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Abstract: Information accumulation in the orbit determination process is affected by the structure
of the State Transition Matrix (STM) which is used to map measurements in time. The STM can
be decomposed into matrices of eigenvalues and eigenvectors which characterize the stability of
a fixed point in the Restricted Three-body Problem as stable or unstable manifolds. Information
from measurements is preferentially compressed or expanded along the directions of the stable or
unstable manifolds based on whether the filtering formulation is current time or epoch state in the
orbit determination process. The L2 point in the Jupiter-Europa system is examined as a numerical
example using range-rate measurement partials.
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1. Introduction

This work investigates the properties of phase space in the vicinity of an equilibrium point in the
Restricted Three Body Problem and examines the time evolution of an equilibrium point orbiter’s
position-velocity covariance matrix. A mathematical development of information accumulation
in the orbit determination process is given using the eigenstructure decomposition of the State
Transition Matrix (STM). This decomposition involves matrices of right eigenvectors, eigenvalues,
and left eigenvectors. The computed stable and unstable manifolds of an unstable fixed point, of
which the Lagrange equilibrium points in the Restricted Three Body Problem are an example, are
shown to affect the accumulation of information in the orbit determination process. Information is
preferentially accumulated along the left unstable manifold direction for measurements mapped to
epoch and along the left stable manifold direction for measurements mapped to the current state.
This asymmetry in information mapping is due to the orthogonality of left and right eigenvectors.
For epoch state filtering, the left unstable direction is best known and the right stable direction is
least known. For a current state filter, the left stable direction is best known and the right unstable
direction is least known. Analytical examples show this effect by decomposing the State Transition
Matrix into its matrix exponential form.

A numerical simulation of trajectories in the vicinity of an equilibrium point shows that the
covariance matrix collapses along preferred directions in phase space based on the properties of
the State Transition Matrix. Trajectories in the Restricted Three Body Problem are drawn from a
spherical covariance matrix about an equilibrium point in a Monte Carlo simulation and projected
onto the plane of intersection of the stable and unstable manifolds of the equilibrium point. The
Jupiter-Europa L2 equilibrium point is taken as a numerical example. The concept of manifold
coordinates [1] reveals what components of the dispersed orbit initial conditions are aligned with
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the stable, unstable, and center manifolds associated with the equilibrium point, respectively.
Simulations using a current state and an epoch state square-root information filter are presented and
compared. The covariance matrix of an orbiter in the vicinity of an unstable fixed point collapses
in preferential directions in phase space based on whether a current state or epoch state filter is
used. This effect can be utilized for planning tracking schedules of a spacecraft and conducting
covariance analysis of desired parameters to be estimated in the orbit determination process.

2. Jupiter-Europa system model

The specific astrodynamic problem under consideration is the Restricted Three Body Problem
(RTBP) at the Jupiter-Europa system [2]. Jupiter and Europa are assumed to be in orbits about
their mutual center of mass. The x̂ direction points away from Jupiter’s initial position on the
Jupiter-Europa line, the ẑ direction is aligned with the Europa’s angular momentum vector, and the
ŷ direction completes a right-handed coordinate system. A coordinate transformation is used to shift
the origin of the coordinate system from the barycenter to Europa’s center of mass. The equations
of motion are non-dimensionalized using the length and time units given in Table 1.

r̈rr =−µJ
rrr−RRREJ

|rrr−RRREJ|3
−µJ

RRREJ

|RRREJ|3
−µE

rrr

|rrr|3
−2nSẑ× ṙrr−nSẑ× (nSẑ× rrr) (1)

Table 1: Europa parameters
Parameter Value

nS 2.0483 ·10−5 rad/s
LU 670900 km
TU 48822 s
µE 3202.7 km3/s2

µJ 1.2668 ·108 km3/s2

3. Europa Libration Points

For Europa, the reduced mass describing the three body system is µ = 2.52802 · 10−5. To find
the locations of the collinear libration points, the x scalar equation of motion is solved, with time
derivatives set to zero along with the y and z coordinates set to zero. The roots of Equation 2 yield
the locations of Europa’s L1, L2, and L3 points.

(x+1−µ)− (1−µ)
x+1

|x+1|3
−µ

x

|x|3
= 0 (2)

The x coordinates of the collinear libration points are given in Table 2. A spacecraft placed at these
locations with zero velocity will remain there indefinitely in the RTBP.

Table 2: Europa collinear libration point x coordinates
x (km)

L1 −1.35593 ·104

L2 +1.37445 ·104

L3 −1.34179 ·105
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Since the dynamics are identically zero at an equilibrium point, numerical integration is not
necessary. The local dynamics are characterized by the STM which itself is integrated using the
dynamic partials matrix A. However, the A matrix is constant since its values depend only on the
orbiter position, and an eigenvector of the A matrix is also an eigenvector of the STM. There is a
simple relationship between the eigenvalues σ of the A matrix and the eigenvalues λ of the STM.

λi = eσit (3)

So, the eigenstructure of the L2 equilibrium point is available from the analytical description of the
A matrix. Equation 4 shows the components of the A matrix and Equation 5 gives the partials of the
potential:

A =


0 0 1 0
0 0 0 1

Uxx Uxy 0 2
Uyx Uyy −2 0

 (4)

Uxx = 1− 1−µ

r3
J
− µ

r3
E
+3(1−µ)

(x+1)2

r5
J

+3µ
x2

r5
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E
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J
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E
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y2

r5
J
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y2

r5
E

(5)

The eigenvectors and eigenvalues are computed from this analytical A matrix using the eig command
in Matlab. The eigenvalues σ of the A matrix are shown in Table 3 to illustrate the instability of
L2. One eigenvalue has magnitude greater than one, corresponding to the unstable manifold, one
eigenvalue has magnitude less than zero, corresponding to the stable manifold, and the final two
eigenvalues are a complex conjugate pair representing the center manifold.

Table 3: Eigenvalues of A matrix for Europa L2
Value

λu 2.46012
λs -2.46012
λc1 0+2.04233i
λc2 0−2.04233i

A simplified range-rate model is used to explore the processing of information from measurement
partials at this equilibrium point. For the time periods considered in this simulation, Earth’s position
vector is fixed along the û direction in the Jupiter-Europa system. Equation 6 shows the range-rate
measurement as the dot product of the Earth range direction and the orbiter velocity where TRI is
the transformation from the rotating frame to inertial frame.

ρ̇ = û · vvvEE = û · [TRI (vvvR +ωωω× rrrR)] (6)
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For a spacecraft at an equilibrium point, the rotating frame velocity vvvR is zero. Equation 7 shows
the partial of the range-rate measurement with respect to the rotating frame position and velocity
where Ū is the unity dyad and ω̃ωω is the cross product matrix of the system angular velocity.

∂ ρ̇

∂ (rrrR,vvvR)
= û ·TRI [ω̃ωω Ū ] = [1 0 0]

[
cos(nSt) −sin(nSt)
sin(nSt) cos(nSt)

]
[ω̃ωω Ū ] (7)

This results in a 1x4 partial since the xy plane is used for the equilibrium point analysis.

∂ ρ̇

∂ (rrrR,vvvR)
= [−nS sin(nSt) −nS cos(nSt) cos(nSt) − sin(nSt)] (8)

This range-rate measurement partial is accumulated in the SRIF in epoch and current state formu-
lations to explore how the manifolds of the equilibrium point influence the resulting covariance
matrix. The following section gives the mathematical basis for the expected behavior of mapped
partials.

4. Influence of STM Structure on Information Matrix

In a batch formulation of the square-root information filter, the information matrix Λ is updated
with each processed measurement via the measurement partials H̃ [3]. These measurement partials
are mapped to the epoch state by means of the STM which is integrated along with the equations of
motion. The update is as follows:

Λ
′ = Λ+Φ

T (t, t0) H̃T H̃Φ(t, t0) (9)

As discussed previously, the STM can be decomposed into a product of matrices of right eigenvectors,
left eigenvectors, and a diagonal matrix of eigenvalues.

Φ = [uuu]diag(λ )
[
vvvT ]= [uuu1 uuu2 · · · uuun

]λ1 0
. . .

0 λn




vvvT
1

vvvT
2
...

vvvT
n

 (10)

A range-rate measurement partial is decomposed into components along the left eigenvectors of the
STM since these vectors span the measurement space. Using a summation to represent the different
eigenvector contributions to the partial:

H̃ =
∂ ρ̇

∂ (rrrR,vvvR)
=

N∑
i

αivvvT
i (11)

Decomposing the STM and the measurement partials using the eigenvalues and eigenvectors gives
the information matrix update equation in this form:

Λ
′ = Λ+

N∑
i

[vvv]diag(λ )
[
uuuT ](αivvvi)

(
αivvvT

i
)
[uuu]diag(λ )

[
vvvT ] (12)
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where [uuu] is a matrix of right eigenvectors and [vvv] is a matrix of left eigenvectors. Using the
properties of left and right eigenvectors, this update relationship can be simplified. The dot product
of a left eigenvector and right eigenvector is zero unless their indices are equal. In other words,
all left and right eigenvectors are orthogonal to one another except for those paired with the same
eigenvalue.

vvvi ·uuu j =

{
1, if i = j.
0, i 6= j.

(13)

Using this property, only the eigenvector(s) aligned with the particular measurement partial will
contribute to the addition to the information matrix. The left eigenvectors which make up the
measurement partial will select out only their paired right eigenvectors and will dot to zero with all
other STM eigenvectors. Using the matrix exponential form of the STM, where σi is the eigenvalue
of the dynamics partials matrix A corresponding to λi:

Λ
′ = Λ+

N∑
i

vvvieσit
(
αiuuuT

i vvvi
)(

αivvvT
i uuui
)

eσitvvvT
i (14)

= Λ+
N∑
i

α
2
i e2σitvvvivvvT

i (15)

Since the batch formulation of the SRIF references the epoch time, all subsequent measurements will
be mapped backward in time. Mapping backward in time along the unstable manifold is expected
to decrease uncertainty or increase information content, the opposite of mapping forward in time
[4]. Assume the measurement partial in Equation 15 is aligned with the unstable left eigenvector,
which has a positive real eigenvalue λ greater than one. The natural logarithm of λu > 1 is positive
and the measurements aligned with the unstable manifold direction will be mapped according to the
exponential eσut . This will result in an increase in the amount of information in Λ along the left
unstable manifold direction greater than any other direction since the exponential mapping will
be greatest for the λu > 1 component. Correspondingly, the amount of information increase along
the stable manifold direction will be less due to the stable eigenvalue λs being less than one. A
series of measurements such as range-rate should sample across phase space and not predominantly
align with any particular eigenvector. It is not as clear what the effect of STM mapping would be
on measurements aligned with a right eigenvector. Returning to Equation 12, if the measurement
partial is replaced with right eigenvector components:

Λ
′ = Λ+

N∑
i

[vvv]diag(λ )
[
uuuT ](αiuuui)

(
αiuuuT

i
)
[uuu]diag(λ )

[
vvvT ] (16)

In this case, the orthogonality properties of left and right eigenvector properties do not simplify
the analysis. The measurement partial will generally have nonzero dot products with all of the
right eigenvectors in the [uuu] matrix portion of the STM, leaving no clear direction for enhanced
information accumulation.
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An analogous result comes out of the mathematics for current state measurement accumulation. In
this case, the information matrix is mapped in time between measurement updates. Accumulating a
measurement at epoch with no a priori information and then mapping to the next measurement time
gives the following, where the mapping relation for the information matrix is the inverse of that for
the covariance matrix:

Λ
′ = Φ

−T H̃T H̃Φ
−1 (17)

Due to the definition of the STM and the properties of left and right eigenvectors discussed earlier,
the inverse of the STM can be expressed as:

Φ
−1 = [uuu]diag(e−σt)

[
vvvT ] (18)

such that the mapped information matrix becomes:

Λ
′ = [vvv]diag(e−σt)

[
uuuT ] H̃T H̃ [uuu]diag(e−σt)

[
vvvT ] (19)

Since the inverse of the STM is used in mapping the information matrix between update times,
the exponential controlling the mapping has a negative sign. This effectively reverses the trends
for information accumulation discussed for the epoch state case. If a measurement partial aligned
with a left eigenvector is substituted for H̃ in Equation 19, the exponential term associated with
that eigenvector will have σ > 0 for the unstable direction or σ < 0 for the unstable direction.
With the negative sign present in the mapping exponential, the left stable direction will accumulate
information and reduce uncertainty more than the unstable direction. Again, due to the overall
structure of the STM, measurement partials aligned with right eigenvectors do not produce any
definite trends for information accumulation. This mapping effect of the STM is expected to
dominate the overall shape of the covariance with respect to the left stable and unstable manifolds.
In the following section, experiments are performed to test this hypothesis.

5. Covariance Evolution

This section investigates how the covariance accumulated from a series of range-rate measurement
partials at the Europa L2 point evolves in time. The range-rate partial developed in Equation 8 is
used here. In general, this partial will have projections on to both the left and right eigenvectors.
Both the epoch state and current state formulations of a SRIF are used to generate the covariance. A
spherical a priori covariance of 1000 · I4x4 is used for both cases. The focus here is on the evolution
of the covariance relative to the manifolds rather than a numerical value. The left and right stable
and unstable manifolds are computed for Europa L2 and the covariance is projected into the plane
of intersection of the left stable and unstable manifolds as described in Boone and Scheeres [5].

5.1. Epoch State Mapping

Starting from a spherical a priori covariance, range-rate measurement partials are accumulated at
the Europa L2 equilibrium point and an epoch covariance is computed. Partials are accumulated
every 10 minutes and an epoch covariance matrix is computed using a SRIF at every time step.
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Dispersions around the equilibrium point are drawn from the covariance matrix 10000 times and
decomposed into manifold coordinates. The mathematics involving the manifold structure of the
STM suggest that there will be reduced uncertainty in this covariance draw along the left unstable
manifold direction. In the plots, the left manifolds are plotted as dotted lines and the right manifolds
are plotted as solid lines. The stable directions are shown in green and the unstable directions are
shown in red. The blue dots each represent one trajectory in the vicinity of the equilibrium points
drawn from the covariance. In this way, the relative alignment of the covariance with any particular
manifold can be seen.
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Figure 1: Epoch state covariance at t = 10 min

For epoch accumulation, the times given in the figures represent the last time a measurement partial
was accumulated into the information matrix. The specific times shown are chosen for comparison
between epoch and current state formulations. All partials are mapped to epoch using the STM.
After one measurement partial, the covariance distribution is still nearly spherical as shown in
Figure 1. After more partials are accumulated, the covariance starts to take on an orientation with
the long axis slightly aligned with the right stable manifold as in Figure 2. At t = 300 minutes
in Figure 3, the covariance is definitely compressed along the left unstable manifold and has its
greatest extent along the right stable manifold.

As the mapping time increases, the effect of the unstable eigenvalue becomes more and more
important. Continuing to accumulate partials stretches the covariance even more along the right
stable manifold and compresses most along the left unstable direction. Since Earth follows a cyclic
pattern in the range-rate model, all eigenvectors of the STM should be sampled equally in this
covariance computation. However, the results verify the prediction that the left unstable eigenvector
will have the most influence on the epoch covariance. This makes intuitive sense as any errors along
the right stable manifold direction would be expected to contract when mapped forward in time.
With the measurement partials being mapped backward in time for the epoch covariance, errors
along the right stable manifold are expanded.
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Figure 2: Epoch state covariance at t = 50 min
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Figure 3: Epoch state covariance at t = 300 min

5.2. Current State Mapping

Starting from a spherical a priori covariance, range-rate measurement partials are accumulated at the
Europa L2 equilibrium point and a current state covariance is computed. Partials are accumulated
every 10 minutes and the covariance matrix is computed using a current state SRIF.

Dispersions around the equilibrium point are drawn from the covariance matrix 10000 times and
decomposed into manifold coordinates. For the current state formulation, the mathematics involving
the manifold structure of the STM suggest that there will be reduced uncertainty in this covariance
draw along the left stable manifold direction. Figure 4 shows the covariance decomposition after

8



−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x
m

y
m

 

 

Left Unstable

Left Stable

Right Unstable

Right Stable

Figure 4: Current state covariance at t = 10 min

a single measurement has been taken at t = 10 minutes. The distribution is still spherical, but
compressed from the a priori since this measurement has not yet been mapped in any way. For the
current state filter, the entire information matrix is mapped between updates and in this study there
was no measurement at epoch.
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Figure 5: Current state covariance at t = 50 min

After mapping the covariance and accumulating additional measurements, the properties of the STM
mapping begin to manifest in Figure 5. The distribution is no longer spherical and there is some
compression along the left stable manifold direction. Each measurement partial adds information
and reduces the volume of the uncertainty but the information matrix is also mapped in time between
measurement updates, expanding along the direction of the right unstable manifold. This right
unstable manifold controls evolution forward in time.
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Figure 6: Current state covariance at t = 300 min

Figure 6 shows the covariance being stretched even more along the right unstable manifold and
compressing along the left stable manifold. This confirms the mathematical prediction based on
the structure of the STM mapping in the SRIF process. The reason for compression along the
left stable manifold in this case is due to the negative sign imparted to the exponential mapping
in the time update equation for the information matrix. Similar behavior would be expected for
covariance analyses conducted around unstable periodic orbits since they possess stable and unstable
manifolds. However, the manifold structure for periodic orbits would also have to be mapped in time.
Numerical difficulties arise in mapping the manifolds of the monodromy matrix which controls the
local dynamics around a periodic orbit. The angle between the stable and unstable manifolds would
be constant at each point in the orbit although rotated in phase space. This is difficult to enforce
numerically when many applications of the STM would be required for manifold decomposition
at many measurement times. A libration point was chosen for this study because of the constant
manifold properties. Such a study for periodic orbits may be the subject of future work.

6. Conclusions and Future Work

The computed stable and unstable manifolds of an unstable fixed point, which includes the Lagrange
equilibrium points in the RTBP, are shown to affect the accumulation of information in the orbit
determination process. Information is preferentially accumulated along the left unstable manifold
for measurements mapped to epoch and along the left stable manifold for covariances mapped to the
current state. This is due to the orthogonality of left and right eigenvectors and the eigenstructure
of the STM, which can be decomposed into matrices of right eigenvectors, eigenvalues, and left
eigenvectors. An asymmetry in information mapping is shown between left and right eigenvectors.

The information mapping theory can be applied to specific real measurements such as a position
measurement along a given direction. If that direction is perpendicular in phase space to the
eigenvector describing a left manifold, there will be a deficient phase space direction in the paired
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right manifold direction. Also, a particular direction or measurement schedule could be developed
to gain the most information on the estimated state from the smallest number of measurements.
Depending on the type of estimation, taking measurements where the partial is aligned with the left
stable or unstable manifolds can yield information compression. A full rank information matrix can
be constructed from a series of the same measurement aligned with a right eigenvector. However,
a series of measurements missing a left eigenvectors will have a deficient measurement direction
along the right eigenvector paired with the omitted left eigenvector. Future studies will focus on
constructing measurements that have maximum contributions to the information matrix as well as
developing a numerically stable method for mapping eigenvectors in time.
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