STUDY OF SMALL FORCES FOR MISSION ANALYSIS

Alain Lamy®, Albert Alcarraz Garcia™®
() CNES, 18 avenue Edouard Belin 31401 Toulouse C&deRANCE,
Alain.Lamy@cnes.fr

Keywords. Orbit perturbations, small forces, mission desigmg-term propagation

Abstract: The study of the effects of orbit perturbationscémtral in spaceflight dynamics
mission design, for Earth orbits in particular, &$s key to mission feasibility: the perturbations
impact the station keeping cost (and the statiogpkey window size) and the lifetime of the
disposal orbit for instance.

The orbital perturbations that are usually consiel@rare limited to gravity (zonal and tesseral
harmonics), solar radiation pressure, drag and thbody. The other ones are not supposed to
have significant effects.

This paper focusses on those forces whose effeetsfi@n neglected in early design phases:
solid tides, apparent acceleration and albedo axameples of such forces and are dealt with in
this paper. The objective of the study is multiQlae aspect is the illustration how the effects of
perturbations can be evaluated in an efficient WHyough analytical equations giving the
averaged effects whenever possible). Some integastsults are given, regarding the drift rate
of inclination under the influence of solid tides tircular Sun-synchronous orbits or the effect
of apparent acceleration on the orbit's angular nertum. Some of the results given in this
paper have also been implemented in STELA, CNESvasef used for orbit long-term
propagation.
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1. Introduction

Mission design activities related to flight dynamare varied but some major aspects are:
- The definition of an orbit meeting the mission’geattives,
- The study of the effect of perturbations and tivapacts on the mission (station keeping
cost, maneuvers...),
- The long-term evolution of the orbit after the exfdnission,
- etc...

The perturbations that are considered for the desfigcarth orbits are usually limited to:

- Gravitational force exerted by the Earth (conspanténtial),

- Gravitational perturbation of third bodies, maitityg Sun and the Moon,

- Atmospheric drag force,

- Force caused by solar radiation pressure.
Of course, many other perturbation sources exidt ame taken into account in precise orbit
calculations for instance. Regarding mission dedigese often neglected perturbations may still
have some impacts on the orbit's long-term evotutio particular, so it is useful to have some
ways to easily evaluate their effects.

We’'ll focus on the following perturbations: soligdrth) tides, apparent acceleration and albedo
with the objective to evaluate the effects on usarhlts in a way adapted to mission analysis,
and derive useful results.

The paper is organized in 3 main parts:
- Brief description of the averaging process and hasvused,
- Some (often analytical) results about the 3 fotistsd above,
- Afew applications to frequently considered orbits.

2. Perturbation averaged effects

2.1 Computation of averaged effects (over one orbgeriod)

The perturbation effects can be sorted in 3 categalepending on their frequencies: short-term
(less than 1 orbital period), long-term (severalsdar more) and secular.
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Figure 1: Short-term, long-term and secular effects



The process used to extract the long-term effemtsists in averaging the time derivatives over
one orbit period:

T
= %j fx(t), t)dt
0

wherea is any orbital elemeng the set of all variables (including orbital elertgrthat affect
the orbit, and T is the orbit period.

If f does not explicitly depend on time, the averadgéeceon the Keplerian orbital elememt
(semi major axis, eccentricity, inclination...) cam\oritten:

1 2n
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The integral can sometimes be computed analyticsing either Lagrange equations (if the
force derives from a potential) or Gauss equaticdiate that other types of orbital elements
could also be used for particular orbit types.
If a potential function exists, it is first averabéover the mean anomaly), then the usual
Lagrange equations can be used. Otherwise, thedéemeatives of the orbital elements can be
averaged using the Gauss equations.
To make the integral computable, it is often assutiat the force has practically no impact
over one orbit period, so that all the terms thgdear ina(a, e, i ...) except the anomaly can be
considered as constant, which is often a good appsation.
If no simple expression of the force exists, dh# integral cannot be computed analytically, one
may have to resort to numerical averaging. A cemaimber of points are then evenly spaced in
the orbit (in mean, true, eccentric anomaly asrdd}i and the average value can be computed
by quadrature. This numerical process can alssbd to check the analytical expressions.

2.2 Evaluation of long term evolution

If the perturbation effects are small enough, drttleé actual orbit remains close to a “reference
orbit”, the long-term effects of the perturbatiomder study can be evaluated as follows:

Let X(t) be the (mean) nominal trajectory, that is, thedetnean orbital elements computed
without taking the perturbation under study into@mt.

The (averaged) perturbation effeas,(t) can then be computed “around” this reference
trajectory by using the averaging process describede.

IntegratingAX,,(t) yields the effect of the perturbatiai, and an estimate of the new trajectory
affected by the perturbatiok;,.,; = X + AX,,. One may iterate a few times, each time settieg th
newly obtained trajectory as the “reference” trageg

One should not forget indirect effects though. irstance if the perturbation affects inclination,
the change in inclination will in turn affect otherbital elements (RAAN, ...) due to the effect
of J2 (mainly). The indirect effect on RAAN can thige written:

GJY) a0

AQipg = a5 A% +5-Aep +



wherela,, Ae,, ... are the integrated effects on the semi maja, &ccentricity, ...

respectively, and the partial derivatives are caegonly considering J2.

Taking these indirect effects is important as thenplitude can be bigger than the direct effects
as it will be seen for the solid tides.

But they are cases for which some caution is nacgsfor instance when the direct and indirect
effects are strongly coupled.
Let’'s consider as an example the effect of SRPhemtean eccentricity vector of the “SWOT”
orbit (circular, with an altitude of 890 km, and iclination of 77.6 deg). The nominal orbit is
computed considering the central and zonal termd,is frozen. The process used to evaluate
the effect ore, = e cosw ande, = e sinw can be the following:
- Compute the effects of the perturbatiep,(ande, ) on the (frozen) reference orbit,
- Include the indirect effects due to J2/J3 by ira#igg a simplified model:
Aé, = —K Aey + €, (1),
Aé, = K Aey + &), ,,(t)
where K is the same ascomputed using J2 onlye, andAe, are the increments that
should be added to the nominal trajectory to taRe $ito account.

The result is given in Figure 2. On the left, thertprbation effects that result from the
calculation just described. The SRP coefficiertt.&e-2 mi’/kg. On the right the comparison with
the “real” trajectory for which the perturbationse antegrated all together as done classically.
The evaluation error is small (around 1%) and ignigadue to the fact that the reference
(“exact”) solution was computed using zonal harrmasnip to degree 7.

Evolution of ex/ey - SWOT orbit Evaluation error on ex/ey
. . . 15

15
1_

ex
)

14

ex
)

o
o
L

ex/ey (x 1.e4)
o
Delta ex/ey (x 1.e6)

-057--

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Days Days

Figure 2: Effect on SRP on eccentricity vector (SWO orbit)
3. Study of a few perturbations

In this part, we’ll detail the effects of a few pebations, including analytical results whenever
possible.

3.1 Solid tides



Expression of the force

We use the Love model that states that the potaﬁizmciated with the force can be written:

AU = Z ( ) i (%,) Py (cosy)

With P, : Legendre polynomial of degree n, and: gravitational constant of the perturbing
body.
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Figure 3: Solid tides geometry
Thek,, coefficients are the Love numbeks.is around 0.3 for the Earth.

If truncated to degree 2, the expression becomes:

AU = koRp (1 3cos?yp — 1
27 3 s 2
And the corresponding acceleration is:
_ 1.5 k,R?
Y2 = gradAU, = % i [ (1 — 5cos?y) Ug + 2cosyup |
U3

With 1 : unit vector from central body to spacecraft, @pd unit vector from central body to
perturbing body.

Averaged effects

Using the methods described in section 2 (use gfdrge equations), averaged effects on the
orbital elements can be derived.

After some tedious calculations, the time derivediof the Keplerian orbital elements are found
to be:
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Xg, Yz andZy are the components of the unit vector from cericaly to perturbing body in a
frame such that the x-axis is directed toward$dscending node and the z-axis is parallel to

the orbit’s angular momentum.

Figure 4: Orbit frame used for solid tides equatiors

Numerical application:

Since the producty * Z, is always smaller thaw2/2, di/dt is smaller thar3kv2 . Here are

some numerical values for the Sun, withek0.3:



Max value ofdi/dt (deg/year)
LEO (500x500) 1.4e-2
LEO (1400x1400) 9.2e-3
MEO (20000x20000) 1.3e-4
GTO (200x36000) 7.7e-4

Note that, for the Moon, the values would be latgea factor of about 2.2.

Alternative (equivalent) equations for nearly clexwrbits are the following:

da_O

dt
dex _ K [3(1 372) 6 YZ]
dt &y R tani R°R

dey—K [3(1 3Z2) 6 YZ]
- R7 tani R°R

dt

di

a=6KXRZR
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dt ~ sini F°R
da 6K
e —22)(1 —372)_ >
= 3K(1+\/1 e?) (1-323) ——YaZ,

Where e, = ecosw, e, = esinw, and a = w + M (mean argument of latitude)

Averaged effects — second way:
The potential for the solid tides is very similarthe one for zonal harmonics:
AUyonar = £ X501 ~Jn (%)n P, (sing), wheregp is the latitude.
So the procedure is the following:
* Rotate the frame so that the z-axis becomes aligiithdhe direction of the perturbing body,
* In the formula that gives the potential for zonatronics:
- replacerg by: R% /7,
- replaceu by: (u, Rg) /7
- replacel, by —k,
Then the potential that is computed is the potéfarahe solid tides.
Averaged solid tides effects can then be derivédigusupposedly existing) analytical formulas

Up RE
urp )
This method will be implemented in the next versidithe STELA software (see [8]).

used for zonal harmonics, taking care of multipdyihe result by

3.2 Apparent acceleration

Definition



The apparent acceleration comes into play whendference frame in which the equations of
the motion are written and integrated is considasthertial whereas it is not exactly.

When the dynamic equations are written in a nontedereference frameR with a specific
angular velocity? with respect to an inertial frame.(, it is necessary to add an additional term
to the acceleratiop; called apparent acceleration and equal to:

With:
* 7:spacecraft position vector,
: spacecraft velocity vector relative to frame

=3 (R/R,)

Averaged effects

If applying the averaging process as describe pusly, using the Gauss equations since the
force does not derive from a potential, the avettagfeects on the Keplerian orbital elements can
be obtained:

da —2vV1-— eZaly,

dt n
de 5eVl—e? .
ac-  zn Gl t )
di sinwvVl-—e?, . (1+4e?)cosw ) _
a=T(ﬂp+Qan)_T\/_—eZ(QP.QW_.QQ)+(.QQSln(J)_.QPCOS(J))
dw 1

T [(1 —e?)(cosicosw(2p+Qoy) + sini (403 + 30F — 23))

. 1
+ (1+4e?)cosisinw (.QP.(ZW - .(ZQ)] + %(QP sinw + g cos w) -0y

dn 1 . .
T [(e? — 1) cosw (2p + 2o0g) + (1 + 4e?) sinw (2g — 2p05)]

Sini (.Qp Sinw J)Q coSs OJ)
am

1
= —30pV1—e? + > [(e? — 103 — (4e* + 6)0F — (3e? + 7)0F]

Wheref,, 2, and{l,, are the components of the angular velocity vertdhe “PQW” frame.
The “PQW” frame is such that the x-axis is directediards the perigee and the z-axis has the
same direction as the orbit’'s angular momentum.



Figure 5: “PQW” orbit frame

One can immediately notice that:

- The force has no impact on the eccentricity oireular orbit.

- The semi major axis is constant if the anguldocigy vector and the angular momentum vector
are perpendicular to each other.

3.3 Albedo

The radiation reflected by the Earth and exertipgessure on a spacecraft is rather complex. So
only a simplified model will be considered. It isnsmarized in the following hypotheses:

- The spacecraft is spherical,

- The spacecratt is in the vicinity of the centratipo

- Albedo is constant all over the Earth.

In this case, the acceleration generated by tlectetl radiation pressure can be written:

- - — - - N\ do—
a= a|SRP| ff(rsun-nc)(rsat-nc)rsatm

Where the integral is to be computed on the areBasth visible from the satellite and lit by the
Sun.

The notations used are the following:
lsun: Unit vector from cell (on body surface) to Sunnit vector from body center to Sun
Ai. . unit vector normal to cell surfacé,: unit vector from cell to spacecraft

d : distance from cell to spacecraft
|SRP: module of SRP acceleration assuming the spadeatrtife center of the central body

a : albedo (supposed constant all over Earth’s sejfac



Figure 6: Geometry for albedo perturbation

If rsunis assumed constant over the integration surfdoe, integral only depends on 2

parameters: the distance between the spacecrattamtial center, and the angle between the Sun
and the spacecraft from Earth center. It is thessiade to pre-compute the expression for all
possible values of these parameters and interptdatebtain the results for any case. The
computation of the acceleration due to albedoes trery efficient.

Below are plotted the 2 components of the acceterativided by the module of SRP for an
albedo value of 0.3. On the left: component onrtukal direction (Earth center to spacecraft),
on the right: component on the direction perperdicio radial.

Radial direction Perpendicular direction

100 100

90 035 90
80 80§-
70 026 70
60f----- : 60
50 ‘ te 017 50

40f--- e . 40

Sun-Spacecraft angle (deg)
Sun-Spacecraft angle (deg)

30 a —-=otee = 0.087

30

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Altitude (km) Altitude (km)

Figure 7: Instantaneous albedo acceleration dividedy |SRP|

The maximum value for the perpendicular directi®®.02, whereas the maximum value for the
radial direction is 0.35 (acceleration is then d@ldd@ of SRP).

The norm of the acceleration decreases moderaastyat low altitudes, and slightly faster as
altitude increases. The values in the table belowespond to the case where the Sun and the
spacecraft are aligned (case of maximum accelerétioa given altitude).
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Altitude (km) | 500 1000 2000 5000 10000 20000 36000

|albedo accel.|| 0.26 0.22 0.17 0.09 0.04 0.014 0.005
relative to SRP

As it can be seen, the ratio of the acceleratioBR® does not vary a lot between the altitudes
500km and 1000km.

4. Applications, derived effects

4.1 Effect of solid tides for a nearly circular Sursynchronous orbit
As Sun-synchronous orbits have nearly a constaantation with respect to the Sun, we may
expect this fact should emphasize the impact adl $imles originating from the Sun on the orbit.

In order to evaluate the long-term effects of tbetyrbation, these effects are averaged over one
revolution of the Sun.

Some usual hypotheses are considered: the Suppesed in a circular orbit around the Earth
with a right ascension of the ascending node assumkee 0.

The expression found for the average drift ratedfnation due to solid tides over one year is:

du €
= . . . 4 _
I 3K sini sin2h cos (2)

In this equatiorz is the inclination of the Sun’s apparent orbit amdthe Earth (~ 23.5 degy,
has the same meaning as in section 3.lhandelated taMLTAN by the formula:
12« h = (MLTAN — 12) = 1.

The same can be done for the third body perturbation, using averaged equations from [3].
The result found for a circular orbit is
di 3

gt - 3
dtzra body 2n £

XrZR
This expression is similar to the one found fordstitles, so we can immediately derive the ratio
between the 2 perturbation doubly averaged effects:

%Solid tide effect RoN\°
: - (%)

% 3rd body ef fect

Figure 8illustrates this result.

On the right, the doubly averaged effects are caetpbuumerically (from the singly averaged
ones) for the solid tides and third body pertudoadi The orbit considered is circular, at an
altitude of 700km. The ratio of the solid tideseeff to the third body effect is effectively
constant.

On the left, the ratio computed using the formawe is plotted. The ratio is close to 20% for
an altitude around 600 km. It means for instan@ the station keeping DV evaluated only
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taking the third body effect into account, shoukl ihcreased by the same amount (20%) to
include the effect of solid tides, at least theanajffects given by the degree 2 expansion. There
is no need to compute the effect of solid tidethia particular case: it is enough to add a margin.

Ratio of di/dt: solid tides / third body Doubly averaged di/dt - Altitude = 700 km
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Figure 8: Solid tides versus third-body effects
4.2 Effect of apparent acceleration on the orbit’'sngular momentum vector

The objective is to derive a simple model for thieletion of inclination and RAAN when the
orbital motion is affected by apparent acceleration

Some simplifying hypotheses are assumed:
» The angular velocity of the celestial frame witbpect to the inertial frame is constant.
» The components of the angular velocity vector @y wmall, so that the product of any
two of them is considered negligible.

The formula given in 3.2 then becomes:
di )
pri ysinw — pcosw

Replacing the components in the orbit frame (PQWdimponents in the celestial frame yields:

di
—=-0 0N —0ysin
It x COS y Sin

(2y, 2y : components of the angular velocity vector, RAAN)

This equation can be easily integrated assumifigjconstant, which gives:

N O 2y
Ai = Aiy + ——sinf) + —cos {2
0 0

The same can be done oy the inclination assumed nearly constant, andete g

Dy 2y . .
AD = AQy — D50t — (Ecosﬂ + Esmﬂ)/tan(l)
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Apart from the small secular drift ah the angular momentum rotates “around” its unpbed
direction with an amplitude inversely proportional? and a period equal tr/. For a given
angular velocity vector, the faster the orbit plao&ates (due to J2) around the pole axis, the
smaller the amplitude of the oscillations.

We suppose the frame used for mission analysi$R§& Gsee [5] pour definition), and the inertial
frame is ICRF. The mean componentgkr,crr in CIRF are close to [0, 0.56, 0] deg/century.
Then we find for typical orbits the following retsil

Amplitude for incl. (deg Period (year:
LEO, Sur-synchronous (alt = 700 ki 9.1¢-4 1
GEO (inclination = 1 dec 6.7¢2 75
MEO (altitude= 20000km, inc = 55 dec 2.2¢-2 25
LEO (inc=9Cdeg, alt = 700 km Secular, rate ~ 01 degyeal

The effects are confirmed by a more accurate sitiouléor the GEO case (s&ggure 9).

On the right, the tip of the angular momentum veahown in the reference frame such that
the z-axis has the same direction as the refer@mgelar momentum vector and the x-z plane
contains the reference ascending node direction.

The plot on the left represents the evolution ofiiration: the period of ~75 years is clearly
visible as well as the amplitude close to the etgreealue. We see that the mean value is not 0
but is offset by a quantity equal to the amplitofi¢he oscillations, which causes a differential
drift on the ascending node (due to J2).

Effect on Inclination (GEO) Effect on direction of angular momentum
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0.1
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0.04 -0.08+
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X component in orbit frame (deg)

-0.124

i i - : - - : : : -0.14 - - . : - : ;
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Time (years) X component in orbit frame(deg)

Figure 9: Apparent acceleration effect on GEO orbit

4.3 CIRF/ICRF frame transformation

The purpose here is to find the most simple fraraesformation in order to compute the effect
of apparent acceleration on the orbital elementis sufficient accuracy.

The reference frame used to define and study thi€ isrCIRF ([5]). The inertial reference frame
is ICRF (assumed identical to GCRF). The exactsfamation from ICRF to CIRF requires the
computation of lots of nutation terms which is timensuming. One possibility could be
interpolation using pre-computed data, but the athof data would have to be huge (several
hundreds of years). Another way is to use an apmate frame transformation.
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In the IERS conventions 2010, the transformatiomfiCRF to CIRF is function of 3 variables:
X, Y and s.

One of the most simple transformation, calkeg1, uses the following definitions:
F = 1.6279050815 + 8433. 4661569164 * TT

D = 5.1984665887 + 7771.3771455937 * TT

om = 2.1824391966 - 33.7570459536 * TT

X = (2004191898 * TT - 6844318 * sin(on) - 523908 * sin(2*F-2*D+2*om))
Y = (-22407275 * TT? + 9205236 * cos(om) + 573033 * cos(2*F-2*D+2*on))

S 0
(X'and Y are in micro-arcseconds, TT is the nundferenturies since J2000).

This transformation gives reasonably accurate teswier a short time period, but diverges after
about one century.

New terms (with decreasing amplitudes, see [6])aalded to X and Y in order to build other
candidate frames:

Rep2: 1 term in TFadded to X,

Rep3: 2 terms added to X and 1 to Y.

Rep3 seems (at first sight) to satisfy the requiremestgdhe number of terms is small and the
angular error obtained on a position transformaisomuch smaller than witRep1 and almost
stable over 200 years (sEgure 10, left).

Maximum frame transf. angular error Maximum frame transf. angular error
4 0.45

3.59 rep1 —rep3

rep2 35-----ee- Rttt IR Pow -l — rep4
— rep3 ; ' — rep5

w
1

Error (arcsec)
N
Error (arcsec)

o o o
o © - 2 i ©°
a L oo N O w

o

0 50 100 150 200 0 50 100 150 200
Years since J2000 Years since J2000

Figure 10: Frame transformation accuracies

The frame transformation is then tested on varmnbéts over 50 years. The effect of apparent
acceleration is computed as explained in 2.2, colythe indirect effects due to FAgure 11
shows the averaged derivative of inclination fonearly circular and Sun-synchronous LEO
orbit using the full model (left) and the error whesing the simplified moddiep3 (right). The
error is not negligible compared to the effecthwd perturbation itself: about 30%.
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Figure 11: Effect on inclination of LEO orbit

The reason is that not only the amplitude of thmseused in the frame transformation matters,
but also their frequency.

Among the terms not included are ones with peraddse to 1 year, and 1 year is approximately
the period of the ascending node. Some kind ofni@sce appears due to the missing terms,
which explains the error.

A new frame Rep3b) is then defined for which additional terms witkrjpds of about 1 year are
added: 2to Xand 2to Y.

Looking at the position frame transformation ertbis new frame doesn’t seem to bring much
improvement as the maximum angular errors are:REu3: 0.3 arcsec, and fadRep3b:0.27
arcsec. Yet the effect of the additional termspscsacular: the error on inclination has shrinked
by a factor of 10.

Error on effect (Rep3b frame transformation)

Error on effect (Rep5 frame transformation)

08

113 SR S A

0414

0.2

0

Error (1.e-4 deg)
Error (1.e-4 deg)

-0.2

IV Lk, L LLER R

______________

-0.6+ t t t ; : i ; i t i t t ; : ; . : ; : - 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (years) Time (years)

Figure 12: Effect on inclination — frame comparison

Other slightly more accurate reference frames e defined to limit the risk of errors with
other orbit types:

Rep4: additional terms added with periods of about 1/3, and also 18 and 9 years (10 terms
added to X and 9to Y).

Rep5: same aRep4 for X and Y, s changed according to [5].

The accuracy obtained wiftep5 is quite good over a long period of time. But thsults for the
inclination of the LEO orbit are not much impacted.

It has also been checked that the error is acceptaball orbital elements for classical orbits
(LEO, MEO, GTO, GEO).
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The results presented above have successfullyibg#emented in STELA ([8]).
4.4 Albedo effect on orbit

When computing the acceleration due to albedo usi@edgormula given in section 3.3, the norm
of the (instantaneous) acceleration appears tdbatd/4 of that due to SRP for an altitude of
about 500 km, which seems quite large. The objedtthen to have estimates of the averaged
effects.

We'll consider only the case of a nearly circulan&ynchronous orbit, case supposed to be an
unfavorable one. The SRP coefficient used (Cr * pid/fl.5e-2 fikg.

The time derivatives of the orbital elements (addpb circular orbits) are averaged numerically.
The following table gives the maximum direct effefdr any time of year and any MLTAN:

sma ex ey inc Q pso
Time 0.8e-3 2.5e-8 4e-8 2.5e-7 25e-7 7.e-6
derivative | m/day day* day* deg/day | deg/day | deg/day
(< 0.9
m/day)

The amplitudes found are effectively quite smatlaA altitude of 1000 km, the results would be
about the same. The conclusion is that there doeseem to be any good reason to have to take
this perturbation into account in early design jgisas

5. Conclusion

This paper has shown some illustrations of the ggsing of perturbations applied to small

forces. Most results are based on averaging thatlisadapted to the mission design process. Of
course, some caution is necessary to be sure ¥bedged effects can be added or integrated,
particularly if (long-term) coupling exists betwetarces. But provided the conditions are met,

the evaluation of perturbation effects is much seanpmore efficient and less time consuming.

Useful equations for the averaged effects of selitts and apparent acceleration on the
Keplerian orbital elements have been given and dstrated in practical applications.

One interesting result is the effect of solid tifesing the Love model expansion up to degree 2)
on circular Sun-synchronous orbits. The long-tenift cate on inclination due to solid tides is
related to the one originating from the third baabceleration through a simple formula. The
ratio is about 20% for LEOs and should be takenm aticount in the station keeping cost.

Another result is related to apparent acceleratiog:analytical developments have led to simple
formulas governing the evolution of the orbit's lination and RAAN. The effect of the
perturbation can then be better understood. Theibation effect can also be roughly predicted
(amplitude, period) using the simple formulas.
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The study of the effects of apparent acceleratiorth@ orbit’s long-term evolution has also
shown how the orbital elements can be sensitifeetpuency aspects. The frame transformation
used to compute the effect of the force has todeerrate enough and should include the right
combination of frequencies otherwise the long temolution is impacted.

The third perturbation studied in this paper isdlln The main conclusion is that there does not
seem to be any good reason to consider this pattarbin early design phases.

All the developments presented in this paper haaenbimplemented in Scilab for various
mission analyses. Some aspects are present intlCGde<CNES space mechanics toolbox for
Scilab, and in STELA, CNES software used for oldig-term propagation.
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