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Abstract: The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented,
spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the
operational success of the mission, on-board systems must be able to deliver high-precision orbital
adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in
tandem with accelerometers whose measurements are dynamically corrected for errors associated
with a spinning platform. In order to determine the required corrections to the measured accelera-
tion, precise estimates of attitude, rate, and mass-properties are necessary. To this end, both an
on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and
implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.

Keywords: Kalman Filter, system identification, attitude estimation, calibration

1 Introduction

The Magnetospheric Multiscale (MMS) mission, launched on March 13, 2015, is the fourth mission
of NASA’s Solar Terrestrial Probe program. MMS consists of four identically instrumented obser-
vatories that function as a formation to provide the first definitive study of magnetic reconnection in
space.

Since it is frequently desirable to isolate electric and magnetic field sensors from stray effects caused
by the spacecraft’s core-body, the suite of instruments on MMS includes six radial and two axial
instrument-booms with deployed lengths ranging from 5–60 meters (see Fig. 1). The observatory is
spin-stabilized about its positive z-axis with a nominal rate slightly above 3 rev/min (RPM). The
spin is also used to maintain tension in the four radial wire-booms.

Each observatory’s Attitude Control System (ACS) is responsible for orbital adjustments, attitude
control, and spin adjustments. Its sensor and actuator compliment consists of Adcole’s spinning
slit digital sun sensor, a four camera-head µASC Star Tracker System (STS) manufactured by the
Technical University of Denmark (DTU), the micro-g resolution Acceleration Measurement System
(AMS) produced by ZIN Technologies, and four axial AMPAC 1-lbf (4.4 N) and eight radial Aerojet
4-lbf (17.8 N) mono-propellant hydrazine thrusters. Additional details on the ACS hardware and
maneuvering system controller may be found in the references[1][2].

The sections that follow describe the formulation and performance of the Multiplicative Extended
Kalman Filter (MEKF) that is used for on-orbit attitude and rate determination, and the addi-
tional augmented filter-states and measurements necessary to perform an off-line mass property
and thruster calibration. The paper concludes with a description of a calibration maneuver se-
quence performed with the spacecraft in a partially-deployed state, and a comparison of the system
identification results against pre-flight expected values.
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Figure 1. MMS Observatory Fully-Deployed (top) and Stowed (bottom left/right)

2 Multiplicative Extended Kalman Filter (MEKF)

The MEKF is an evolved version of the Extended Kalman Filer (EKF) that was originally applied
to the Space Precision Attitude Reference System (a.k.a. SPARS) in 1969, and has been rigorously
developed by Lefferts, Markley, and Shuster[3][4][5]. It has frequently been used for spacecraft
attitude determination, in both real-time and off-line systems. In particular, the MEKF addresses
a pair of difficulties associated with using a quaternion in an Extended Kalman Filter—namely,
preserving the four-component quaternion’s unity norm constraint, while maintaining an unbiased
estimate of the attitude. The fundamental idea of the MEKF is to use a quaternion as the “global”
attitude, and use a three-component “local” representation for the attitude error (states) in the EKF.
Whereas a more intuitive EKF approach might use all four elements of a error quaternion (∆q) as
states, and then perform a full-state update additively by qtrue = ∆q+ q̂ (followed by an ad hoc
normalization scheme), the MEKF advocates a multiplicative full-state update

qtrue = δq⊗q̂ (1)

where qtrue is the quaternion parameterization of the true rotation/transformation from an inertially-
fixed reference frame to a body-frame attached to the spacecraft, q̂ is the (unbiased) estimate of
qtrue, and δq is an error quaternion that is parameterized by three states in the filter—the error
vector, δθ. Note that qtrue, q̂, and δq are all properly normalized unit quaternions.
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Also introduced in Eq. (1) is the notation for a (left) quaternion product that denotes a 4×4 matrix
formed from a four element column-vector, that expands to

q⊗ ≡


q1
q2
q3
q4


⊗

=

[
q1:3

q4

]⊗
= q4I4 +

[
−q×1:3 q1:3

−qT
1:3 0

]
=

[
q4I3−q×1:3 q1:3

−qT
1:3 q4

]
(2)

with q1:3 denoting the vector part of the quaternion and q4 the scalar element. This notation is
analogous to the skew-symmetric matrix that is formed from a three-component base-vector, e.g.
the angular rate vector ω, as

ω× ≡

ωx
ωy
ωz

× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (3)

that is equivalent to the vector cross product in matrix algebra. Lastly, the symbol In is used through
the text to represent the identity matrix of dimension n×n.

What exactly then is the error vector δθ that appears in the filter? Well, for small errors, a 1st-order
approximation is a legitimate abstraction—and the error states of a Kalman Filter are typically kept
small. Conceptually, a perfectly adequate “mental picture” of δθ is a vector of small error angles
(e.g. θx,θy,θz). With that in mind, the 1st-order relationship between the error vector and the error
quaternion is

δq≡ q⊗true(q̂
−)−1 ≈

δθ2
1

 (4)

which is now not of unit norm. However, even in the Kalman Filter’s algorithm—one that is linear
by design—a 1st-order approximation is an insufficient description of the error vector given that
the ultimate goal is to systematically address concerns surrounding quaternion normalization and
biased-estimates. For that purpose, a more precise definition of the filter’s three-component error
vector δθ is needed. Fortunately, many rigorously defined three-component attitude representations
are available to choose from—the Euler rotation axis and Euler angle, the Gibbs vector (a.k.a.
Rodrigues parameters), modified Rodrigues parameters, Tait-Bryan angles (a.k.a. a 1-2-3 Euler
sequence), etc.—each with their own benefits and pitfalls. Which particular parameterization
is “best” is entirely a system design decision, and the references ([3],[4]) expound on the usage
for each possible choice. In fact, the only places in the MEKF where the particular choice of
parameterization (i.e. exact definition of δθ beyond 1st-order) comes into play are the measurement
residual computation and reset operation—both of which will be discussed shortly.

For MMS, the Gibb’s vector (g) was selected to be the three-component parameterization of the
attitude error. It is related to the error quaternion by

δg≡ δq1:3
δq4

(5)
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or its inverse

δq =
±1√

1+‖δg‖2

[
δg
1

]
(6)

and to the actual error vector states by

δθ ≡ 2δg (7)

This error vector definition allows for a more precise re-statement of Eq. (4) as

δq =
1√

4+‖δθ‖2

[
δθ
2

]
=

 δθ

2
+ . . .O(δθ3)

1− 1
8‖δθ‖

2 + . . .O(δθ4)

 (8)

The Gibbs vector parameterization is a mapping from four-dimension quaternion space to three-
dimensional Euclidean space, and is infinity for 180-degree rotations (i.e. q4 = 0). While not
recommended as a global attitude representation, it has some nice properties when used in conjunc-
tion with the MEKF. These benefits include:

• free of singularities up to ±180-degrees (error states will never be that large)

• largest possible 180◦ attitude errors map to infinity, so the representation is conceptually
compatible with a Gaussian (or other random distribution) with infinitely long tails

• avoids accumulation of numerical errors in the full-state quaternion norm through an explicit
normalization in the “reset” that is neither an ad hoc re-normalization operation, nor does it
require transcendental function evaluations (see Eq. (8))

• observation model is insensitive to the sign ambiguity in the star camera’s output quaternion

• although not unique to the Gibbs vector parameterization, the diagonals of the error covariance
matrix (P) map directly to attitude error variance (σ2)

To summarize, the attitude error-states (δθ) used in the MMS MEKF are equal to twice the Gibbs
error-vector (δg), and for “small” values are approximately the angle of rotation about each of the
body-axes from the current full-state estimate (q̂) to the true attitude of the spacecraft (qtrue).

2.1 Dynamical System Model (MMS ACS)

Armed with a better understanding of the nuances of the MEKF, we may now focus on the specifics
of the MMS application. The attitude control system (ACS) flight software (FSW) is limited
to the computational capabilities of the flight processor (Motorola RH-CF5208 Coldfire), which
lacks hardware acceleration of floating-point operations. As a result, the ACS FSW models the
spacecraft’s angular rate (ω) dynamics using Euler’s rotational equation of a simple rigid-body
(even after all the boom appendages are deployed) that is driven by autonomously commanded
(u(t)) thruster torques (τ (u)).

τ (u) = I ω̇+ω×Iω (9)
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where I is the second mass moment matrix about the spacecraft’s center of mass (rc). The true
attitude kinematics are in turn driven by the angular rate.

q̇ =
1
2

[
ω
0

]⊗
q (10)

=
1
2

[
−ω× ω
−ωT 0

][
q1:3
q4

]
(11)

The commonly used gyro substitution model[4] is not an option for MMS due to the lack of an
on-board gyroscope. Therefore, the angular rate (expressed in the body-frame) along with the
attitude quaternion (from inertial to body-frame) make up the seven states of the dynamical system
model that is the basis for the on-board MEKF.

As previously discussed, the MEKF operates on only six states of attitude and rate errors—the
number is reduced by one using the error vector δθ attitude parameterization. Since the reset
operation (discussed in section 2.3) moves the error state information into the full-state after
each measurement is processed, and the full-states are propagated using (non-linear) Runge-Kutta
integration, the MMS MEKF does not ever perform an explicit propagation of its error states
(x̂). However, the error-state covariance (P) is propagated using linearized dynamics, so it is still
necessary to determine the coefficients of the linearized (state-space) model.

For the non-attitude error states (e.g. ω), the linearization process follows the standard EKF
template[6]. The non-linear system dynamics (ẋ = f(x,u, t)) are expanded about a reference
trajectory (i.e. the current state estimate x̂(t)), using a first-order Taylor series expansion to obtain
the error-state dynamics

ẋ︷ ︸︸ ︷
f(x(t),u(t), t)≈

˙̂x︷ ︸︸ ︷
f(x̂(t),u(t), t)+

∂ f
∂x

∣∣∣∣
x̂,u

δx︷ ︸︸ ︷
(x− x̂) (12)

ẋ− ˙̂x≈ ∂ f
∂x

∣∣∣∣
x̂,u
δx (13)

δẋ≈ F(t)δx (14)

In the case of the spacecraft angular rate error, we have

ω̇ = fω = I−1 [τ (u)−ω×Iω
]

(15)

δω̇ =
∂ fω

∂x

∣∣∣∣
q̂,ω̂,u
δx (16)

=

[
∂ fω

∂q︸︷︷︸
03×3

· ∂q
∂ (δθ)

∂ fω

∂ω

]
q̂,ω̂,u

[
δθ
δω

]
(17)

Recalling that the partial derivative of a scalar with respect to a vector is a vector, and that the partial
derivative of a vector with respect to a vector is a matrix, we very much want to avoid taking the
partial derivative of a matrix with respect to a vector (a third-rank tensor)! With this in mind, a

5



matrix-equivalent to the vector cross product identity~u×~v =−~v×~u is used along with the chain
rule to evaluate the partial derivative of Euler’s equation with respect to the angular rate—careful to
always keep the vector being differentiated on the far-right of each compound term so that it drops
out as the identity matrix.

∂ (I ω̇)
∂ω

=−∂ (ω×Iω)
∂ω

(18)

=−∂ (ω×)

∂ω
Iω−ω×∂ (Iω)

∂ω

= (Iω)×
∂ω

∂ω
−ω×I

∂ω

∂ω

which yields the following linearization for use in the angular rate error dynamics of Eq. (17),

∂ fω

∂ω
= I−1 [(Iω)×−ω×I

]
(19)

Unfortunately, the additive error definition (δx≡ x− x̂) of Eq. (12) defeats the stated purpose of
the MEKF (i.e. multiplicative update), and deriving the dynamics for the attitude-error requires
traveling along a somewhat longer path. One route, taken by [4] and [5], begins by using the chain
rule to obtain the time derivative of the attitude error definition of Eq. (1),

q̇true = δq̇⊗q̂+δq⊗ ˙̂q
1
2

[
ωtrue

0

]⊗
qtrue = δq̇⊗q̂+δq̇⊗

1
2

[
ω̂
0

]⊗
q̂

1
2

[
ω̂+δω

0

]⊗
δq⊗q̂ = δq̇⊗q̂+δq̇⊗

1
2

[
ω̂
0

]⊗
q̂ (20)

Right-multiplying Eq. (20) by q̂−1 and rearranging yields

δq̇ =
1
2

{[
ω̂+δω

0

]⊗
δq−δq⊗

[
ω̂
0

]}
(21)

=
1
2

{[
ω̂+δω

0

]⊗
δq−

[
ω̂
0

]�
δq

}
(22)

=
1
2

{[
−ω̂× ω̂
ω̂T 0

]
−
[
ω̂× ω̂
ω̂T 0

]}
δq+

1
2

[
δω
0

]⊗
δq

=

[
−ω×δq1:3− 1

2δω
×δq1:3 +

1
2δq4δω

−1
2δω

Tδq1:3

]
(23)

In Eq. (22) the quaternion identity p⊗q = q�p was used[4], which introduces here the “left”
quaternion multiplication matrix notation, [ ]�. The left-product is defined identically to the right-
product (Eq, (2)) except for the sign on the cross-product term in the upper-left 3×3 block of the
matrix. The expressions of Eqs. (21) – (23) for attitude error-quaternion are wonderfully exact.
However there are two problems—the quaternion is not the final attitude-error parameterization
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that will be used in the filter, and it is non-linear in the error-states. In order to make the change of
variables and linearize the error-state dynamics, the 1st-order approximations δq1:3 ≈ δθ/2 and
δq4 = 1 (see Eq. (4)) are used for the error-vector, and terms that are the product of two (small)
error-states are dropped (δωδθ ≈ 0). With these substitutions, Eq. (23) becomesδθ̇2

0

≈ [−1
2ω
×δθ+ 1

2δω

0

]

δθ̇ ≈−ω×δθ+δω (24)

which is the desired final form of the error vector dynamics. The dynamics for the full and error
states of the ACS flight software MEKF are summarized in Table 1.

Table 1. Summary of State Dynamics for MMS On-board MEKF

Nonlinear Full-State Model Linearized Error-State Model

ẋ(t) = f(q(t),ω(t),u(t),w(t))

=

{
fq (q,ω)
fω (ω,u)

}
+Gw

{
q̇
ω̇

}
=


1
2

[
−ω× ω

−ωT 0

]
q

I−1 [τ (u)−ω×Iω]

+Gw

δẋ = f(δθ(t),δω(t),u(t),w(t))

=

{
fθ (δθ,δω)

fω (δω,u)

}
+G(t)w[

δθ̇

δω̇

]
≈

[
−ω̂× I3

03×3 I−1 [(I ω̂)×− ω̂×I
]][δθ

δω

]
+

[
wθ

wω

]
≈ F(t)δx+w

Process Noise: w(t)∼ N(0,Q(t))

2.2 Measurement Update

There are three sensors on the MMS observatories—a sun sensor (DSS), a star tracker (STS), and
an accelerometer (AMS). Of the three, only the STS is used for on-board (real-time) attitude and
rate determination. The DSS is excluded because its resolution of ±0.125◦ (450 arcsec) was shown
to contribute little to the solution accuracy. The AMS acceleration measurements are neglected
because of the modest capability of the flight processor (the filter would need to be augmented with
bias states), and the additional power demands (AMS electronics plus thermal control heaters for
bias stability). Nevertheless, the AMS is enabled for maneuvers, and the richness of information
contained in its 1 kHz stream of µg acceleration measurements makes it possible to perform off-line
system calibration using ground-telemetered data (the subject of the second-half of this paper). The
STS and AMS measurements are staggered in time, so there are no update issues with simultaneous
measurements (combining multiple STS camera head solutions is discussed in section 2.2.1).

The specific form of the MEKF used on MMS is sometimes referred to as a Continuous-Discrete
Extended Kalman Filter[7], due to the discrete measurement updates from the on-board sensors

7



combined with the continuous state-dynamics. The generalized nonlinear observation model is

yk = h(qtrue(tk),ωtrue(tk), . . .)k +vk (25)

where vk is a vector of Gaussian distributed random measurement errors with covariance matrix Rk.

The goal of the measurement update is to use feedback of the difference between the actual (noisy)
measurement yk and a prediction of what it “should be” (i.e. its expected value ŷk) in order to adjust
the estimate using an optimal feedback gain (Kk). In the parlance of a Kalman filter with discrete
measurements, this is called the state update, and Kk is the Kalman gain. This operation—which was
described verbosely in the preceding paragraph—can be expressed more succinctly and elegantly
with the following mathematical statement

δx+k = δx−k +Kk {yk− ŷk} (26)

where the Kalman gain used is in the EKF standard form

Kk = P−k HT
k

[
HkP−k HT

k +R
]−1

(27)

Furthermore, in an EKF, the measurement model is allowed to be a nonlinear function of the states,
and is historically segregated into two parts using a 1st-order Taylor series approximation

ŷk = E {yk}= E {hk (xtrue)} (28)

≈ hk (x̂k)+
∂h
∂x

∣∣∣∣
x̂k

[(xtrue)k− x̂k] (29)

≈ hk (x̂k)+Hk (x̂k) δxk (30)

where Hk is known as the measurement sensitivity matrix—conceptually a local gradient in the
nonlinear measurement with respect to a particular state. While this is pedestrian fare for a standard
EKF, it has been made explicit here because it is another instance in the MEKF where the attitude
error-state must be handled carefully. Specifically, for the additive states it is immaterial whether or
not the sensitivity is with respect to the full or error state (i.e. the partial with respect to x produces
the same result as the partial with respect to δx). Not so for the multiplicative attitude! It requires
a more precise statement of the gradient. Since the linearized “slope” of the partial derivative
multiplies the error states in Eq. (30), the measurement sensitivity matrix (Hk) is correctly defined
with respect to error states. However, for the remainder of the paper the sensitivity partials of the
additive states will still appear as ∂x (i.e. with respect to a full-state), solely because ∂ (δx) is
cumbersome notation. With that said, the definition of the measurement sensitivity matrix for the
MMS on-board MEKF can be written as

Hk ≡
[

∂h
∂q
· ∂q

∂ (δθ)

∂h
∂ω

]
q̂k,ω̂

(31)

where it can be shown[4] by using the 1st-order approximation of Eq. (4) produces the matrix

∂qtrue

∂ (δθ)
≈ ∂

∂ (δθ)

q̂�
δθ2

1

=
1
2

[
q̂4 I3 + q̂×1:3

−q̂T
1:3

]
(32)
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Finally, combining Eqs. (26) and (30) results in a state update for the kth measurement in the
standard EKF form[

δθ+k
δω+

k

]
=

[
δθ−k
δω−k

]
+Kk

ρk︷ ︸︸ ︷{
yk−h

(
q̂−k , ω̂

−
k

)
−Hk

(
q̂−k , ω̂

−
k

)[δθ−k
δω−k

]}
(33)

where ρk is referred to as the measurement residual. In the sections that follow, specific models
are developed for the star tracker and accelerometer discrete measurement updates. Eq. (33) is also
shown to simplify to Eq. (57) due to the reset operation.

2.2.1 Star Sensor Measurements

The output of the MMS star tracker is simply a single quaternion per camera head unit (qchu).
Because it is important that the measurement yk closely matches the estimated measurement ŷk in
the residual calculation, the approximation of Eq. (32) is not used in favor of a measurement model
that exactly matches our (Gibbs vector) parameterization of the attitude error. Specifically, the STS
measurement model is

(ychu)k = (hchu)k = δθk +(vchu)k (34)
= (δθchu)k (35)

= 2
(δq1:3)k
(δq4)k

(
≈ 2(δq1:3)k · sign(δq4)k

)
(36)

= 2

(
(qchu)

⊗
k q̂−1

k

)
1:3(

(qchu)
⊗
k q̂−1

k

)
4

(37)

which possesses the previously mentioned benefit of insensitivity to sign ambiguity in the star
tracker output. The associated measurement sensitivity matrix is then

Hchu =

[
∂hchu

∂ (δθ)

∂hchu

∂ω

]
q̂k,ω̂

=
[
I3 03×3

]
(38)

and the star tracker measurement residual itself is

(ρchu)k = (ychu)k−h
(
q̂−k , ω̂

−
k

)
−Hchu

[
δθ−k
δω−k

]
(39)

= 2

(
(qchu)

⊗
k q̂−1

k

)
1:3(

(qchu)
⊗
k q̂−1

k

)
4

−2

(
q̂⊗k q̂−1

k

)
1:3(

q̂⊗k q̂−1
k

)
4︸ ︷︷ ︸

03×1

−
[
I3 03×3

][δθ−k
δω−k

]
(40)

= (δθchu)k−δθ
−
k (41)

Additionally, as will be explained in section 2.3, the reset operation ensures δθ−k is always zero.

For improved computational efficiency, the MMS ACS FSW combines the four simultaneous camera
head unit observations into a single measurement to be processed by the MEKF[8]. This “effective”
measurement is just the individual camera head residuals weighted by their associated measurement
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covariance matrix Rn
chu (transformed in to a common frame). This approach is tractable because all

four measurements share a common sensitivity matrix Hchu.

(Reff)k =

(
4∑

n=1

(Rn
chu)

−1
k

)−1

(42)

(yeff)k = (Reff)k

4∑
n=1

(Rn
chu)

−1
k (δθn

chu)k (43)

On-board MMS, the measurement covariance matrix Rk = E
{

vkvT
k

}
is calculated one of two ways.

It is either a time-varying matrix that is constructed from the CHU’s internal algorithm’s reported
image fit-residual (a single scalar unsigned byte), or else it is a constant (diagonal) matrix loaded into
the flight software. The latter was originally based upon the DTU STS performance specification
(σ⊥ = 20, σboresite = 60 arcsec), and then eventually tuned to the statistics of the actual flight
residuals. Of the two methods, the fixed R approached proved to be more accurate.

The ensemble-average of the star camera head solutions essentially defines the spacecraft’s body-
frame. The knowledge error with regard to the alignment of the heads (relative to their nominal
design and verified by ground metrology) is handled by the separate off-line calibration system
known as the MMS Attitude Ground System. The goal of that calibration is to minimize persistent
biases from the measurement residuals by adjusting the alignment estimate of each CHU. Details of
the calibration process can be found in [9].

2.2.2 Accelerometer Measurements

The high-performance, tri-axial, acceleration measurement system (AMS) manufactured by ZIN
technologies exists on the observatories in order to perform precise closed-loop orbital adjustments
of the MMS formation[1][10]. However, the AMS’s high-rate sensor data is also available to
perform off-line system identification. Without delving too deeply in the derivation provided in [1],
we can import the final form of the sampled acceleration measurement model

(yams)k = hams (fthr,rc,ω,b)k (44)

ak =
fthr

m
+ ω̇×k (rd− rc)︸ ︷︷ ︸

rcd

+ω×k ω
×
k (rd− rc)−

(
2 ·ω×k ṙc + r̈c

)︸ ︷︷ ︸
multi-body effects

+bk +(vams)k (45)

where m is the mass of the spacecraft, fthr is the sum of the body-fixed thrust-force, rd is the location
of the accelerometer in the body-frame, rc is the location of the combined center-of-mass of the
entire observatory, b is a vector of the accelerometer’s intrinsic biases, and vams is the measurement
noise. For a discussion of the other potential measurement errors and their mitigation, see the
reference[1].

A rigid-body assumption allows us to disregard center-of-mass motion (ṙc, r̈c = 0), which results in
the accelerometer’s measurement sensitivity matrix with respect to the attitude and rate error states
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taking the following form

Hams ≡
[

∂hams

∂ (δθ)

∂hams

∂ω

]
q̂,ω̂

=

[
03×3

∂hams

∂ω

]
q̂,ω̂

(46)

The expression for the measurement partial with respect to ω can be obtained from Eq. (45) using
the chain rule and prudent cross product term-swapping.

∂hams

∂ω
=

∂ ω̇×

∂ω
rcd +

∂ω×

∂ω
ω×rcd +ω

×∂ω×

∂ω
rcd +ω

×ω×
∂rcd

∂ω
(47)

=−r×cd
∂ ω̇

∂ω
−
(
ω×rcd

)× ∂ω

∂ω
−ω×r×cd

∂ω

∂ω

=−r×cd I−1 [(Iω)×−ω×I
]
−
(
ω×rcd

)×−ω×r×cd

=−r×cd I−1 [(Iω)×−ω×I
]
−2ω×r×cd + r×cdω

× (48)

The preceding result was obtained using Eq. (18) and the identity (a×b)× = a×b×−b×a×.

The covariance of the measurement noise can be derived from the AMS specification which asserts
the root-mean-squared noise (arms) should be less than 8 µgrms in the frequency range 0-10 Hz, and
80 µgrms from 10-500 Hz. This implies that if a (single-sided) periodogram of acceleration-samples
over a large time-interval was computed, its expected magnitude (A) over a given frequency range
(e.g. ∆ fhz = 10 Hz) should be less than

A0−10hz ≤
(arms)

2

∆ fhz
=

82 µg2

10Hz
= 6.4

µg2

Hz
= 615.9

(
µm
s2

)2

Hz
(49)

Figure 2 shows this is indeed the case for a sample taken from a non-maneuvering MMS-1. The
AMS anti-alias filtering with break-point near 250 Hz can clearly be seen in the result. This implies
a measurement covariance matrix with diagonal elements of R≈ 3.8×10−7 is reasonable, although
the running sample-variance inside the AMS typically reads lower (σ̄ ≈ 16 µg) on most units.

Figure 2. PSD of MMS-1 AMS 1 kHz Acceleration Data

11



2.2.3 Covariance Update

The final element associated with the receipt of new measurement observations, is the update of
the error-state covariance P. For the MMS MEKF, Jordan’s form of the update equation is used to
improve numerical stability

P+
k = (I6−Kk Hk)P−k (I6−Kk Hk)

T +Kk Rk KT
k (50)

and the resultant is forced symmetric using averaging (of round-off errors)

P+
k =

1
2

(
P+

k +
(
P+

k

)T
)

(51)

To date, no stability problems have been experienced with the flight software MEKF that has
operating continuously in single-precision floating-point for the past seven months.

2.3 Reset

Intrinsic to the MEKF is a process by which the information contained in the error states after a
measurement (δx+) is transferred to the pre-update full state estimates (x−), while “simultaneously”
resetting the error state to zero. For the attitude state—using a Gibbs vector error parameterization—
the reset operation looks like

q̂+ = δq
(
δθ+

)⊗ q̂− (52)

=
1√

1+‖δθ+‖2

δθ+2
1

⊗ q̂− (53)

which is better performed as a two-step process

q̂+
unnorm =

δθ+2
1

⊗ q̂− (54)

followed by

q̂+ =
q̂+

unnorm

‖q̂+
unnorm‖

(55)

that effectively (and legitimately) enforces quaternion normalization. δθ is now also set to zero,
and (as shown in [4]) stays zero throughout propagation.

The reset of non-attitude states follow the standard linear addition update of an EKF. For example,
the angular rate is updated by

ω+ = ω−+δω+ (56)
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and δω is set to zero. Because all of the reset/propagated error states are zero (δθ−,δω− = 0),
Eq. (33) collapses to simply [

δθ+k

δω+
k

]
=

[
Kθk

Kωk

][
yk−h

(
q̂−k , ω̂

−
k

)]
(57)

that—for what its worth—permits a so-called implicit[4] (i.e. combined) measurement/full-state
update for the non-attitude states

ω+ = ω−+Kωk

[
yk−h

(
q̂−k , ω̂

−
k

)]
(58)

effectively replacing Eqs. (33) and (56).

2.4 Propagation

Certain estimated quantites of the MEKF must be propagated from one measurement to the next.
For the MMS ACS that propagation interval is typically the period of its 4 Hz control cycle, which
is broken into two sub-intervals—driven by the center-of-integration time stamp of the star tracker
measurements, and the arrival of the AMS packet (in order to transform and utilize the incremental
velocity for closed-loop maneuvering). As previously mentioned, the nonlinear models expressed
as ordinary differential equation in section 2.1 governing the full-state dynamics are propagated
using a Runge-Kutta integrator. Due to the reset operation, the error-states are zero and do not need
to be propagated. However, the covariance of the error-state vector does.

P−k+1 = Φk Pk Φ
T
k +Qk (59)

where Qk = E
{

wkwT
k

}
. This is done discretely using the linearized error-state dynamical models

derived in section 2.1 and summarized in Table 1. The linear system dynamics of the estimate

δ ˙̂x(t) = F(t)δx̂(t)+G(t)w(t) (60)

are assumed constant over a small interval (∆t) so that the dynamics may be discretized as

δx̂−k+1 = Φk δx̂+k +wk (61)

and the derived state transition matrix (Φk) may be used to propagate the error covariance. The
most exact route to discretized the error-state dynamics is by using the method of Van Loan [11]
with the matrix exponential applied to the following construction

A =

[
−F GW GT

0 FT

]
(62)

and then extracting the desired sub-matrices needed for the covariance propagation from

eA∆t =

[
B Φ

−1
k Qk

0 ΦT
k

]
(63)
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For the flight software, it was entirely impractical to consider using the exponential to construct the
necessary matrices in real-time. Instead, the ACS FSW resorted to the 1st-order approximation

Φk ≈ I6 +F(tk)∆t (64)

and also from [6]

Qk =

∫
∆t

0
Φk(∆t− τ)WΦ(∆t− τ)Tdτ (65)

where W = diag{Wθ ,Wω} is the diagonal matrix of spectral amplitudes (variances) for the “white”
process-noise w(t) that drives the attitude and rate dynamics. Using the approximation for Φ from
Eq. (64) yields,

Qk ≈

[
Wθ ∆t +

(
Wθ ω̂

×
k − ω̂

×
k Wθ

)
∆t2

2 +Wω
∆t3

3 Wω
∆t2

2 +Wω Fω
∆t3

3

Wω
∆t2

2 +FT
ω Wω

∆t3

3 Wω∆t +
(
FωWω +Wω FT

ω

)
∆t2

2 +FωWω FT
ω

∆t3

3

]
(66)

While the process noise is potentially very small, the MMS MEKF uses values around 10−6 to
purposely “de-tune” the filter as protection against un-modeled dynamics, parameter errors, and
maintain numerical stability. The matrix Fω is the lower-right sub-matrix of F(t), and is given
by Eq. (19). Additionally, the ACS FSW propagation of Eq. (59) also made use of sparse-matrix
multiplication optimizations to help reduce some of the MEKF computational load.

3 Augmented States for System Identification

In addition to the on-board filter that has been described, a more elaborate variant was developed
for ground calibration. This system-id MEKF adds twelve states for mass property estimation, and
three additional states to determine the steady-state force due to each thruster. The motivation for
the work will now be described.

As a formation, the MMS mission must perform orbital maneuvers with an accuracy of roughly 1%
(3σ ) or else potentially fall in to a “tail-spin” of continuous orbit corrections. In order to satisfy
this accuracy requirement, an AMS was added to each of the four observatories, and algorithms
developed for velocity control using real-time feedback from the accelerometers[1]. By going
“closed-loop”, MMS successfully mitigated most of its parameter sensitivities (e.g. mass knowledge),
while exposing itself to some others. Two system properties in particular were identified as the
most potentially damaging while simultaneously the most difficult to estimate on the ground—the
composite spacecraft center-of-mass (CM), and the steady-state thruster force.

The CM is important because knowledge of its lever-arm to the accelerometer sensor-heads (rcd) is
a key component of the centripetal-compensation algorithm used in the ACS for inertial velocity
tracking. This compensation attempts to mitigate the velocity-errors that occur due to the second
and third right-side terms of Eq. (45) when it is numerically integrated. Additionally, knowledge of
the CM location is used (on the ground) to determine thruster duty-cycles that effectively balance
thrusters into usable pure-translations (i.e. “torque-less”) combinations.
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The second-half of the “thrust-balancing” equation is the magnitude of the thrust itself. It was
shown using Monte Carlo analysis, that steady-state thrust uncertainty of greater than ±3% (3σ )
could result in an imbalance that would unacceptably degrade maneuvering performance and/or
exceed stress limits on the structure (e.g. the ADP axial booms). It is important to note that
accurate thrust-knowledge is actually needed due to secondary effects on the system, because
closed-loop control has already eliminated its primary effect. If that were not the case, a 3% error in
thrust-knowledge would never permit a 1% maneuvering accuracy. Q.E.D.

The second mass moments-of-inertia (MOI) were added to the filter (reluctantly) when it appeared
that the estimation processes simply would not perform well without them. Inertia mismatch
between the MEKF model and the plant-truth aliased itself as errors in many other state estimates,
and prevented the filter from achieving the desired degree of accuracy. The specific form in which it
is included—using the fuel’s contribution as states, instead of using the entire observatory’s mass
properties directly—was also a just a progression of the design that departs from [12]. No claim
is being made at this time that it represents a fundamental characteristic of an effective estimator.
However, since none of the constraints associated with a physically realizable inertia tensor[13] are
enforced by the filter, this “assembled inertia” approach should help maintain legitimacy. With this
addition, the total augmented error-state vector (assuming a single thruster) has become

δx =
[
δθ δω δb δrf δIf δfss δTc δTx

]T (67)

3.1 Accelerometer Biases

In order to effectively estimate any of the system characteristics it is necessary to incorporate the
accelerometer measurements. This can only be accomplished accurately if the accelerometers’
intrinsic (thermo-electric) biases b(true) are also estimated by the filter. The dynamics model for the
biases is simply

ḃ = fb(x(t),w(t)) = 0+wb(t) (68)

since we assume the three axial biases are effectively constant over the relatively short calibration
period (≤ 2 hours), but could choose to set the process noise wb to reflect a small bias drift—
specified in the AMS to be less than 1 µg over 12-hours. The dynamic model is obviously identical
for both the full-state dynamics (ḃ) and the error states (δḃ), so the linearized error-state matrix
expands to

F(t) =



∂ fθ

∂ (δθ)

∂ fθ

∂ω

∂ fθ

∂b
∂ fω

∂ (δθ)

∂ fω

∂ω

∂ fω

∂b
∂ fb

∂ (δθ)

∂ fb

∂ω

∂ fb

∂b


=


ω̂× I3 03×3

03×3 I−1 [(I ω̂)×− ω̂×I
]

03×3

03×3 03×3 03×3

 (69)

For a measurement yams taken by the accelerometer (Eq. (44)), the associated measurement sensi-
tivity with respect to the bias is

∂hams

∂b
= I3 (70)
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3.2 Fuel Mass Perturbations

A careful bookkeeping and spin-balancing campaign[14] obtains what is believed to be very accurate
knowledge of the stowed MMS observatories’ dry mass properties. However, tests that practiced the
loading and unloading of the 411.6-kg of fuel from the stiff elastomeric diaphragms inside the four
semi-spherical tanks showed that the fuel-mass could take on a variety of “shapes” which could in
turn cause significant perturbations in the total system mass properties[15].

Nine states need to be added to the filter in order to estimate the effect of the fuel mass property
uncertainty—three for the location of the combined (in the four tanks) center-of-mass of the fuel
rf in the body-frame, and six for the fuel-mass’s moments and products of inertia about its CM,
I f =

[
I fxx I fyy I fzz I fxy I fxz I fyz

]T. Ground tests performed by Southwest Research Institute
on a mock-up of a single MMS fuel tank, indicted that for a full tank, the mass participation in the
fuel slosh modes was relatively small (≈18%) and at a frequency of around 5 Hz[16]. Since this
was not expected to significantly affect the system dynamics (verified by high-fidelity simulation),
the fuel state dynamics are also modeled as a constant driven by random noise

ṙf = fr(x(t),w(t)) = 0+wr(t) (71)

İf = fi(x(t),w(t)) = 0+wi(t) (72)

The only non-zero partials in the linearized error-state dynamics are ∂ fω/∂rf , and ∂ fω/∂ If . Of
the two, an analytic expression could only be found for the first. For the partial with respect to the
“vectorized” fuel inertia, a numerical finite-difference solution was used to overcome the difficulties
with taking partial derivative of a matrix with respect to a vector. While the finite-difference
approach could also be brought to bear on the fuel center-of-mass partial derivative as well, the
analytical solution is presented here because it is likely to be more computationally efficient, and
because of the insights it can provide regarding the partitioning the system mass into dry and wet
components.

The composite observatory center-of-mass, rc, can be broken down into wet and dry components

rc =
mdry

m
rdry +

mfuel

m
rf (73)

where the total mass of the spacecraft m = mfuel+mdry, and rdry is the location of the dry-structure’s
center-of-mass in the body-frame. Utilizing a special case of the parallel axis theorem, the observa-
tory’s moment of inertia about its center-of-mass, I, can be expressed as a sum of its inertia about
the body-frame origin, J, and the “moment arm” from the origin to the center-of-mass (rc), and then
broken down into the fuel’s contribution and the dry-structure’s contribution.

I = J+mr×c r×c (74)

=
(
Jfuel +Jdry

)
+mr×c r×c

=
(
Ifuel−mfuel r×f r×f

)
+
(

Idry−mdry r×dryr×dry

)
+mr×c r×c (75)

Note that in the present notation, Ifuel is a 3×3 matrix where as If is a 6×1 vector. Proceeding
with the derivation, Eq. (73) is combined with Eq. (75) to yield an expression for the spacecraft’s
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moment of inertia as an explicit function of the new state rf

I = Ifuel + Idry−
(mdry ·mfuel

m

)(
rdry− rf

)× (rdry− rf

)× (76)

Using an alternate form of the angular rate dynamics with the control-torque shown as a cross
product of the thrust-force, and then taking its partial derivative with respect to the fuel CM yields

Iω̇+ω×Iω = (rthr− rc)
× fthr (77)

I
∂ ω̇

∂rf
+

∂ I
∂rf
ω̇+ω×

∂ I
∂rf
ω = f×thr

∂rc

∂rf

∂ ω̇

∂rf
= I−1

[
f×thr

∂rc

∂rf
− ∂ I ω̇

∂rf
−ω×∂ Iω

∂rf

]
(78)

where ω̇ andω are held constant with respect to rf in the final two (right-side) terms. The expressions
needed to evaluate Eq. (78) can be determined by taking the partial derivatives of Eqs. (76) and (73).
Specifically, they are

∂rc

∂rf
=

mfuel

m
I3 (79)

and
∂ Iω
∂rf

=−
(mdry ·mfuel

m

)([(
rdry− rf

)×
ω
]×

+
(
rdry− rf

)×
ω×
)

(80)

The final required quantity, ∂ I ω̇/∂rf , is obtained by directly swapping ω with ω̇ everywhere it
appears in Eq. (80), and then estimating ˙̂ω using the expected values of Eqs. (77) and (73) (i.e. by
substituting in the current state estimates in place of truth-states in Euler’s equation).

The acceleration measurement sensitivities associated with the new states are

∂hams

∂rf
=−r×cd

∂ ω̇

∂rf
−
(
ω̇×+ω×ω×

) ∂rc

∂rf
(81)

∂hams

∂ If
=−r×cd

∂ ω̇

∂ If
(82)

which may be evaluated using the results already calculated for Eq. (78), and the aforementioned
finite-difference result for the fuel-inertial partials.

3.3 Thruster Dynamics

The most difficult part of estimating the thruster output was due to “warm-up” effects. Based
on ground-test data, it is expected that the MMS thrusters take nearly 15-seconds to reach true
steady-state operation. It was unreasonable to expect that a single-thruster-at-a-time calibration
(recall, the goal is the individual thruster modulation duty-cycles) could accommodate such a long
period of “wasted” un-balanced thrust as part of its process. Instead, the data from the thruster
delta-qualification program was mined in order to construct a dynamic model of the warm-up effect.
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The result was a heuristic two-node thermal model, combined with a polynomial fit of the classical
thrust-coefficient. The two thermal states along with a state representing the steady-state force itself,
adds at least three states to the MEKF (but potentially three per thruster, depending on how the
designer chooses to handle the individual thruster calibration in the filter software).

The first component of the new model is a two node/state thermal model that approximates the
heating and cooling of the thrust-chamber (where the catalyst-bed sits and two-stage hydrazine
decomposition occurs). A two-node model was selected after the observation that there was no single
cooling decay-constant capable of fitting the data “well”. The only elements of the models that are
known from first-principles are: the flame-temperature of the hydrazine reaction (Tflame = 1875◦F
[1024 C]), and the cooling is either conductive/convective (linear in temperature) or radiative
(quartic in temperature). A schematic of the model is shown in Fig. 3.

Figure 3. Thruster Thermal Node Model

The full nonlinear (process) dynamic models for the two new thermal states are

Ṫc = ftc(x(t),u(t),w(t)) = u(t) · kf (Tflame−Tc)+ kx (Tx−Tc)+wtc(t) (83)

Ṫx = ftx(x(t),u(t),w(t)) = kx (Tc−Tx)+ k∞ (T∞−Tx)︸ ︷︷ ︸
conductive

+kr
(
T 4

∞−T 4
x
)︸ ︷︷ ︸

radiative

+wtx(t)︸ ︷︷ ︸
noise

(84)

where u(t) is the control input (binary valve open-close status) for a particular thruster, and kf , kx,
and kr are constant coefficients that were “hand-tuned” to fit the MMS qualification data (and later
the flight data). The magnitude of thrust-force produced ( fthr) is found using a 3rd-order polynomial
fit (p0, p1, p2, p3) of the chamber temperature-state multiplied by the third state to be added to the
filter—the steady-state force magnitude ( fss)

fthr(t) =
[
p3 T 3

c (t)+ p2 T 2
c (t)+ p1 Tc(t)+ p0

]
fss (85)

The thrust-vector—as used in Eq. (77)—is found by multiplying the magnitude by a unit-vector
in the direction the thruster’s nozzle is pointing (dthr), and regulating the output with the (binary)
control input signal, u(t). In equation form, the preceding statement may be written as

fthr(t) = fthr(t) ·dthr ·u(t) (86)

where the polynomials coefficients (pn’s) were again derived from the MMS qualification data—as
was the somewhat arbitrary decision to use a 3rd-order fit.

Lastly, the true parameter of interest, the steady-state thrust-force fss, is a function only of the
hydrazine inlet-pressure in the propulsion system. Over the calibration period (e.g. a few short
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thruster-pulses), this value is assumed to be constant. As has already been well established, the
dynamic model of a constant, driven by process noise, is

ḟss = fss(x(t),w(t)) = 0+w f ss(t) (87)

The effectiveness of this model in matching the qualification-test data is evidenced in Fig. 4 by
how well dashed green line representing the simulated chamber temperature state (Tc sim) tracks
the blue line of measured chamber temperature data (Tc meas), as well as the normalized force
curves (black dashed-line vs. red measurement-dots) for a pulse-train of three consecutive valve
cycles each continuously expelling 3.3-second of fuel on a 20-seconds interval (taken from a
non-pulsed-width-modulated/class-A-pulse data set for the radial thrusters).

Figure 4. Comparison of Simulated vs. Measured Temperatures and Forces

The non-zero partial derivatives for the three new thruster-states, for use in the linearized error-state
dynamics matrix F(t), are

∂ fω

∂Tc

∣∣∣∣
x̂,u

= Î−1

[
(rthr− r̂c)

×dthr ·u(t) ·
∂ fthr

∂Tc

∣∣∣∣
x̂,u

]
(88)

∂ fω

∂ fss

∣∣∣∣
x̂,u

= Î−1

[
(rthr− r̂c)

×dthr ·u(t) ·
∂ fthr

∂ fss

∣∣∣∣
x̂,u

]
(89)

∂ ftc

∂Tc

∣∣∣∣
x̂,u

=−kf ·u(t)− kx (90)

∂ ftc

∂Tx

∣∣∣∣
x̂,u

= kx (91)

∂ ftx

∂Tc

∣∣∣∣
x̂,u

= kx (92)

∂ ftx

∂Tx

∣∣∣∣
x̂,u

=−kx− k∞−4kr T̂ 3
x (93)
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The partial derivatives of the steady-state thrust force with respect to the thermal-states needed to
complete the evaluation Eqs. (88) and (89) are

∂ fthr

∂Tc

∣∣∣∣
x̂,u

=
[
3 p3 T̂c(t)2 +2 p2 T̂c(t)+ p1

]
· f̂ss (94)

∂ fthr

∂ fss

∣∣∣∣
x̂,u

= p3 T̂ 3
c (t)+ p2 T̂ 2

c (t)+ p1 T̂c(t)+ p0 (95)

The non-zero measurement sensitivity partial derivatives with respect to the new thruster-states are,
for the accelerometer measurement equation

∂hams

∂ fss

∣∣∣∣
x̂,u

=

[
1
m

dthr− r̂×cd Î−1 (rthr− r̂c)
×dthr

]
·u(t) · ∂ fthr

∂ fss

∣∣∣∣
x̂,u

(96)

∂hams

∂Tc

∣∣∣∣
x̂,u

=

[
1
m

dthr− r̂×cd Î−1 (rthr− r̂c)
×dthr

]
·u(t) · ∂ fthr

∂Tc

∣∣∣∣
x̂,u

(97)

where the trailing terms—the thrust-force magnitude partials—are once again obtained by using
Eqs. (94) and (95).

4 Filter Performance

Having defined the structure of both the ACS flight software MEKF and an augmented-state version
for ground calibration, we now turn our attention to a battery of performance results for each.
The two sources available by which to gauge performance are the MMS high-fidelity, nonlinear,
time-domain simulation constructed in GSFC’s Freespace Simulation Environment[17], and ground-
processing of telemetered flight data from the observatories.

4.1 Smoothing

Before launching in to the performance result, one small aside is also worth mentioning. In order to
access the true performance of the methods—and especially to obtain a definitive attitude and rate
solution from the flight telemetry for which “truth” is not available—a Rauch-Tung-Stribel (RTS)
optimal batch smoother was applied to the filtered results[18]. The RTS smoother falls in to the
category of fixed-interval smoothers, and although it does not improve the final state-estimates from
a filter operating on a finite sequence of data, it can significantly improve the estimates internal to
the interval.

The algorithm for the discrete-time RTS smoother uses stored values for x̂−k , x̂+k , Φk, P−k , and P+
k

from the forward-time MEKF to sweep backwards through the data and improve the estimates and
error-covariance. The smoother initializes its recursion with the final (N-th) forward time estimates
of the MEKF, x̂smN = x̂+N and PsmN = P+

N , and proceeds (backwards in k) in the following manner[7]

Ksmk
≡ P+

k Φ
T
k
(
P−k+1

)−1 (98)

x̂smk = x̂+k +Ksmk

(
x̂smk+1− x̂−k+1

)
(99)

Psmk = P+
k −Ksmk

(
P−k+1−Psmk+1

)
KT

smk
(100)
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The only downside to using the fixed-interval smoother is the burden of matrix storage, the fact
that is it only possible as batch process, and that it does not improve the final estimate (for system
identification).

4.2 Attitude and Rate Determination Performance
4.2.1 Simulation

A set of comparative plots shows the MEKF attitude and rate estimates surrounding a single 2.5-
second pulse from MMS thruster #1. This unit’s nozzle is radially directed in the observatory’s
minus-y direction (i.e. it applies a +y force), and is located approximately 0.5-meters below the
CM. A “4-lb” thruster, at beginning-of-life pressure, applies 19.8 N of steady-state thrust. The
mini-maneuver induces approximately 2.5◦ of nutation, and roughly the same amount of precession
in the spacecraft’s total angular momentum. Figure 5 shows the effect of the single-thruster pulse
on the observatory’s angular rate, as well as the 1 kHz acceleration at the sensor heads.

Figure 5. Simulated Single-Pulse Response
For the same single-pulse simulation as above, the next series of plots show the attitude and rate
errors of the various estimators developed in the preceding sections. It is clear from Fig. 6 that
(after it converges) the off-line MEKF can be tuned to outperform the flight implementation, and
unsurprisingly that the RTS smoother (applied to the augmented-state filter results) does better yet.
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Figure 6. Comparison of Filtered Attitude and Rate Estimates of Simulated Maneuver

There are a number of reasons why the higher-order filter produces a more accurate result. First,
it is interesting to note that the augmented-state MEKF will—with identical tuning of the process
and measurement noise statistics—very closely match the results of the six-state (flight software)
MEKF as long as the acceleration measurements are excluded. Recall that the FSW MEKF was
de-tuned as protection against un-modeled dynamics and numerical instability. With the acceleration
measurements utilized by a filter with elevated attitude and rate process noise—while using an
optimal measurement noise covariance—the relatively noisy AMS observations “drag the rate
estimate about” too heavily. Either of two solutions will suffice to fix the issue—increase the noise
statistics of the acceleration measurements, or (preferably) reduce the rate-dynamics process noise
covariance. If either of these rectifications are applied, the results shown in Fig. 6 are achievable.
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4.2.2 Flight Telemetry

Figure 7 shows recorded telemetry from the ACS for the first two thruster-pulses of a calibration
maneuver performed on the observatory designated MMS1 that took place on April 1, 2015 03:12
(UTC). This maneuver (EA019) occurred while the observatories were in a semi-stowed state—only
the ADP receiving element and the magnetometer booms were deployed. It was designed with the
goal of exercising each individual thruster in matched pulses that induced—and then canceled—
nutation. This was accomplished by spacing the 2.5-sec firings one-half of a nutation period apart
(≈15-sec). A couple of thrusters were fired four times in series to provide a more extended view
of warm-up effects. Spin-rate change was essential for system-identification purposes—since it
potentially separates the accelerometer-biases (static) from center-of-mass offset knowledge errors
(a function of rate). Care was taken not to exceed the star tracker’s transverse or spin-rate limits,
induce excessive pointing error (a thermal constraint), or significantly perturb the orbit (a collision
risk). Nevertheless, it still made for a wild ride!

Figure 7. ACS Flight Software Telemetry from the Start of the EA019 Maneuver

These initial plots of the telemetry focus in on the first two pulse in the maneuvers. The telemetered
data compares favorably with the simulation result shown in Fig. 5. The most glaring difference
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between the two is the acceleration plots on the right—the flight data is noticeably smoother. The
reason behind this is that the raw-burst data from the AMS has undergone two operations in order
to make it presentable—a temperature correction, and a structural (low-pass) filter. While the first is
fairly benign, the structural filter eliminates almost all of the high-frequency noise characteristics of
the AMS measurements. Unfortunately, this pre-processing step is needed because otherwise the
effective rigid-body response is completely swamped by the excited structural modes. A high-order
Finite-Impulse-Response filter with “brick-wall” frequency cut-off near 25 Hz was used because
the linear phase-distortion (i.e. fixed sample lag) that it introduces is trivial to undo.

The (principal axes) rate estimates for the full calibration maneuver are shown in Figure 8 for
MMS1. In the sections that follow, when examining results related to the EA019 maneuver, it may
be useful to refer to this figure to understand the level of system excitation that was applied.

Figure 8. MMS1 ACS Estimated Angular Rate Telemetry (Full EA019 Maneuver)

The recorded telemetry may also be used to assess the performance of the flight MEKF. A good
metric for this is the measurement residuals for each of the star tracker’s camera head units (CHU)—
shown in Fig. 9. They indicate that the ACS MEKF is well-behaved—despite the aggressive
maneuvering—and that the measurements are reasonably unbiased due to successful star sensor
alignment calibration campaign[9]. Unfortunately, the statistics also show that the z-axis (bore-site)
residual seems to be larger than expected. At roughly 170 arcsec (1σ ), the STS solution error
is at nearly three times the spec-level of 60 arcsec (1σ ). It has been independently verified[9]
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Figure 9. ACS MEKF CHU Measurement Residuals During EA019 Maneuver
that these elevated noise-levels about the bore-site persist during coasting—confirming that the
phenomena is not an artifact of the ACS MEKF design, and most likely are just intrinsic to the
tracker measurements themselves. DTU’s preliminary analysis of flight data concurs.

4.3 Mass Property and Thrust Estimation Performance

The effectiveness of the augmented-state MEKF at estimating the MMS mass properties and steady-
state thrust magnitude will now be demonstrated. As has already been asserted, the system-id filter
performs nearly identical to the FSW MEKF when fed only star sensor measurements, and de-tuned
to an equivalent degree. Despite having a significantly larger number of states, the system-id
MEKF remains stable and converges in a reasonable vicinity of the true plant parameters. It also is
well-behaved when given acceleration measurements at any interval between 0-1000 Hz.

One caveat regarding the augmented filter’s performance at estimating thrust is a sensitivity to
correct timing of the control input, u(t). If the valve opening and closing times are not well known,
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or there is significant transport lag, the filter will tend to underestimate the thrust-level and/or over
estimate the inertia. This touches upon one of the two coupled (aliasing) problems for MMS system
identification. The thrust/inertia ambiguity is the first, and the center-of-mass/bias equivalency is
another. Only through sufficient variance of excitation (i.e. spin-rate, nutation, thrust) can these
quantities be resolved. Examination of the complete linearized measurement matrix H(t)

(Hams)k =

[
03×3

∂hams

∂ω
I3

∂hams

∂rf

∂hams

∂ If

∂hams

∂ fss

∂hams

∂Tc
03×3

]
x̂k

(101)

might offer some additional insight as to the observability of the augmented error-states (and which
states need to be excited), but that analytical effort has not been pursued. Instead, evidence of the
filter’s efficacy will be shown by way of simulation and Monte Carlo analysis.

4.3.1 Simulation Test Case
Table 2. Summary of Initial Estimate Errors

Parameter Error

accelerometer biases +20 µg

fuel center-of-mass +50 mm
fuel moments of inertia +10 kg-m2

steady-state thrust magnitude +5%

A computer simulation was performed that uti-
lized a pair of thruster-pulses to perturb the
spacecraft in a manner similar to the single-
pulse of section 4.2.1. As part of the system-id
post-processing, the errors listed in Table 2 in
the initial estimates of the augmented (quasi-
constant) states were introduced to demonstrate
performance. The process noise variances (i.e. the diagonal elements of the W matrix) were
selected to be 10−16 for the bias (b) and fuel states (rf , If). The variances of the thruster-related
states ( fss, Tc, Tx) were set larger (at 10−9) to account for model uncertainty. Note, all covariance
units are as appropriate to the MKS system. The results of the estimation process with 4 Hz star
sensor measurements, and 100 Hz (decimated) acceleration samples are shown in Figs. 11–13.
The high-fidelity simulation of the spacecraft truth-model which exercises the system-id MEKF
includes: colored sensor noise, time-varying mass (fuel depletion), fuel-slosh dynamics, and the
thermal-dynamics of the thruster warm-up model—including small random actuation delays.

Figure 10. AMS Bias Estimation (Two-pulse sim)
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The bias estimation results (Fig. 10) are typical for MMS. The z-axis estimate tends to be the most
accurate (which is actually the best possible result for the MMS application[1]), and the y-axis
bias-estimate tends to be the least—most likely this is an artifact of the AMS placement relative to
the spin-axis and center-of-mass. Nevertheless, bias estimation is not the ultimate goal of this filter,
and the “tens of micro-g” error-regime of the estimate is sufficient for good system-id.

Shown in Fig. 11 are simulation results for the total observatory center-of-mass—not just the
fuel-mass estimates that are the filter-states. Since the fuel-estimate has to potentially compensate
for a number of other parametric errors in the system (e.g. placement, alignments, etc.), the total
spacecraft CM (and inertias) tend to be the more physically meaningful result.

Figure 11. Observatory Center-of-Mass Estimation (Two-pulse sim)

Figure 12 shows the evolution of inertia estimation process. This test-case shows that the Ixz and Iyz

products of inertia are especially easy to identify on a spinner—a fact utilized on MMS to routinely
perform a principal-axis (re)alignment as part of its pre-maneuver preparations[1].

The final quantity of interest—an estimate of the steady-state force of thruster #01—is shown in
Figure 13. Despite an initial 5% error in the estimate, the filter converged quickly to within a
fraction of a percent as soon as the thrust was applied. Since the thruster-pulse is only 2.5-seconds
long, it is here especially that the high sample-rate the accelerometer pays a dividend. For anything
below 50 Hz, the solution accuracy begins to suffered.
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Figure 12. Observatory Moments and Products of Inertia Estimation (Two-pulse sim)

Figure 13. Thruster Steady-State Force Estimation (Two-pulse sim)
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4.3.2 Simulation Monte Carlo

As a more complete test of the system-id MEKF’s performance, 300 simulations of the full EA019
calibration maneuver were performed. Perturbed models of the spacecraft, sensors, actuators,
and pre-flight knowledge utilized hundreds of random variations for each run. For example, a
method was developed for randomly generating physically plausible distributions of the fuel-mass
inside the tank diaphragms that correlated well with ground-test measurements[15]. The statistical
distributions of representative CM and MOI (final-state) estimation errors are shown in Fig. 14.

Figure 14. Monte Carlo Results of Mass Properties Estimation

The histograms indicate that the estimation errors are largely unbiased, and of a tighter distribution
than the pre-flight knowledge. The sole exception is the MOI about the spin-axis (Izz)—which
had less uncertainty in it to begin with (due to the nature of the spin-balance testing performed
on each observatory prior to launch). Nevertheless, the mean plus 1σ estimation error for Izz is
still less than 1% of the total inertia. The rcy and Iyy statistics are essentially identical to the x-axis
results shown. Products-of-inertia estimation errors are significantly smaller than the MOI—with a
standard deviation (σ ) of only 0.8 kg-m2 for Ixy, and an order of magnitude less for Ixz and Iyz.

The statistics of the steady-state thrust estimates are equally acceptable. As shown in Fig. 15, the
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µ +3σ error bounds for the radial and axial thrusters is 2.7%—which achieves the stated goal of
less than 3%. Furthermore, the system-id filter’s estimates are a significant improvement over the
15% pre-flight model uncertainty. The thrust knowledge-error will be discussed further in the next
section on flight calibration results.

Figure 15. Monte Carlo Results of Thrust Estimation

4.3.3 Flight Results

The stored real-time measurement data from maneuver EA019 was processed by the off-line system-
id MEKF in order to improve knowledge of each observatory’s operational parameters. The new
calibrated mass properties, and derived thruster duty-cycles were then uploaded into the ACS flight
software of each spacecraft. The process was repeated for all four observatories, which have been
operating successfully[10] using the updated coefficients since April 2015.

The differences between the MMS1 pre-flight and post-calibration parameter estimates are given
in Table 3. The excellent agreement between the two attests to both the effectiveness of the
augmented-state filter, and the careful accounting of the spacecraft assembly process[14].

Table 3. MMS1 EA019 Calibration Results

State Units Pre-Cal Post-Cal Difference

CM-x mm -0.14 3.31 3.45 —
CM-y mm 0.13 4.72 4.59 —
CM-z mm 605.28 604.56 -0.72 —
Ixx kg-m2 991.50 968.10 -23.40 (-2.4%)
Iyy kg-m2 996.25 936.54 -59.71 (-6.0%)
Izz kg-m2 1614.93 1598.41 -16.52 (-1.0%)
Ixy kg-m2 -107.49 -82.88 24.61 (-22.9%)
Ixz kg-m2 -0.01 -0.18 -0.17 —
Iyz kg-m2 -0.07 -0.30 -0.23 —

Thruster Units Pre-Cal Post-Cal Difference

01 N 17.06 18.38 1.32 7.73%
02 N 17.06 18.20 1.14 6.66%
03 N 17.06 18.26 1.20 7.04%
04 N 17.06 18.24 1.18 6.90%
05 N 17.06 18.64 1.58 9.25%
06 N 17.06 18.74 1.68 9.85%
07 N 17.06 18.49 1.43 8.35%
08 N 17.06 18.34 1.28 7.51%
09 N 4.27 3.94 -0.33 -7.67%
10 N 4.27 4.03 -0.23 -5.46%
11 N 4.27 3.82 -0.44 -10.34%
12 N 4.27 3.97 -0.30 -6.94%
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Plots showing how the system-id MEKF’s estimates of the center-of-mass and moments-of-inertia
evolved throughput the maneuver are displayed in Figs. 16 and 17 respectively. They show a sensible
convergence to a final value, driven by the 28 thruster-firings (green shaded region). It should be

Figure 16. MMS1 Center-of-Mass Estimation Process (EA019 Maneuver)

noted that the lateral (x,y) CM offset of the observatory was expected to be a non-zero value, and
this is in accordance system-id MEKF’s final estimates (Table 3). This intuition was based upon the
diaphragm shapes the fuel-mass acquired during the fuel-loading rehearsals. However, what could
not be predicted was the actual direction in which the fuel would “slump”, so a zero (mean) offset
was used as the pre-flight assumption.

Figure 17. MMS1 Moment of Inertia Estimation Process (EA019 Maneuver)

The final figure, Fig.18, shows the results of the steady-state thrust estimation for one radial and
one axial thruster. The fact that the axial thrusters were burning roughly 8% above the pre-flight
expected levels was independently verified by a series of open-loop, perigee raising maneuvers[1].
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Figure 18. MMS1 Steady-State Thrust Estimation Process (EA019 Maneuver)

5 Multi-body Dynamics

All of the filter development and flight results presented thus far have been based upon a rigid-body
model of a spacecraft. For MMS, this was only a credible approximation during the commissioning
period before the 60-meter long SDP wire-booms were deployed. Fortunately, the system identifica-
tion maneuvers used to calibrate the mass properties and thrust were performed with the spacecraft
in a semi-rigid configuration—i.e. the four Spin-plane Double Probe (SDP) wire booms, and two
Axial Double Probe (ADP) booms were not yet deployed (see Fig. 19).

Figure 19. Observatory Configuration for EA019 Maneuvers

In fact, by using a de-tuned MEKF with a set of “effective” mass properties (extrapolated from
the semi-stowed calibration results), the ACS flight software is able to continue to use its six-state
MEKF otherwise unaltered. However, details of the multi-body dynamics extend beyond the scope
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of the present paper. The topic of this estimator’s performance with significant model-mismatch
may instead become the focus of a future publication.

6 Summary

In this text, some of the fundamental principals regarding the use of a Multiplicative Extended
Kalman Filter were re-introduced in the context of spacecraft attitude and rate determination for the
MMS mission. The use of gyroscopes and the gyro substitution simplification in Extended Kalman
Filters has become so ubiquitous, that this application stands out for its absence. The flight version of
MMS’s six-state attitude and rate filter—operating solely off star camera measurements—was then
documented in full, with the hope that the (admittedly pedantic) exposition might further illuminate
some of the practical nuances that arise when using an MEKF with the Gibbs vector attitude
parameterization. At the very least, this paper hopes to call attention to the excellent reference
texts and papers that are now available, while also evangelizing on the conceptual “tidiness” of the
MEKF formulation.

Additionally, the requirement for precise orbital maneuvering of the MMS formation belies the
notion of a “simple spinner”, and drives the need for precise knowledge of the observatories’ mass
properties and thrust-capabilities. A new estimator for system identification was presented that
leveraged the flight MEKF framework—adding only high-rate accelerometer measurements and
the desired quasi-constants as filter-states. With MEMS accelerometers becoming a fairly common
component of a new generation of “CubeSats”, the hope is that this off-line process proves a useful
weapon for slaying the dragon of system identification that can devour a control-system design.

Finally, examples of the practical utility of the two filters was demonstrated using computer
generated, and flight telemetered data. MMS’s unqualified success with the flight filter—even using
a relatively low-powered processor (by today’s standards)—should further encourage the adoption
of the MEKF as an aerospace staple.
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