dominant computational burden is definitely on the image processing side and 
makes the debate about the estimation execution cost less relevant. 
These results are promising but they were obtained under a set of simplifying asssumptions 
that need to be revisited to broaden and consolidate the evaluation analysis. Several important 
aspects remain to be characterized: the sensitivity to initial state errors, measurement outliers, 
residual uncertainty on the asteroid motion, the influence of more realistic vehicle dynamics 
and landmark distribution due to a complex asteroid shape and texture. From the BA-SLAM 
perspective, the absence of explicit uncertainty knowledge constitutes a limitation that needs 
to be overcome to improve the efficiency of feature matching. Robustness being a central 
issue, a continuation of this study will also address two topics: the value of sparse distance 
measurements to improve position observability, the re-detection of landmarks already 
observed in the past.   Another path that remains to be explored is the applicability of a hybrid 
algorithm, merging the best elements of EKF and BA-SLAM together. As a subsequent step, 
it would also be essential to evaluate the hardware requirements of one of the considered 
navigation methods, which could give an insight on how far in the future autonomous, 
embedded and vision-based navigation could be envisioned. 
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