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Abstract:

Recent studies have shown that the Global Navigation Satellite Systems exist in a background of
complex resonant phenomena and chaotic motion. Woven throughout the inclination and eccentricity
phase space is an exceedingly complicated web-like structure of lunisolar secular resonances, which
become particularly dense near the inclinations of the navigation satellite orbits. As in all cases in
the Solar System, chaos emerges from the interaction and overlapping of neighboring resonances.
The precarious state of the four navigation constellations, perched on the threshold of instability,
makes it understandable why all past efforts to define stable graveyard orbits, especially in the
case of Galileo, were bound to fail; the region is far too complex to allow of an adoption of
the simple geosynchronous disposal strategy. We retrace one such recent attempt, funded by
ESA’s General Studies Programme in the frame of the GreenOPS initiative, that uses a systematic
parametric approach and the straightforward maximum-eccentricity method to identify long-term
stable regions, suitable for robust graveyards, as well as large-scale excursions in eccentricity,
which can be used for post-mission deorbiting of constellation satellites. We then apply our new
results on the stunningly rich dynamical structure of the MEO region toward the analysis of these
disposal strategies for Galileo, and discuss the practical implications for chaos in this regime.
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1. Introduction

The application of the mathematical tools and techniques of nonlinear dynamics has provided
astronomers with a deeper understanding of the dynamical processes that have helped to shape
the Solar System [1]. Resonant phenomena connected with the commensurability of frequencies
of interacting motions abound in celestial mechanics and have both dynamical and theoretical
importance. A succession of remarkable features in the asteroid belt, known as the Kirkwood gaps,
vividly illustrates the physical significance of resonances and chaos in real systems. Considerable
impetus was imparted over the past three decades to the study and understanding of this type of
chaotic unpredictability and its manifestation in other astronomical problems.

With chaotic motions being a natural consequence of even the most simplest of systems, it may
no longer be sensible to investigate the “exact” trajectory of a celestial body (natural or artificial)
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in a given time interval [2]. Far beyond the Lyapunov time, the characteristic time over which
an orbit is said to remain predictable, it is not possible to reproduce the same time evolution
if the system is chaotic, due to the exponential growth of uncertainties (in the initial state, mis-
modeling effects, numerical errors, etc.). The irregular and haphazard character of the chaotic path
of a celestial body reflects a similar irregularity in the trajectories of stochastic systems, as if the
former were influenced by a random perturbation even though, in fact, the motion is governed by
purely deterministic dynamical equations. There is, however, an essential difference: “classical
(that is, non-quantum mechanical) chaotic systems are not in any sense intrinsically random or
unpredictable,” as John Barrow puts it, “they merely possess extreme sensitivity to ignorance [3].”
Despite the unpredictability of the path of a particular orbit, chaotic systems can exhibit statistical
regularities, and have stable, predictable, long-term, average behaviors [4]. The lesson is that the
time evolution of a chaotic system can only be described in statistical terms; one must study the
statistical properties of ensembles of stochastic orbits [2, 5].

Our knowledge about the stability of the orbits of artificial satellites is still incomplete. Despite
over fifty years of space activities, we know amazingly little about the dynamical environment
occupied by artificial satellites and space debris. Strange as it may seem, we understand the
structure and evolution of the, mostly invisible, trans-Neptunian belts of small bodies [1] far
better than we understand that of the artificial bodies that orbit our terrestrial abode. Before these
remnants of Solar-System formation diverted the interests and energies of space-age astronomers,
such astrodynamical problems stood in the foremost rank of astronomical research work [6]. The
kind of Newtonian determinism brought to bear during the 1960s has continued merrily along in
astrodynamics, unheeding the fundamental discoveries of nonlinear dynamics. Today we take for
granted the great power and scope of modern computers, treating them as the supreme intelligence
imagined by Laplace, and the construction of increasingly more ‘accurate’ and grandiloquent
dynamical models and simulation capabilities has become the central task of the field.

As long as our thought processes are limited along the inflexibilities of determinism, we will
remain forever ignorant of the possible range and vagaries of chaos in Earth satellite orbits. An
understanding of these chaotic phenomena is of fundamental importance for all efforts to assess
debris mitigation measures — efforts which may shed much light on the design and definition of
optimal disposal strategies throughout all space regions (LEO, MEO, GEO, HEO, LPO), taking into
account orbital interaction and environmental evolution. In this context, there has been considerable
recent interest in designing novel de-orbiting or re-orbiting solutions for the MEO navigation
satellites [7, 8, 9], since the operational constellations and recommended graveyard orbits have been
found to be unstable [10].

The intent of this paper is to provide a case study on the European Galileo system that can be
used as a reference for the other constellations, and to serve as a springboard for investigating
new dynamical situations that may arise. We begin with a parametric numerical study on two
end-of-life disposal strategies, based on the Laplacian paradigm, which investigates the role of the
initial parameters of the disposal orbits (the semi-major axis, eccentricity, inclination, orientation
phase angles, and epoch) on their long-term stability over centennial and longer timescales. We
summarize our findings from this extensive numerical experiment and show, based on our recent
studies of the dynamical structure of MEO [11], why such general recommendations and guidelines
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should be taken with a grain of salt. We then tailor our results on the resonant and chaotic structures
of the phase space near lunisolar secular resonances [11, 12] towards the analysis of the disposal
options for Galileo. We omit on this occasion any mathematical discussion and simply present the
main results at which we have arrived.

2. Parametric Study on Two Disposal Strategies

2.1. Introduction and Experimental Setup

Considerable attention is now being devoted to the problem of determining the long-term stability
of medium-Earth orbits. The problem has been especially timely ever since the advent and launch
of the European Galileo and the Chinese Beidou constellations. The main physical mechanisms
that can lead to substantial variations in eccentricity, thereby affecting the perigee radius, are
resonance phenomena associated with the orbital motion of artificial satellites. While the dynamics
of MEOs, governed mainly by the inhomogeneous, non-spherical gravitational field of the Earth,
is usually only weakly disturbed by lunar and solar gravitational perturbations, for certain initial
conditions, appreciable effects can build up through accumulation over long periods of time. Such
lunisolar resonances, which can drastically alter the satellite’s orbital lifetime, generally occur
when the second harmonic of the Earth’s gravitational potential (J2) causes nodal and apsidal
motions which preserve a favorable relative orientation between the orbit and the direction of the
disturbing force [12]. There is also another class of resonances that occurs when the satellite’s mean
motion is commensurable with the Earth’s rotation rate, thereby enhancing the perturbing effects
of specific tesseral harmonics in the geopotential. These tesseral resonances pervade the MEOs of
the navigation satellites [7] and their net effects are to produce small, localized instabilities in the
semi-major axis.

A proper understanding of the stability characteristics of the two main types of resonances in
MEO is vital for the analysis and design of disposal strategies for the four constellations. This
concerns particularly the question as to whether suitable stable orbits exist such that satellites in
these graveyards will not interfere with the constellations, or whether strong instabilities exist,
whose destabilizing effects manifest themselves on decadal to centennial timescales, that can be
exploited to permanently clear this region of space from any future collision hazard. The process of
dynamical clearing of resonant orbits is a new paradigm in post-mission disposal, but has not been
hitherto rigorously studied.

Accordingly, in the framework of the ESA/GSP Contract No. 4000107201/12/F/MOS, we investi-
gate the structure of the web of commensurabilities in the MEO region, using a dynamical model
accounting for the Earth’s gravity field, lunisolar perturbations, and solar radiation pressure (Tab.
1). We study particularly to what extent the change in initial parameters of storage orbits can
affect the long-term stability of these orbits over long intervals of time. This study is based on the
numerical integration of the averaged equations of motion, using a semi-analytic model suitable for
all dynamical configurations, which has been approved as the reference model for the French Space
Operations Act (through the software, STELA, and its fortran prototype1).

1STELA (Semi-analytic Tool for End of Life Analysis) can be downloaded from the CNES website:
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Table 1. Gravitational perturbations added to the central part of the geopotential for the numerical
stability analysis. Model 4 (which also includes SRP perturbations with Earth shadow effects) is
used for the MEM maps of the ESA study and model 1 for the FLI and Lyapunov time stability
maps of Section 4.

ZONAL TESSERAL LUNAR SOLAR

model 1 J2 not considered up to degree 2 up to degree 2

model 2 J2,J2
2 ,J3 · · · ,J5 not considered up to degree 4 up to degree 3

model 3 J2,J2
2 ,J3 · · · ,J5 up to degree & order 5 up to degree 4 up to degree 3

model 4 J2,J2
2 ,J3 · · · ,J7 up to degree & order 5 up to degree 3 up to degree 3

model 5 J2,J2
2 ,J3 · · · ,J7 up to degree & order 5 up to degree 4 up to degree 3

An analysis of the historical practices of the GNSS constellations was performed in order to properly
define the reference simulation scenario [7]. The nominal initial conditions and values of area-
to-mass ratio considered for each disposal strategy are displayed in Tab. 2. For the graveyard
orbit scenario, it is important to ensure that the storage orbits have only small-amplitude orbital
deformations over long periods of time, so that the inactive satellites cannot cross the orbital
region of active GNSS components (and possibly collide). This in turn implies that we must
minimize the long-term eccentricity growth in order to delay or prevent the penetration of the
GNSS altitude shells. Alternatively, for the eccentricity growth scenario2, we explore the possibility
of de-orbiting satellites by pushing them into unstable phase-space regions that would slowly
decrease their perigee distances, leading to a long-term reduction in the combined constellation and
intra-graveyard collision risks.

The numerical investigation consisted in propagating the initial conditions of Tab. 2 for 200 years,
under the dynamical model 4 in Tab. 1, for a large variety of initial orientation phase parameters
and analyzing the maximum eccentricity attained in each case. This maximum-eccentricity method
(MEM) provides a straightforward indication of ‘stability’ and has been used in a number of astro-
nomical contexts [13, 14, 15]. Instinctively and historically, we expect that the orbits become more
unstable as their eccentricities grow; yet, we note that this method is not necessarily an estimator of
chaos and stability (since large amplitude variations of eccentricity could be due to regular motion,
e.g., secular perturbations; and small oscillations could be the result of slow manifestations of
chaotic behaviors, e.g., orbits with large Lyapunov times). We characterize each initial point of
the parameter plane by their maximum eccentricity value (or a closely related quantity) under the
following conditions:

1. 36 equally spaced values of ω ∈ [0◦ : 360◦] in increments of 10◦;
2. 36 equally spaced values of Ω ∈ [0◦ : 360◦] in increments of 10◦;
3. 38 equally spaced initial epochs t0.

http://logiciels.cnes.fr/STELA/en/logiciel.htm
2Note that for this disposal strategy, a maneuver (∆v ∼ 100 m/s) is applied at the nominal orbit of the Galileo

constellation; i.e., at the same initial orbital elements as in the graveyard case, except for the semi-major axis which is
lowered by ∆a = 550 km, resulting in the semi-major axis and eccentricity displayed in the second row of Tab. 2.

4



The same analysis has also been performed by increasing and decreasing, respectively, the initial
inclination by 1◦ with respect to the nominal value. The aim is not only to see if the known resonant
harmonic 2ω +Ω is actually the most significant, as suggested, justly or unjustly, by many others
[10, 9], but also to gain insight on the role of the initial inclination and of the Earth-Moon-Sun
dynamical configuration on the evolution of the orbits.

Table 2. Initial mean orbital elements considered for the disposal orbits of the Galileo constellations,
and the corresponding values of area and mass. The difference in semi-major axis ∆a with respect
to the nominal constellation is also shown.

Disposal Strategy a (km) ∆a (km) e i (deg) A (m2) m (kg)

Graveyard Orbit 30,150 550 0.001 56 9.3 665

Eccentricity Growth 28,086 -1514 0.0539 56 9.3 665

The Saros Cycle and Earth’s Orbital Environment : Any account of motion in the Earth-
Moon-Sun system has to start with a description of the dynamical configuration of this three-body
problem. The motion of the Moon manifests an abundance of irregularities, many of them large
enough to have been discovered by ancient astronomers. While the Moon’s actual motion is very
complex, Perozzi and colleagues [16] have shown through the use of eclipse records and the refined
lunar ephemeris computed at JPL, which accounts for all Solar System perturbations, that the
relative dynamical geometry of the Earth-Moon-Sun system at any time is very nearly repeated after
a period of time equal in length to the classical cycle known as the Saros3. Saros means repetition
and indicates a period of 6 585.321 347 days, after which the Sun has returned to the same place it
occupied with respect to the nodes of the Moon’s orbit when the cycle began. As a consequence,
the geocentric lunar orbit is nearly periodic with such period.

Armed with the above knowledge, we have made our numerical integrations also with the purpose
of investigating whether after every Saros a specific configuration of (Ω,ω) leads to the same
eccentricity growth. To this end, the simulations were performed every ∆t = Saros/19≈ 346.59586
days, starting from t0 = 26 February 1998 (a solar eclipse epoch) to t f = 2 Saros. We have chosen
this time step because it corresponds to an eclipse year, the period of time after which the Moon
passes through the same node and the Earth, Moon, and Sun are aligned.

2.2. Simulation Results and Discussion

We present here only a subset of our results as the full scope of this study will be given in a later
paper and its relation to the other navigation constellations will be formulated there more completely.
No space will be devoted therefore to any comparison between the similar, albeit less systematic,
efforts to tackle this problem by other groups of researchers [8, 9].

3The Saros has been the basis for which predicting eclipses rests since the very dawn of Chaldean history; after the
lapse of the Saros period of roughly 6585 days, solar and lunar eclipses recur under almost identical circumstances
except that they are displaced about 120◦ westward on the Earth. The near repetition of eclipses is a consequence of
the set of near commensurabilities existing between the various types of lunar months; namely, 223 synodic months is
nearly 239 anomalistic months and 242 draconic months.
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Figure 1 shows a sample of results from this experiment, and Fig. 2 outlines an ω–targeting
strategy to achieve the desired outcome. Similar MEM maps were made for each eclipse year,
and the variations in inclination and semi-major axis were tracked in addition to the eccentricity4,
from which we can make the following general observations. The semi-major axis does not
change significantly in 200 years (at most 70 km in absolute value) in any of the cases explored.
Consequently, to avoid interferences with the operational constellation, the eccentricity should not
exceed 0.02. The minimum eccentricity required to re-enter the atmosphere, assumed to occur
whenever the altitude reaches at least 120 km, is about 0.77. The near invariability of the semi-major
axis leads us to conclude that the tesseral harmonics cannot be responsible for the noted eccentricity
instabilities.

For the graveyard orbit scenario, we noticed that the eccentricity can grow up to about 0.4, for any
of the considered initial inclinations. Moreover, we note the vertical bands of stability (negligible
eccentricity growth) in (Ω,ω), Fig. 1, which shift as a function of t0 (not shown here). In general,
we found that it was nearly always possible to target an argument of perigee ensuring ‘stability’ (Fig.
2); that is, for any given (t0,Ω) there exists at least one initial ω corresponding to a safe disposal.
The situation seems more favorable if the initial inclination is increased by 1◦, in the sense that the
stable vertical bands are wider.

Concerning the eccentricity growth scenario, we found that the eccentricity can increase by up to 0.8,
for the three initial values of inclination considered. In the nominal Galileo case, the eccentricity
growth is remarkable in the entire (t0,Ω,ω) phase space; specifically, for any given epoch and
ascending node, there exits always one (but generally more) initial ω leading to a re-entry (Fig. 2).
In the −1◦ case, re-entry values for e can be achieved if Ω ∈ [50◦,300◦], while in the +1◦ case, the
Ω range depends on t0. If the satellite’s node does not match these such values, then the eccentricity
tends to stay below 0.1. Atmospheric re-entries were found for the three cases to occur only after at
least 100 years.

Finally, we observed a very interesting characteristic of this multi-frequency and highly-perturbed
dynamical system. We have performed further analysis with respect to the behavior in time of the
maps, by simulating the eccentricity evolution starting from initial epochs displaced by 5 Saros
periods from the first 19 considered eclipse year epochs. This revealed that the MEM maps are
not periodic over the Saros cycle (∼ 18.03 years), but in fact over 1 nodal regression period of
the Moon (∼ 18.61 years). At first sight, this seems rather surprising, but when duly considered,
manifests itself as a natural consequence of the lunar perturbing force, which we now speculate as
the main driver of the long-term dynamics. First noted by Musen [17], when doubly averaged, the
long-period lunar effect “depends only upon the position of the orbital plane of the Moon and is not
influenced by the position of the lunar perigee.” Thus, we should not expect the general behavior to
be periodic over the Saros period, which intrinsically accounts for both the nodal regression and
apsidal precession.

4The inclination behavior will not be discussed here.
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Figure 1. The maximum eccentricity attained in 200 years (colorbar), as a function of the initial
longitude of ascending node and argument of perigee, at a given epoch, for the graveyard orbit (left)
and eccentricity growth (right) scenarios. Points that meet the various thresholds are indicated by
violet (emax < 0.02) and black (emax > 0.76), and the empty white spaces are locations where data
is missing due to numerical issues.

Practical Implications of Chaos : Any initial uncertainty in our knowledge of a chaotic system
will have small consequences early but profound consequences late, often being rapidly amplified in
time. While it is true that the verification of some criteria of stability to define the initial parameters
of storage orbits requires long-term orbit propagation up to more than 100 years, most international
guidelines and recommendations seem fixated on 200-year forecasts. The 200-year timespan for
future projections is not only arbitrary, but completely nonsensical from a dynamical perspective.
Every distinct problem in orbital dynamics conditions its own particular scheme of computation,
and the question of an appropriate timescale upon which to investigate cannot therefore be answered
in a general manner; the answer depends largely on the problem in question and on the degree of
knowledge aimed at. An improper assessment can lead to erroneous conclusions regarding stability
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Figure 2. The ω–targeting strategy: the value of argument of perigee (colorbar) which ensures that
the eccentricity will not exceed 0.02 in 200 years (top) or which ensures a re-entry (bottom), as
a function of the initial epoch and longitude of ascending node. Left: nominal initial inclination;
middle: initial inclination decreased by 1◦; right: initial inclination increased by 1◦.

and chaos. Consider, for example, one of the declared safe graveyard orbits of Fig. 1, as shown in Fig.
3. This orbit does not manifest any significant eccentricity growth for 200 years, and yet is revealed
by our stability analysis to be chaotic with a Lyapunov time of 55 years. Alternatively, chaotic orbits
which initially appear to re-enter may follow evolutionary paths that lead to long-lasting eccentric
orbits (Fig. 3(b)).

3. Resonance Overlap and the Origin of Chaos

3.1. Background

Resonances are regions in the phase space of a dynamical system in which the frequencies of
some angular variables become nearly commensurate. Such regions have a profound effect on the
long-term dynamics of the system, giving rise to a rich spectrum of highly complicated behaviors [4].
It is of great practical importance to understand the mechanisms behind these irregular features, both
qualitatively and quantitatively. Recently, it has been realized that lunisolar secular resonances (i.e.,
caused by the Moon and the Sun on long timescales) are of particular importance in the medium-
Earth orbit regime [12, 11]. We review in this section our investigations on the detection of regular
structures and chaotic behaviors in the phase space near the navigation satellites. Studying the
long-term effects of lunisolar secular resonances is crucial, not only because we need to understand
their stability properties, but also because we would like to know whether they could be used (and
how) for eventually deorbiting satellites, by forcing them to slowly drift towards high eccentricities
and different inclinations.

Despite the variety and complexity of the nature of the dynamics near resonances, we can build an

8



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  100  200  300  400  500

e

Time (years)

(a) A stable case. a0 = 30,150 km, e0 =
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(b) An unstable case. a0 = 29,600 km,
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Figure 3. Numerical ensemble integrations according to the various dynamical models (top) in Tab.
1 and of nearby orbits (bottom) for apparently safe disposal and re-entry orbits. The vertical lines
indicate the Lyapunov times, corresponding to an average limit of predictability of each orbit.

intuitive understanding using the mechanics of a pendulum. Pendulum-like behavior is fundamental
to the mathematics of resonance: phase-space structure, separatrices of a periodic motion, and
stability. The principal effect of the interaction of two resonances is to produce qualitative changes
in the separatrix of the perturbed resonance, producing a stochastic layer in its vicinity. The onset
of deterministic chaos and the loss of stability is predicted to occur when the separation between
the resonances is of the order of their resonance widths [4]. Nearly all chaos in the Solar System
and beyond has been attributed to the overlapping of resonances [1]5.

3.2. Lunisolar Resonant Skeleton

Focusing on the MEO region located between three and five Earth radii, namely in a region for which
the variation of the argument of perigee ω and longitude of ascending node Ω may be estimated by
considering only the effect of J2 (the second zonal harmonic coefficient of the geopotential) and for
which the lunar and solar potentials may be approximated with sufficient accuracy by quadrupole
fields, the center of each lunisolar secular resonances (for prograde orbits) may be defined in the

5Note that while this is the main physical mechanism for the generation of chaos, two overlapping resonances may
lead to regular motion sometimes; see, e.g., [18].
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inclination–eccentricity (i–e) phase space by the curves [12, 11]

Cnnn =
{
(i,e) ∈ [0,

π

2
]× [0,1] : ψ̇nnn = n1ω̇ +n2Ω̇+n3Ω̇M = 0

}
(1)

for n1 =
{
−2,0,2

}
, n2 =

{
0,1,2

}
, n3 ∈ [−2,2], where

ω̇(i,e) =
3
4

J2R2√µ

a7/2
5cos2 i−1
(1− e2)2 , Ω̇(i,e) =−3

2
J2R2√µ

a7/2
cos i

(1− e2)2 , Ω̇M =−0.053◦/day. (2)

Here the semi-major axis a is a parameter6, R is the mean equatorial radius of the Earth and µ its
gravitational parameter. Using the full machinery for pendulums, it can be shown that the curves
delimiting the maximum separatrix width of each resonance (i.e., the maximum amplitude inside
the libration zone) are defined by [11]

W ±
nnn ≡

{
(i,e) ∈ [0,

π

2
]× [0,1] : ψ̇nnn =±∆nnn

}
, (3)

in which

∆nnn = 2

√
3
2

J2R2

a4

∣∣∣∣n2
1 (2−15cos2 i?)+10n1n2 cos i?−n2

2

(1− e2
?)

5/2 hnnn(i?,e?)
∣∣∣∣, (4)

where hnnn is the harmonic coefficient in the lunar and solar disturbing function expansions, associated
with the harmonic angle which is in resonance7, and (i?,e?) are the ‘actions’ at exact resonance;
namely, the inclinations and eccentricities that satisfy (1).

Figure 4 shows that resonances fill the phase-space near the Galileo constellation. These resonances
form in some sense the skeleton or dynamical backbone, organizing and governing the long-term
orbital motion. The resulting dynamics can be quite complex, and it has been shown that chaos
ensues where resonances overlap [12]. It is particularly noteworthy that the nominal inclination
of Galileo lies right at the cusp of three distinct and dynamically significant resonant harmonics.
Such naivety in the placement of these important assists reflects the need of a real dynamical
assessment in constellation design. What is more to the point is that the conclusions drawn from
the computationally expensive parametric study of Section 2. are easily corroborated here. In the
graveyard orbit scenario, increasing the inclination by 1◦ moves the storage orbits outside of the
overlapping regime, and thus we would naturally expect this to be the more dynamically stable
case. For the eccentricity growth scenario, the nominal Galileo case is the more unstable situation
because the orbits lie at the primary ψ̇2,1,0 resonance, while the instabilities in the other inclination
cases are likely due to the generation of secondary resonances (commensurabilities of the libration
and circulation frequencies of primary resonances) that expand the size of the chaotic zones about
the ψ̇2,1,0 resonance. Rather ironically, the targeting of a lower semi-major axis for this disposal
strategy appears inappropriate, as keeping the constellation at the Galileo semi-major axis would
have resulted in greater instabilities with the interaction of the three distinct primary resonances.

6The lunar and solar perturbation parameters are proportional to a as εM = εM(a/aM) and εS = εS(a/aS).
7Explicit expressions for hnnn for each of the 29 distinct curves of secular resonances are given in [11].
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Figure 4. Lunisolar resonance centers Cnnn (solid lines) and widths W ±
nnn (transparent shapes) for

various values of the satellite’s semi-major axis near Galileo. This plot shows the regions of overlap
between distinct resonant harmonics.

This basic understanding reached, using pen-and-paper calculations in the manner of Lagrange and
Laplace, is a strong testimony to the enduring power of analytical theories in celestial mechanics.

Figure 4 gives the basic regions in the 2D inclination–eccentricity phase space for which chaotic
orbits can be found, but gives no information about which initial angles (ω , Ω, and ΩM) will lead
to chaos. For this, we turn to the numerical detection of chaotic and regular motion through FLI
stability and Lyapunov time maps, which furthermore provide a global visualization of the curious
symbiosis of these two fundamental types of behaviors.

4. FLI Stability Analysis

It was shown in [11] that model 1 in Tab. 1 captures, qualitatively and quantitatively, all of the
dynamical structures revealed by the more realistic and more complicated models. We cannot show
here how abundant and fruitful the consequences of this realization have proved. The application
of this basic physical model leads to simple and convincing explanations of many facts previously
incoherent and misunderstood. Here we tailor the recent results of [11], to which we refer for
omitted details, to the evaluation of the proposed disposal strategies.

Figures 5 and 6 present several dynamical quantities of interests, in a series of maps8, for semi-major

8To produce the various stability maps, the initial conditions were distributed in a regular grid of 200×200 resolution,
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axes and parameters near the disposal orbits of Section 2.: the FLIs [19, 20], characterizing the
degree of hyperbolicity; the Lyapunov time, an estimate of the prediction horizon; and collision time.
The FLIs of all regular orbits appear with the same dark blue color, while light blue corresponds
to invariant tori, yellow and red to chaotic regions, and white to collision orbits. We find that the
volume of collision orbits is roughly the same for the stable and unstable semi-major axes, but
that the volume of chaotic obits is indeed larger for the eccentricity growth scenario (where we
also find highly unstable and re-entry orbits even for quasi circular orbits). Inside the collision
orbit structures, the re-entry time is nearly constant, and the shortest dynamical lifetime was almost
identical in both cases (∼ 120 years). For each scenario, the values of the estimated Lyapunov times
imply a very short timescale for reliable predictability, with many orbits having values on the order
of a few decades.
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(a) FLI map.
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(b) Lyapunov time map.
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(c) Collision time map.

Figure 5. Stability maps characterizing the local hyperbolicity and the barrier of predictability in
the vicinity of a proposed graveyard orbit case (a0 = 30,100 km, Ω0 = ω0 = 70◦, epoch: 6 DEC
2020). The collision time map is provided to illustrate the period of time after which atmospheric
re-entry occurs, and completes the variational maps.
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(a) FLI map.
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(b) Lyapunov time map.
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Figure 6. Same as Fig. 5, but for a proposed eccentricity growth case (a0 = 28,100 km, Ω0 = 60◦,
ω0 = 100◦, epoch: 6 DEC 2020).

We must stress here that all of these charts, Figs. 5 and 6, have been obtained by varying only the
initial inclination and eccentricity, with the initial phases (t0,Ω,ω) being fixed for all computed
FLI. Given the inherent difficulty to capture the dynamics of the whole six-dimensional phase space
in a plane of dimension two, we must settle for only a partial insight into the dynamical structure
[20, 21]. We now fix the action-like quantities to their approximate nominal values, along with the
epoch date, and investigate the geometrical organization and coexistence of chaotic and regular
motion in the Ω–ω phase space (Fig. 7). Note the similarity between the MEM maps of Fig. 1 (top),

and the model was propagated for 500 years.
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computed over a 200 year timespan; yet, the FLI and Lyapunov time maps, besides providing much
finer detail for the proper detection of invariant structures and chaotic regions, give actual physical
information on these unpredictable orbits, whereas the MEM maps provide only one trajectory
realization. In the stable case, we point out again how the structures seem to be aligned along
vertical bands, and can observe a highly stable region near Ω = 210◦ (notice how the misleadingly
wide bands of stable orbits in Fig. 1 disappear in a proper resolution and computational time). The
volume of escaping orbits is larger for the unstable case, and it becomes much more difficult to
identify stable regimes.

Figure 8 presents the evolution of the FLI maps in the node–perigee phase space, exploring the
sensitivity to the initial semi-major axis near the nominal Galileo value. It is particularly noteworthy
that the volume of stable orbits is found to increase with increasing semi-major axis, as with the
width of the vertical band of stability, occurring near Ω = 180◦. The location of this strip of stability
is related to the resonant geography of the observed area (Fig. 4), and an analytical description of
these structures will be pursued in a future work. On the contrary, decreasing the initial semi-major
axis from the Galileo constellation (where the precise identification of stability pockets already
presents a difficult task), the Ω–ω phase-space is nearly globally populated by unstable orbits that
surround collisions orbits, the latter organized in pendulum-like structures.
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(a) FLI map.
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(b) FLI map.
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(c) Lyapunov time map.
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(d) Lyapunov time map.

Figure 7. Dynamical structures of the stable (left: a0 = 30,100 km, e0 = 0.001, i0 = 56◦) and
unstable (right: a0 = 28,100 km, e0 = 0.05, i0 = 56◦) cases in the node–perigee phase space.

Figure 9 shows how the dynamical structures (stable, resonant, chaotic, or collision orbits) evolve by
changing the initial phases Ω and ω or even the initial dynamical configuration of the Earth-Moon-
Sun system (equivalent to changing the initial epoch). Of course, the FLI maps depend on the choice
of initial angles because, as Todorović and Novaković write, “. . . planes fixed at their different
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(a) a0 = 28,600 km.
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(b) a0 = 29,100 km.
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(c) a0 = 29,600 km.
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(d) a0 = 30,100 km.
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(e) a0 = 30,600 km.

Figure 8. Influence of the strength of the perturbation on the dynamical structures near Galileo’s
semi-major axis (e0 = 0.02, i0 = 56.1◦, epoch: 2 MAR 1969).

values cross the resonant islands at different positions, and in some special cases the crossing may
not even occur. After all, the orbital space is 6D, while our plots are 2D, which certainly gives only
a partial insight into the phase-space structure. However, we underline that this does not change the
global dynamical pictures of the region, which is essential the same . . . [20]”. To understand how
such features evolve is clearly of remarkable practical application, and will require further study.

5. Conclusion

It is no longer possible to investigate the motion of celestial bodies without being fully conscious of
the possibilities of chaos, a fact well known to dynamical astronomers but seemingly oblivious to
space engineers. Resonant and chaotic phenomena are ubiquitous in multi-frequency systems, and
the knowledge of their long-period effects is essential for determining the stability of orbits and
the lifetime of satellites. The complexity of the dynamical environment occupied by the Earth’s
navigation satellites is now becoming clearer [12, 11]. Resonant phenomena are widespread within
the medium-Earth orbit (MEO) region as a whole, but particularly so amongst the highly inclined
orbits of the navigation satellite systems, and a clear picture of the dynamics near these resonances
is of considerable practical interest. We can now identify the sources of orbital instability or their
absence in the MEO region and their nature and consequences in the context of long-term dynamical
evolution. We examined them in terms of the detection of stability and unstable zones, with a
particular view on the choice of the Galileo constellation disposal orbits. This paper links theoretical
aspects of resonant and chaotic dynamics with practical applications, and lays an essential logical
foundation for future developments.

14



 53  53.5  54  54.5  55  55.5  56  56.5  57

i (deg)

 0

 0.005

 0.01

 0.015

 0.02

e

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) Ω = 240◦, ω = 30◦, epoch: 2 MAR 1969.
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(b) Ω = 120◦, ω = 120◦, epoch: 2 MAR 1969.
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(c) Ω = 120◦, ω = 120◦, epoch: 23 AUG 1974.

Figure 9. Influence of the initial phases and the initial configuration of the Earth-Moon-Sun system
in the representation of a dynamical system in a lower dimensional phase space.
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