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Abstract: The work presented in the paper concerns the aisabfsmonocular vision based
navigation techniques enabling autonomous operat@mound an asteroid at close range to
characterize its gravity field. The paper focusestle state estimation layer and performs a
comparison of two different SLAM methods (EKF-Slakid Sparse Bundle Adjustment) from
accuracy, computational cost and robustness poaftsiew. This work continues with a
parametric sensitivity analysis for a generic ongt scenario. In the last stage, the inclusion
of the vision layer in the navigation system islgmed and evaluated. Current results are
synthesized and discussed.
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1. Introduction

In recent years, there has been a growing intamdste space community for the Near Earth
Objects and particularly the Potentially Hazardésteroids (PHA) which possible impact

with Earth could be catastrophic given their SiZBIES initiated in 2012 a mission concept
study devoted to the scientific analysis of themst 99942 Apophis in the perspective of its
close encounter with Earth in April 2029. Among tregious objectives that included the in-
situ analysis on the surface with a dedicated lgriie determination of the asteroid gravity
field added strong requirements on the vehicle mmaerng autonomy, in particular the

capability to navigate for a long duration over #steroid at very close range.

So far, all missions to asteroids or comets haliededon some extensive involvement of
ground analysts to navigate the probe. In misslikes JAXA’'s Hayabusa [1] and ESA’s
Rosetta[2], the man-in-the-loop process was coimegrthe mapping of the celestial object
surface and included also the probe localizatiately, NASA missions like Near Shoemaker
[3] and Dawn [4] have introduced more autonomy oafd by implementing automatic
landmark recognition techniques but the lenghty @adious task of mapping the asteroid
remained on the ground. For future and more chgitbgnmissions, the desire to reduce the
operator load and increase the navigation robustimesase of tracking loss leads to the use
of techniques that can perform at the same timalilation and mapping of landmarks that
are detected in the field of view.

This trend can be supported by recent developmantise Simultaneous Localization And
Mapping (SLAM) domain that have triggered numeroaplementations in the robotics field
for both wheeled mobile vehicles and UAVs. So flae, most popular SLAM approach uses a
standard Extended Kalman Filter to estimate recebhgithe vehicle state and the location of
visual features. More recently, the Structure FMation (SFM) approach that relies initially
on global optimization has been adapted into effitsequential methods that perform sparse
Bundle Adjustment (BA). Some studies showed alsd the sequential bundle adjustment



(BA-SLAM) approach could outperform EKF-SLAM in agacy at a reasonable
computational cost.

The purpose of this paper is to compare the r@atierits of these two SLAM techniques for
the specific scenario of asteroid orbiting and stigate possible hybridation solutions. First,
the analysis is focused on state estimation asguparticular vision performances and relies
on some evaluation framework specially designeshtalate various navigation scenarios and
perform parametric study. In a second stage, a SUdure detection and tracking

functionality is integrated in the navigation presgo confirm the validity of the analysis

results in presence of simulated asteroid imaged #ostrate the system behavior

performance.

The paper is organized as follows: in Section & rtiission concept, the technical background
and the scope of the problem are explicited. Afterpresentation of the navigation

assumptions, Section 3 describes the implementatidhe two candidate SLAM methods

and details their comparative analysis on a tese dhat is representative of orbiting

scenarios. Next, Section 4 is devoted to the assegsof the complete navigation system
combining the image processing and state estimddipers : the experimental testbed and
scenario are detailed, the results are describdddestussed. Finally, the main lessons are
summarized in a conclusion where current limitagi@md perspectives for further work are
presented.

2. Background

2.1 Reference mission concept

Apophis 99942 discovered in 2004 belongs to them@ Hazardous Asteroid population
that is steadily growing and must be monitored wiflbse attention through ground
observation means. The Apophis Earth flyby in 2029 thus offer a great opportunity to
acquire a better knowledge of this type of objertd investigate the feasability of mitigation
techniques. For that purpose, CNES initiated ii22@ mission concept study involving a
rendezvous with the asteroid to analyze its intestoucture using seismic or radar sounding
techniques [5]. The different scientific scenameguired operations at medium to close range
(down to a few hundreds of meters) and the mostllesiging one concerned the
characterization of the gravity field that was nmampatible with flyby or hovering
trajectories. The mission concept study was actueliminated in 2014 but internal R&D
work was pursued at CNES in the guidance and naeiga@omain to assess the technical
feasibility of the autonomous orbiting operations gravimetry.

Table 1 : Apophischaracteristics

Diameter 375+4/-15m 2014 observations

Mass 44<m <6.210" kg Based on geometrical model
Spin 30.4h Tumbling motion

Albedo geometrical 0,30 +/- 0.06 Herschell data

Aphelion / perihelion 1.0985 AU /0.7460 AU

Achieving the gravimetry of Apophis constituteoagh challenge considering its low gravity
field. In previous missions such as Near ShoemakeDawn, the gravimetry has been
performed around objects with diameters rangingftens to hundreds of kilometers (35 km
for Eros, 530 km and 950 km for Vesta and Cerekg Body attraction was therefore large
enough compared to the others perturbations toepthe spacecraft on some orbital



trajectories and ensure long duration periods wahactuation. In the case of small bodies
like Apophis, the impact of solar radiation pregshecomes prominent and limits drastically
the capability to find quasi-stable orbits. It rensapossible anyway to limit this impact by
inserting the spacecraft on a low terminator offilgure 1.a) that benefits from some
cancellation effect. Preliminary studies have shdkat actuation free trajectories could be
achieved for weeks with a low collision risk assnginitial altitudes around 2 km (Figure
1.b). However, the lower the altitude, the hightee tisk of collision for a given duration.
Considering the gravimetry accuracy requiremeihts,drbit altitude should be in the 500 m
range which implies some spacecraft autonomy atnénggation and guidance levels to
maximize the free trajectory duration in a safe nenThe paper will focus on the navigation
aspects.
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Figurel.1: Terminator orbit. The Sunis Figure1.2: Terminator trajectory evolution
orthogonal to the orbital plane and exerts a torque 20 days horizon - 2km initial altitude. The
on the orbital angular momentum that is almost orbital plane orientation slowly rotates and the
averaged out over one period eccentricity increases until collision occurs.

2.2 Navigation

The major difficulty when navigating around smadidies comes from the need to achieve
localization within a poorly known environment thiatjuires some extensive mapping. In the
most ambitious missions flown so far, the two psses of mapping and localization have
been separated. First, using numerous imageseadbdady, the ground analysts perform the
tedious task of selecting landmarks and buildiatabase that is uploaded to the spacecratft.
In a second phase, the spacecraft can use thebeadds as navigation tie-points by running
automatic landmark recognition and tracking aldnis. NEAR Shoemaker that orbited and
landed on Eros in 2001 relied successfully on algege of craters (images from multiple
points of view) that constituted the prominent pagaon of features on this asteroid. Later,
more advanced landmark descriptors were developethé Dawn mission that performed
low altitude orbiting around Vesta in 2011 and Geire 2015: the local region surrounding
any distinct feature is represented by a landmaaib ith.-map) that captures both elevation
and albedo information. Using the L-maps, referdacemark images can then be rendered
on-board and compared with real images. This agpraedows improving the robustness of
the tracking process but the building of any L-mequires a large collection of images of the
same landmark with different lighting conditions.

Getting rid of the operator while achieving at kethee same level of robustness constitutes a
major challenge that has been addressed in multpkies [6,7]. EKF-SLAM has been the
preferred method so far for computing consideratiand has been evaluated in conjunction
with various feature detection and tracking aldums. Since automatically detected features
are more sensitive than L-maps to viewpoint chaarggincident light variations, the typical



solution to achieve robustness is to take benefihfstatistical effects by the processing of a
large number of features. These circumstances mnayepmore favorable to alternative
techniques such as BA-SLAM and it is thereforevate to analyze the respective pros and
cons of these two methods in some parametric waythi® particular context of asteroid
orbiting. The main characteristics of these techegjare briefly discussed in the sequel.

SLAM filtering: The EKF-SLAM method that is known to be computatibnefficient for
small number of features presents a major advanthgelirect availability of the camera and
landmark position uncertainty from the state camare matrix. First, this information helps
to detect anomalies such as filter divergence dodistriggering corrective action if needed.
In addition, when the filter is coupled to someafissystem, the uncertainty measure enables
to reduce the search region during the featureskitrg process which robustness and
computing efficiency can then be enhanced. The rgémeactice to achieve accuracy and
robustness consists in using all possible a pidormation on the camera dynamics as well
as inertial sensor measurements to predict the reastate for each image acquisition [8].
Some implementations however manage to get sdtsjaestimation results with a motion
modelled as a Gaussian random walk [9].

For monocular vision, EKF-SLAM has to manage nemdiaarks whose distance uncertainty
cannot be properly represented as a gaussianbdisbm. The widely accepted solution to
tackle this problem is the Anchored HomogeneousitRmarametrization [10] that introduces
the landmark inverse depth in the state vectors Tonverts however in a larger vector size
that carries 6 variables for each landmark instela@ for a Euclidean point. The current
technique to limit the corresponding memory usage eomputing complexity consists in
switching to the Euclidean representation afteivargreduction of the distance uncertainty.
Another EKF-SLAM weakness comes from its rathehrsgnsitivity to measurement errors
due to spurious matches of landmarks in consecutiages. Some improvement of the filter
robustness can be achieved by different methods asi¢theactive searchhat limits feature
extraction in regions where they are more likelybt found [11], theJoint Compatibility
Branch and Bound Te§t2], and thel-Point RANSAGlgorithm [L3].

BA-SLAM: The originalBA represents a very efficient method to estimate [bcation of
landmarks and the camera by processing numerogs\ati®ns in a batch mode. While this
implementation operates on the complete graph lihies all observation points to all the
visible landmarks, the sparse BA processes data fomly a subset of views at each
estimation step. To achieve computing efficiencysotution is to perform estimation on a
sliding window that captures information from a eivspatial or temporal horizon without
any consideration of the measurements value. Somaneement of this method consists in
selecting the number of views that conserve thstlpassible redundant information and
various studies have attacked this problem [14¢ ftain advantage of the BA method that
processes measurements from various viewpoints lHgher accuracy and better robustness
to spurious matches that are being averaged owddition, BA that relies on non linear
optimization through Gauss Newton methods is lessifive to errors in the predicted camera
motion and some implementations simply assume ndomdetween two consecutive
observations [15]. Conversely, a possible weakioé$3A w.r.t. EKF-SLAM is the lack of
explicit representation of the estimated state utaomgy even though gaussian random
variables are actually modelled in the processti@@etccess to the state covariance matrix
adds therefore a significant computational overh#@t can be an impediment to the
application of landmark active search methods. Aeotlimitation comes forward in
monocular navigation: the camera and landmark digfdihmation is only known with a scale
ambiguity factor unless some known object can leatited in the scene and used as depth



reference. Finally, BA is also subject to drift@rnthe reference object cannot be kept forever
in the number of views used in the estimation pgec&lew references within the current
visible landmark population need to be initialiaesing depth estimated information and this
will induce some error increase over time. It hasrbshown in a previous study [16] that the
computational complexities of the EKF-SLAM and BAAM are respectiveyO(N?) and
O(NM? +M?), with N being the number of processed featured lhthe camera views
number. In addition, this study stated that seqakBA could outperform EKF-SLAMn a
large variety of situations since it can make ddvetse of the computation capability in terms
of accuracy.

Vision layer: SLAM approach credibility is tightly correlated the vision layer ability to
detect and track features robustly and with an@ebée computational cost. In the computer
vision domain, new algorithms for automatic featde¢ection and tracking have emerged and
show some enhanced robustness in presence of itnaggformations and variations of
lighting conditions. These algorithms belong to ¢gineup of Local Invariant Feature detectors
and the most popular ones in the litterature aleTSBURF and ORB [17,18,19]. These
algorithms allow to detect some distinctive imagatfires (edges, corners, blobs, ..) and build
some synthetic representation of the local neighimd that is stored in a so-called
descriptor. To achieve some invariance to vewpaindnges and facilitate the feature
matching process, the feature model assumes tlatlottal region is planar and this
constitutes of course the technique main limitatwamen areas with significant relief are
observed. The matching process relies on the cosgoaof descriptors that have been
designed to be the most distinctive and regardegosasntial IDs: the process consists in
searching for each feature in image A what is theddate from image B providing the
minimum descriptor difference (score). To reduae phobability of returning false matches,
Lowe [20] proposed some constraint to be satisfeeccandidate is selected if the ratio
between its score and the second best remains keelgiven threshold. In addition, the
resulting matches can be filtered through the appbn of a RANSAC algorithm that allows
rejecting outliers assuming some image homograpnsformation.

3. Description and evaluation of state estimation methods

3.1. Problem description:

The representation of the different motions reqtine definition of the following reference
frames (see Figure 2.1)

» Asteroid Centered inertial Reference Fram@RF. J2000 frame translated to the
asteroid assumed center of mass

» Camera frameRc . z axis aligned with the camera boresight, x alos@gthe sensor
vertical and y axis along the horizontal (see Fegi2)

» Initial location reference framigy. J2000 frame translated to the camera origin

» Asteroid body frameRa: origin at the assumed center of mass (axes deimiti
indifferent)

The reference scenario considered for analysisbeasummarized by the following set of
assumptions:

* The probe is flying around the asteroid on a cacokbit
* The asteroid motion is perfectly known



* The initial position of the spacecraft (SC) is petfy known in ACRF at the first
frame

» the asteroid is assumed spherical with an isotrdisicibution of landmarks

» the landmarks visibility is taken into account ddesing the relative landmark-
camera geometry and the camera field of view

» the vision layer is simulated by introducing a agrtrate of landmark disappearance
that is proportional to the amplitude of the viewp@hange

\
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.......

Figure 2.1 : Reference frames Figure 2.2 : Cameoadinates

3.2. Description of the BA-SLAM implementation

In this section we are considering the version @& BA-SLAM that processes at each
iteration step a constant number of views. Tharesion concerns two types of information:
the camera poses associated to the different vagwsthe positions of landmarks that have
been observed in at least two consecutive views.stdte vector x is represented as follows:

X = [lll ...... ,lN, Tl' ...... ,Tm]T (1)

with vectors il representing cartesian landmark positions expdegsehe initial reference
frame and camera poseg composed of a vector of 3D cartesian coordinatethe initial
reference frame and a quaternion indicating ortemtawith respect to the initial reference
frame. As regards the observation vector y, eaghadrthe p landmarks provides 2 bearing
angles only since the vision is monocular. The nlad®n vector dimension is therefore 2p
with p < mN as the landmarks are observed multiples.

The optimization task consists in finding the statghat represents the best fit to the
observations. The cost function takes the form sdadar product of an error vector function :

c@) = (y— @) Wy — F(x)) 2)

wheref(x) is the reprojection vector of landmarks in the esanframes corresponding to a
given state x and Ws the weight matrix taking into account the meamsent uncertainty.



Since c(x) is a quadratic function that approximmathe null value when reaching its
minimum, iterative Gauss-Newton optimisation isuadly applicable. This method consists in
computing at each iteration the state incremeritdblaes the following equation:

Jr ()T Wy Je()dx = =] ()™ Wy f(x) €))

where {x) is the jacobian matrix of the reprojection wct(x). To improve convergence,
our implementation relies on some efficient adaptabf this method named Levenberg-
Marquard (LM) [20]. The equation to be solved has augmented matrix including a
damping termA which is scaled to ensure cost reduction whilepkege the matrix semi
positive :

Ur )Wy Jp () + ADdx = =] (x)" Wy f(x) 4)

Keyframe management: The principle of the method is to restart theiroation process
each time a new image is acquired. To limit thealgm complexity, it is therefore required
to use a limited number of frames that compose-aafied sliding window. The process
consists in managing a graph that stores the duceenera pose and a fixed number of poses
acquired in the past. All the other frames and ntad®ns are ignored in the optimization
process but stored for later use. The selectiothefright keframes constitutes here a key
issue. We tend to favor large intervals betweerseoutive views since it yields the benefit of
a large observation base. Conversely, it reducesitimber of landmarks being observed in
multiple views which affects the estimation perfame. It is therefore understood that a
tradeoff value depending on the landmark distrdoutcan be found and this is one of the
purposes of the analysis performed in section 4.

]";.' ]'3:\'—1

Figure 2.1 : Sliding window with quasi Figure 2.2 : Window with variable angular
constant angular amplitude between views amplitude

Two frame management strategies have been condiddeee, we focus on the steady mode
and we do not detail the window initial construantithat is straightforward. For the sake of
clarity we assume that the number of frames beinggssed at every step is equal to 4.



The first strategy illustrated on Figure 2.1 cotssi;n keeping a constant angular offset
between consecutive views. Whenever a teading frame Tf*1 is acquired after a certain
camera displacement, another settrailing frames {¥*1, Tx*1, T¥+1} is selected in the
stored map to produce increments of identical aomgd. Since the observation base is
maintained quasi constant and close to the optivaioe, the estimation performance can be
maximized.

In the second stratedy shown on Figure 2.2, thelevinstructure is only modified by the shift
of the leading frame since the trailing frames geeerally kept the same. Periodically, the
whole window structure needs to be updated wherdigtance betwen the two last frames
T¥ andTj cannot ensure a proper landmark connectivity. Wthanoccurs, the first window
frame is lost and the new sequence is obtainedhifting the frame number as follows:
T+l =1k Tk+1 =Tk TE+1 = Tk The window size gets therefore reduced beforevigip
again and the estimation efficiency is likely to lmepacted accordingly. However, this
strategy has the important merit of sparing menwdtl respect to the previous one since the
useful data history is always kept in the windoanfes. Benefiting also from the advantage
of simplicity, this method has been chosen forimplementation.

Camera motion : The BA-SLAM algorithm can be used without anytran model and the
method in that case consists in initializing theirmgation process by setting the new pose
equal to the previous one. This is the typical métm photogrammetry applications where
the knowledge of the camera velocity can be eiitpeored or reconstructed a posteriori via
data smoothing techniques. In our context, theorgionformation is needed to perform on-
board guidance and it must be reconstructed by smmependant estimator. The most
efficient technique consists in using a dynamic etodf the vehicle that integrates the
asteroid attraction and the solar radiation pressasrit is done in a typical navigation system.
This model can be therefore used in a propagatdirviil provide the predicted position of
the next frame. To keep the estimated velocity @atey the predicted position needs to be
updated using the output of the BA-SLAM algorithotarding to a scheme further detailed
at the end of the section.

BA-SLAM steps: In order to achieve proper convergence in thetnaifficult cases and
particularly when there is a low quality motion neb@r no model at all, it is common to
divide the bundle adjustment process in three apétion steps which progressively update
the graph. The process being carried out at eastimage frame acquisition is the following:

Preparation phase:
» Extract landmark measurements;
» Set new camera pose according to the motion maodeappend to state vector;
 Manage camera poses and views according to theteglstrategy — this step
involves the verification the graph connectivityadequate (sufficient landmarl
overlap between views)

1. Perform Motion-Only BA: An adjustment is performed over the current canpaise
only, using current measurements and current ls¢ishaion of landmark states. This
step effectively serves the purpose of a motionehod

2. Perform Structure-Only BA: An adjustment of the landmark positions only is
performed using information from the free views;

3. Perform Full BA: Using state estimations of the two previous stepsull joint
optimization over the sparse graph is performeduAsng the motion and structure
updates have succeeded, the state should alreadyobe to the minimum, and
convergence shall be reached in relatively fewsstep



In presence of a good quality motion model, stepmnd 2 can be skipped to reduce the
computational complexity while preserving the estion performance.

Depth gauge management: To tackle the scale ambiguity problem, the degtlone of the
initial frame landmarks is assumed to be known iangsed afterwards as a gauge. For that
purpose, the retroprojection error vector from éigma(2) is augmented with a quantity
representing the difference between the predicdrtte of this particular landmark noted as
[, and the gauge value as observed in frdme

yi— (%) )

y—fx) = (d —d(l, Ty, x)

(5)

This gauge from fram&,; can be used in the optimization process as lortgeasonnectivity
with the last acquired view can be maintained. Veifixed number of views, the connectivity
is lost when the camera displacement reach a Viatite that depends directly on the asteroid
local aspect and the feature detection and tragk@mfprmance. When this limit is reached, it
is necessary to select a new landmark which deptib& considered as reference. Since this
information has been obtained through the estimgtiocess and carries some error, a depth
bias is introduced in the subsequent optimizatiepsand will propagate until the next gauge
change. In absence of range measurement or exigodate, the depth error is due to drift
with a behaviour similar to some random walk prsces

Motion propagator update: After each BA-SLAM iteration step, a new estimatiethe
current camera position is available and this mi@ation is used in our implementation to
update the state of the camera motion estimatonimgnin parallel. Assuming a perfect
camera attitude knowledge, a simple 6 states EKér tan be used to estimate the position
and velocity expressed in the ACRF asteroid ineftame. The dynamic model is the
following one:

. 7
r=r—3r+vsrp+{ (6)

wherer andi are the position and acceleration vectarshe assumed asteroid gravitational
constant,vg,,, the acceleration due to solar radiation pressutedasums up allthe non

modelled forces. Considering the high cost of cotimguthe camera position uncertainty, we
implement a filter with a constant Kalman gain [19]

3.3. Description of the EKF-SLAM implementation

With respect to BA-SLAM, the EKF carries a lighttate vector since it ignores the previous
camera poses along with the landmarks not visimenaore in the current image:

X = [Xc, lll ...... ,lN]T (7)

In general, the current camera stéteis represented by a 13-element vector compos#ukeof

6 position and velocity coordinates expressed @AGRF frame, the attitude quaternion with

respect to the same frame and the angular ratessgut in the camera frame.

When using monocular vision, the absence of digtameasurement implies to use a
landmark state representation that does not afiegatively the filter convergence. Linearity

is therefore paramount and the Anchored ModifieiPBoint representation approaches this
objective by defining a landmark with the followiBgelement vector:



l; = [u,v,p,Tol (8)

To is referred as the anchor and represents the agpesition in the ACRF frame when the
landmark is added in the state vector. The u,vrpatars are the landmark pixel coordinates
in the camera frame when observed from the ancbsitipn and the parameter is the
inverse of the distance between the landmark aedatichor position. Using an inverse
distance parameter allows to represent within bswty potentially unlimited uncertainty
and preserve also the Gaussian character of theumegaent distribution.

The EKF-SLAM sequential process includes the twpidgl steps encountered in any
Extended Kalman Filter: (1) State Prediction and&m@mnce Propagation using some motion
model, (2) State and Covariance Update when nevsuneaents get available. In addition,
the EKF-SLAM process includes a third and specdjmeration corresponding to State
Management: this operation includes the additionest landmarks in the state vector as well
as the removal of landmarks no more visible —vblunes also the associated modification of
the covariance.

State Management: Throughout the orbiting of the asteroid, new lantka&eep appearing
in the camera field of view and have to be congiddvy the filter in order to pursue the
mapping and preserve the camera position obseityabilhe first step of the landmark
initialization consists in producing an augmenttadesvector by appending the landmark 10-
element vector to the current state:

faug =[%,uv,p,T] 9)

wherep represents an initial guess of the landmark iresglistance and T is the estimated
camera pose with 7 elements.

Since the landmark distance can typically take\alye from O to the distance of the asteroid
surface, this parameter can be considered pateoestimator configuration along with its
associated uncertainfy, that is chosen large enough to guarantee its ¢aterergence to the
true value. The landmark state covaria®gas then initialized according to the following
formulas :

al atT

Py = %, Pxx %, + R, (10)
Ry 0

Rl = O Rp 3x3 (11)

O3x3 03x3

where Py represents the covariance of the current camate, %?Xl— is the partial derivate of
Cc

the landmark statewith respect to the camera stalg andR,, is the direction measurement
uncertainty.

Gauge Fixing and the Scale Problem: With monocular vision, the EKF-based SLAM
estimator faces the same scale ambiguity probleBAaSLAM does. In our implementation,
we apply therefore a similar approach to fix theiggmat the start of the estimation. This
consists in assuming that the range of one ofdhdrharks visible in the first image can be
measured with sufficient accuracy. To that purpdbe, initial guessed parametpy of
Equation (9) is set with the measured inverse rarige 1/d and the covariance component



R,in R, is set with its associated small uncertainty valmesubsequent time steps, the

propagation of this precise information to the nemnera pose and landmark states allows to
keep the scale constrainted.

4. Compar ative evaluation of the SLAM methods

These two methods have been implemented in theaMathvironment for the quick
prototyping capability and to benefit particulaftpm the Optimization toolbox. Considering
that both methods are prone to drift, the evalmatigll focus on the evolution of the
estimation error over time. To perform a relevartmod comparison, we are considering a
reference estimation scenario that is detaileddfte

« the motion around the asteroid is circular anddifierence of anomaly between all
consecutive image frames is constafs :

« the number of landmarks detected in every imagadris constantN*

« the landmarkrepeatability ratio’for theAa angular increment is constat® :

* the motion prediction error between two consecutimage frames is constant and
proportional to the displacement :

» the bearing measurement error is constant foaatlarks (8) : €,

* the initial position is assumed perfectly known

» the camera attitude is assumed perfectly knownedisas the camera parameters

* the number of views considered in the BA-SLAM prxeV

1. The landmark population is uniform on the asttand the density is adapted to provide
in average a specific number of landmarksfigeneN
2: Considering a group dfl landmarks detected in frankeand visible in frame&+1, the
‘repeatability ratio’is the number of landmarks successfully trackefitame k+1 divided
byN

4.1 BA-SL AM behaviour

The analysis starts with a characterization ofBAeSLAM method focused on its sensitivity

to the most critical parameters: the number of gigM) and the number of landmarks

detected per view (N). The performance criteriastbgred are the camera position errors
after 1 and 2 revolutions (1 revolution lasts aboue day). The test conditions are
summarized on Table 2:

Table2: BA-SLAM characterization

Number of landmarks/view : N [10, 15, 20, 25] 15
Displacement /view Aa 2° 2°
Landmark repeatability : k 0.90 0.90
Motion prediction A 0.5 0.5
Bearing measurement errce,, 2 pixels 2 pixels
Number of views : M 5 [3,57,9]
Max between 2 consecutive views 30° 20°
Minimum connectivity between views 3 landmarks 13danarks

Due to the dispersion of results, 100 Monte Carfoutations are run per test case and
performance focusing on the camera position esitimas summarized by the mean error



value and error standard deviation after 1 andv®lugions. The BA-SLAM behaviour is
illustrated on Figures 3.1 and 3.2 in a simulation with 5 views and 15 landmarks: they
show the evolution of the camera position errormand the landmark position RMS error
(only the landmarks processed at the current step cansidered). The effect of the
initialization of new landmarks can be clearly abeel by the sudden increase of the
landmark position error.
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The benefit of tracking a larger number of landrsaskillustrated on Figure 4.1 with a 60%
reduction of the position error after 1 or 2 revmns when going from 10 to 20 landmarks.
The improvement is barely noticeable going up tda2imarks where only a reduction of the
dispersion can be observed. Similarly, increasimgriumber of views from 3 to 7 provides a
40% reduction of the position error as illustrated Figure 4.2 but increasing it any further
does not bring any improvement. A thorough analysiscurrently underway to better



understand why some performance stall is obseroea@ fcertain number of landmarks and
views.

4.2 EKF-SLAM behavior

The EKF-SLAM behaviour is illustrated on Figure& &nd 5.2 that show the evolution of the
camera position error and the landmark position R&tfr. The configuration is done
according to Table 2 general parameters (exceptifspd3A-SLAM ones) and with 15
landmarks per view. At the beginning, the uncetyais generally increasing faster than BA-
SLAM but is reduced afterwards thanks to the fitenvergence.
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4.3 Performance comparison

The comparison is performed between EKF-SLAM arel BA-SLAM implementation with

5 views. We consider 3 cases corresponding tordiitenumbers of landmarks per view (10,
15 and 20) and 100 Monte Carlo simulations arep@incase. Performance metrics include
the mean cycle execution time, the RMS error fotha landmarks observed, the norm of the
camera position error after 1 revolution. For refexe, simulations were performed in a 32 bit
Matlab environment running on a 2.40 GHz processor.

Table 3: Comparison synthesis

10 Cycle Execution time (s) 0.020 0.077
landmarks| Landmark RMSE (m) 3.72 +/-1.9 8.33 +/-2.2
Camera position error norm (m) 25.0 +/- 25.8 17.08 +/-9.5
15 Cycle Execution time (s) 0.049 0.118
landmarks| Landmark RMSE (m) 272 +/-2.1 7.21 +/-2.6
Camera position error norm (m) 24.07 +/- 20.0 17.42 +/-10.3
20 Cycle Execution time (s) 0.119 0.158
landmarks| Landmark RMSE (m) 1.45 +/-1.8 5.48 +/- 1.47
Camera position error norm (m) 8.98 +/-5.4 10.25 +/- 7.6




As predicted, the EKF-SLAM implementation is lessmputationally-intensive than BA-
SLAM but this advantage gets smaller when the nurobé&ndmarks increases. This comes
as expected at the price of a lower accuracy anicpiarly when the number of landmarks
per view is less than 20. At this stage, the ett@cuime metric must be considered carefully
since the cost of the image processing was notuated for. This topic is addressed in next
Section.

5. Experiment

In the previous section, both SLAM algorithms haween characterized using simulated
landmark measurements. This type of data was pesbldny setting specific values to
parameters like the feature distribution on thdama, the level of noise in pixel coordinates,
and the percentage of tracked features betweersviée purpose of this experiment is to
improve the analysis relevance through the additbrihe feature detection and tracking
algorithms into the system.

Image Generation: To simulate Apophis images, we used a powenb@nosource product:
the 3D computer graphics Blender software [20].isTroduct provides a convenient API in
Python language to design the scene, control tkai@o of the different objects, and export
screenshots of the field of view. A script has bdewelopped to recreate the trajectory of our
reference scenario, export the field of view asnamge at every time step, and export a text
file containing the true camera pose informatiord amlevant simulation parameters for
further analysis. Figure 4.1 shows a typical ouimdge, here obtained at an altitude of 600
m and a field of view of 30° x 30°. The shape maufedsteroid Apophis was simplified down
to a sphere of 190 m radius, on which is mappectlatively high resolution texture
completely unrelated to the actual surface of Apmpfihe spherical shape is used in our
analysis in order to provide an easy access tgrhend truth of landmark positions, knowing
the true camera poses. In addition, the lightingdd@mns representative of a terminator orbit
have been taken into account (only one asteroiddpdrare is lit).

Figure 6.1: Simulation of the asteroid aspect Fagul: Landmarks detected on the
asteroid surface (30 best scores)

Image processing: The implementation is based on the OpenCV SURFritthgo that has
been integrated within a Matlab S_Function. Figushows an example of features that this
algorithm can detect in images of the asteroidasa:fHere only 30 features with the highest



strength response are shown for clarity, but 08&0lwere actually detected. We can observe
that the strongest features are naturally attrateunigh-contrast regions of the surface that
are located in the region that benefits from thst hé conditions. The repeatability of this
detector has been evaluated on the simulated imagdsthe ratio is around 90-95%
considering 5° viewpoint changes.

As regards feature matching between successivesyieve performed in two steps. The first
one relies on the SURF matching functionality tt@inputes the Euclidian distance between
descriptors and returns the pairs of features thighshortest distance. To filter the incorrect
matches, we apply afterwards a matrix based RANSA®@ria taking advantage of the
images epipolar geometry. This algorithm impleménit®m the RVCTools toolbox [21]
allows producing the largest set of matches thateagn the same transformation between
two images. This filtering is highly efficient temove outliers but this benefit comes at the
expense of a certain amount of inliers that are edgected.

Even though this method is rather computationadgeasive, it has been preferred to the
popular active search approach that relies on ds&ipn uncertainty knowledge and is thus
applicable only in combination with the EKF-SLAMgakithm. It must be noted that the
computational cost of the feature detection andchiag) algorithms averages 3 to 4 s in our
implementation and outweighs by far the cost ofesigmation part.

Vision layer coupling with the estimation algorithms: The feature detection and matching
algorithms have been coupled to the BA-SLAM and EIAM to assess their performance
in more realistic conditions. For this experimdhg implementation is not a true integration
since measurements are fed to the estimators butision layer does not benefit from the
estimated state. The vehicle trajectory correspdnd® revolutions on a terminator orbit,

images are acquired every 5° anomaly increment. asteroid being fixed, a total of 72

images allow creating a sequence that can simalaerpetual and continuous motion. Using
the same set of measurement data, multiple simaktcan be run by selecting different
initial poses in the sequence. Figure 7.1 and AAvsthe behavior of both estimators for 6
different runs corresponding to initial poses sefed by 60° anomaly increments.

80 140

120 / \
100

~
o

»
(@)

)]
(@)

2]

o
—
"""

L SR

W
(@)

N
£

Camera Error Norm (m)
N
o

Camera Position Error Norm (m)

20} 0 ff\‘ / &’ﬂw .
101 201 / AM\%VJW !
m“ wll ; : ; } ; 0 4 \\k‘/
0 100200 300400 500600 700 800 0 100 200 300 400 500 600 700 800
True Anomaly (°) True anomaly (°)
Figure 7.1 : BA-SLAM performance Figure 7.2 : EKEAM performance

Even though both estimators remain functional, sperormance degradation with respect
to the analysis in section is observed with a eatiite increase in the mean error and standard



deviation characteristics. The impact is the magtiBcant on the EKF-SLAM behavior that
shows a quasi divergence on one of the simulatises: This degradation can be explained
by an irregular landmark distribution covering aadler part of the field of view, the larger
amplitude of the measurement noise and the pres#in@dew remaining outliers. The drift
magnitude that is observed seems acceptable atsthge since it is assumed that some
navigation update from the ground can be perforevealy two revolutions (roughly 2 days).

6. Conclusion

This study has focused on the feasibility of usimgnocular vision-based estimation
techniques in the context of navigation and mapprhde operating in close proximity of an
asteroid. The main goals of the study were to imlet, test and compare the performance of
two distinct SLAM navigation techniques: a sequanBundle Adjustment algorithm (BA-
SLAM) that performs optimization over multiple viewand a classical Extended Kalman
Filter (EKF-SLAM) which is more adapted to real-&nexecution. First, a parametric study
was performed to compare the methods in presenaevisfual visual layer. The preliminary
results showed that BA-SLAM is functional startimgth 3 views only, yields better
performance than EKF-SLAM in similar conditions #Bocomputational cost only a few times
higher. In absence of range measurement or extpostion updates, both estimators are
subject to drift during the orbital motion and #rweor amplitude can be rather dispersed after
a few revolutions. As expected, tracking a largemher of landmarks enabled to reduce the
drift and the dispersion and some improvement wias abtained to some extent by
increasing the number of views. The work was coteglewith the coupling of both
estimators to a vision layer processing simulattdraid images and this allowed to confirm
the performance behavior of both methods in mopeesentative conditions. This showed
also that the dominant computational burden isnitefy on the image processing side and
makes the debate about the estimation executidriesssrelevant.

These results are promising but they were obtaureter a set of simplifying asssumptions
that need to be revisited to broaden and conselitiet evaluation analysis. Several important
aspects remain to be characterized: the sensitwityitial state errors, measurement outliers,
residual uncertainty on the asteroid motion, tifeu@mce of more realistic vehicle dynamics
and landmark distribution due to a complex astesbidpe and texture. From the BA-SLAM
perspective, the absence of explicit uncertaintgwadge constitutes a limitation that needs
to be overcome to improve the efficiency of feataratching. Robustness being a central
issue, a continuation of this study will also addréwo topics: the value of sparse distance
measurements to improve position observability, thedetection of landmarks already
observed in the past. Another path that remaitetexplored is the applicability of a hybrid
algorithm, merging the best elements of EKF and 84&M together. As a subsequent step,
it would also be essential to evaluate the hardwageirements of one of the considered
navigation methods, which could give an insight lmow far in the future autonomous,
embedded and vision-based navigation could be ien&d.
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