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Abstract: In order to support operational low thrust transfer orbits to GEO, SES Engineering 

has identified the need for an optimization method with high levels of fidelity, robustness and 

speed. This paper presents the development and validation of an original method to optimize low 

and medium thrust trajectories between two orbits using a so called indirect method. The tool is 

able to support both studies and operations by solving any high fidelity minimum time or 

minimum fuel problem in a few seconds, without convergence issues and without the need for an 

initial guess. Several benchmark scenarios are provided together with conclusions and 

recommendations. 
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1. Introduction 

 

The solution to the low thrust transfer problem consists of finding a continuous thrust steering 

law that allows the spacecraft to follow an optimal trajectory from one orbit to another. Low 

thrust trajectories are characterized by long propagation times and many optimization variables. 

As a result, optimization programs are typically time-demanding and require a fair level of user 

expertise. Moreover, they normally need a “good” initial guess to converge, and it is not always 

obvious how close this guess needs to be from the solution. Sometimes, under similar conditions, 

the optimization algorithm fails to find a solution, making the initial guess generation a sort of 

art as demanding as the optimization itself. Adding constraints or discontinuities, such as 

allowing the trust to shut down, decreases the robustness and convergence of the algorithms. All 

these facts make the use trajectory optimization programs challenging for real time operations or 

trade off studies. Supporting operational transfers to GEO requires a method able to provide a 

true optimum in any scenario, without falling into convergence issues and within a reasonably 

short time, in the order of seconds-minutes.  

In order to fulfill these requirements, comprehensive research has been conducted (see [5]). 

Almost all the existing methods can be classified as Direct or Indirect (or a combination of both). 

Direct methods transform the optimal problem into a linear programing problem, requiring to 

parametrize the control function (thrust steering law) by a discrete and large number of 

optimization variables. The problem is typically solved by means of an NLP solver [6], which 

adjust the control variables in order to reduce a given cost function. Although it is easier to 

include constraints and these methods are more robust, they are also slower and less accurate. On 

top, the discretization of the control sometimes produces several minima, so the problem may 

converge towards solutions that are quite far from the global optimum. Therefore, we believe 

that indirect methods are better suited for the orbit to orbit continuous thrust transfer problem. 

They are typically faster and more precise, however, quite difficult to converge. We have 

focused our efforts in enhancing the convergence properties of a problem formulated as an 
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indirect method. The result is an optimization program, coded in Fortran (LOTTO), which is 

highly robust and able to provide results in a few seconds without an initial guess from the user. 

The following features can be included in the optimization: 

 

- Minimum time problem (thrust always on) 

- Minimum fuel problem (for fixed time, optimum coast periods) 

- Eclipse shadowing (thrust reduction or thrust off) 

- Non-spherical Earth potential (J2) 

- Solar radiation pressure 

- Third body gravitational perturbations by Sun and Moon. 

- Drag force 

- Altitude constraints via penalty functions. 

- Slew rate constraints 

- Intra-Orbit Averaging (optional) 

- Longitude targeting 

 

2. Methodology 

 

LOTTO makes use of the indirect method for optimal control; this formulation has been 

reproduced in many references [1], and is just briefly presented here. 

 

The state vector consists of the six orbital elements x, which in the current implementation can 

be either the Keplerian elements (a, e, i, Ω, ω, M) or the equinoctial (non-singular) elements (a, 

h, k, p, q, L) [3]. The six dynamic equations for the state vector are: 

 

       tttftx ii ,, ux  (1) 

 

The initial state vector at time t0 is x0 and the target final state vector at time tf  is xf.  

The thrust vector u, which is the control variable, is characterized by the magnitude u and the 

unit vector û, which can be described by the in-plane pitch steering angle β and the out-of-plane 

yaw steering angle α: 
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The thrust is limited in magnitude to a maximum thrust level umax and to a minimum thrust level 

umin assumed to be zero. We also assume that the specific impulse Isp is constant (constant 

exhaust velocity).  

 

The aim is to find the steering law u(t) that minimizes a cost function C, which in a Lagrangian 

formulation, is an integral cost without terminal cost: 
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For minimum time problems, L=1 and the final time tf is unknown; for minimum mass problems 

L=u and tf  is given. 

 

With the introduction of the Hamiltonian H and the Lagrange multipliers λi , also called co-states, 
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the optimal steering law u
*
=u(λ(t),x(t)) is derived from the well-known optimality conditions: 
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The adjoint differential equations are: 
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and the dynamic equations can also be written as:  

 

 
i

i

H
x




  (7) 

 

The major difficulty is to find initial values for the λi, that will lead to x=xf at t=tf. There are six 

co-states if the final longitude is targeted and five if the final longitude does not matter. 

The functions fi can be split into three parts, a contribution from the thrust acceleration, which is 

linear in u; a contribution from the non-Keplerian perturbations (non-spherical Earth potential, 

third body perturbations, solar pressure radiation, atmospheric drag) and an extra term for the 

fast varying sixth orbital element (mean anomaly M when using Keplerian, mean longitude L 

when using equinoctial elements): 
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μ is the gravitational parameter. The 6x3 matrix A can be derived with the help of the Gauss 

form of Lagrange’s planetary equation. It depends on the frame type which can be either radial-

transverse-normal RSW or tangential-velocity-normal NTW. It also depends on the type of 

elements which can be either Keplerian or Equinoctial. The expressions for Aij can be found for 

instance in Battin [4].  

 

Because the thrust only appears linearly in the Hamiltonian, the optimal solution for the 

minimum mass problem is either to maximize or minimize the thrust magnitude [1][2]. The 

decision is taken by the switching function S which is the proportionality factor of u in the 

Hamiltonian (for minimum mass problems): 
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If S is negative then the thrust is umax else it is umin.  

 

When the thrust is on, the optimality condition can be used to determine the thrust direction: 
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Formulated this way, the problem consists of finding the initial set of co-states (λ0) that allows 

deriving the control law that transfers the satellite from its initial state into a given final orbit. 

This is basically a two point boundary value problem (2PBVP). Specific solvers are available, 

however it is known that the problem is sensitive and difficult to solve unless a very good initial 

guess is provided. Rather than focusing on the initial guess generation, we have developed an 

iterative solving algorithm able to take advantage of the particularities of the problem. The 

algorithm is based on two main ideas, firstly, for any given values of initial co-states, the 

integrated trajectory is optimal but it will finish in a different orbit. Secondly, a delta-v cost can 

be defined between this orbit and the target one. The way to find the required trajectory is to 

drive this cost towards 0. To accomplish that, LOTTO uses a robust heuristic search method 

which finds iteratively the solution of any transfer and without initial guess from the user. In 

nearly all cases it converges and reaches the target orbit with sub-meter accuracy. 
 

The usual mode to use LOTTO is to perform an intra-orbit averaging. Due to the low thrust, the 

change of the orbital elements during one revolution is small compared to the total required 

change and thrusting during many orbital arcs is required. Therefore, to obtain the long term 

evolution of the state vector and the co-states, it is possible to average them over one orbit. This 

intra-orbit averaging is performed by an integration over the true anomaly (if the Keplerian 

representation is selected) respectively the true longitude (if the equinoctial representation is 

selected), keeping the other five slow varying elements constant. 

 

However it is also possible to run LOTTO in the non-averaging mode, which is slower, but more 

accurate and one can drop the constraint of low thrust. 
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3. Validation 

 

A comprehensive validation has been performed. Benchmark scenarios have been taken from 

published papers. Tables 1 to 3 offer the comparison between published results and obtained 

results. All the scenarios have been run using a regular PC with an Intel Core i5 and 4 GB of 

RAM, without the need for iterations and providing a complete solution in a few seconds, as 

reported in the last column of the tables.  

 

Table 1 shows a good matching for the simplest case, the minimum time problem without any 

constraint and pure Keplerian orbit propagation from GTO (a0=24505.9 km, e0=0.725, i0=7°, 

Ω0=0, ω0=0°) to GEO with F=0.35 N, Isp=2000 s, m0=2000 kg. Orbit averaging is applied and 

the averaged state and co-states are integrated with a fourth-order Runge-Kutta (RK4) method. 

 

Table 1. Validation: Simple Keplerian case (minimum time). 

Case Mission Reference 
Final time (days) Run time [s] 

 LOTTO Reference LOTTO 

1 GTO-GEO Geffroy, Epenoy [9] 137.5 137.40 1.6 

 

The pitch and yaw steering angles in the orbital reference frame (radial-transverse-normal) are 

shown in figure 1. At the beginning (blue curves), both angles are small, the thrust is roughly 

tangential and increases the semimajor axis, while at the end (red curves) thrust is roughly 

inertial and reduces the eccentricity. The inclination is continuously reduced with a highest yaw 

steering angle of about 75° around day 50. 

 

  

Figure 1. Left: in-plane (pitch) steering angle. Right: out-of-plane (yaw) steering angle for 

case 1. Blue is t=0, red is t=137. 
 

Results in Table 2 aim to validate the use of non-Keplerian effects (here J2 only) together with 

thrust off during eclipse. Test cases are taken from Reference 8: case 2 is an Ariane LEO 

(a0=6780 km, e0=0, i0=5.2°, Ω0=0°) to GEO transfer with F=1.86948 N, Isp=1800 s, m0=5500 

kg. Case 3 is a Taurus LEO (a0=6926.657 km e0=0, i0=28.5°, Ω0=0°) to GEO with F=0.40171 N, 

Isp=3300 s, m0=1200 kg. Case 4 is a Taurus GTO (a0=24364.3 km, e0=0.731, i0=27°, Ω0=99°, 

ω0=0°) to GEO transfer with F=0.20085 N, Isp=3300 s and m0=450 kg. 
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Table 2. Validation: Minimum time, including J2 and eclipse shutoff. 

Case Mission Reference 
Final time (days) Run time [s] 

 LOTTO Reference LOTTO 

2 LEO-GEO Kluever&Oleson [8] case 1 167.8 167.71 11.1 

3 LEO-GEO Kluever&Oleson [8] case 2 198.8 198.87 22.8 

4 GTO-GEO Kluever&Oleson [8] case 4 66.6 66.71 5.1 

 

Figure 2 shows the time evolution of the Case 4 intra-orbit averaged Keplerian elements. The 

averaged state and co-states were integrated with an Adams-Bashfort-Moulton method. The 

match with the results from [8] obtained with SEPSPOT [13] is very good. 

 

 

Figure 2. Keplerian elements for Case 4 (GTO to GEO) 

 

Table 3 presents results for the more challenging minimum fuel problem. Here the final time is 

given and apart from the optimum steering law, the software needs to provide optimum coast 

periods to maximize mass. The optimization is performed without any constraint or non-

Keplerian effects and uses intra-orbit averaging. 

  

Table 3. Validation: Minimum fuel 

Case Mission Reference 
Consumed mass  [kg] Run time [s] 

LOTTO Ref LOTTO 

5 GTO-GEO Verlet et al. [12] 171 169.50 3.9 

6 MEO-GEO Verlet et al. [12] 263 259.01 5.3 

7 SSTO-GEO Verlet et al. [12] 329 329.61 3.4 

8 SMART1 Cano et al. [10] 22.1 22.13 3.8 
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Cases 5 to 7 describe transfers from GTO (hp=250 km, ha=35786 km, i=5°), from MEO 

(hp=5000 km, ha=10000 km, i0=13°) and from SSTO (hp=11497 km, ha=65000 km, i=13.8°) to 

a GEO orbit. The thrust equals 0.58 N and the specific impulse equals 1800 s The duration is 180 

days for case 5&6 and 160 days for case 7. The initial mass for case 5&6 is 2000 kg and for case 

7 it is 4600 kg. The results of case 7 present a good matching while for 5 and 6 LOTTO finds 

slightly better consumptions. Figure 3 shows the on/off periods for all three scenarios as function 

of time and true anomaly. The GTO transfer consists mainly of apogee burns (true 

anomaly=180°) except at the very end of the transfer where perigee burns appear. The MEO 

transfer starts with perigee burns and ends with apogee burns. The SSTO transfer starts with 

apogee burns, but perigee burns appear after a few days. 
 

  

Figure 3. Optimum on (magenta) / off (green) periods for the solutions of Case 5 = 

GTO→GEO, Case 6 = MEO→GEO and Case 7 = SSTO→GEO (left to right) 

 

Case 8 is a SMART-1 trajectory optimization without any constraint and pure Keplerian orbit 

propagation. Initial orbital parameters are rp=20000 km, ra=58068 km, i=6.655°, Ω=244.21° and 

ω=200.23°. Final orbit parameters are ra=219400 km, i=5.49°, Ω=0.25° and ω=79.66°. The final 

perigee radius is free. Initial spacecraft mass is 325.966 kg, the transfer duration is fixed to 284 

days. Thrust is 45.82 mN and Isp is 1496.3 s. Because the final perigee altitude rp was free, 

multiple runs with different rp’s were done and the minimum consumption was found to be 

22.128 kg for a perigee radius of 26075 km. This is close to the results carried out in [10] and 

cited in [11] which obtained a consumption of 22.1 kg and a final perigee radius of 26500 km. 

 

 

Figure 4. Optimum on (magenta) / off (green) periods for the solutions of case 8. The 

corresponding switching function is show on the right side. 
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4. Study cases 

 

In this section we present several study cases together with findings and recommendations. 

 

4.1. Comparison of averaged and non-averaged trajectories. 

 

In this example we want to assess the accuracy of the intra-orbit averaging method. To be able to 

visualize the differences to the non-averaged method, we selected a SSTO transfer with relative 

high acceleration such that the target orbit is reached in only 68 revolutions. 

At the same time we selected some more difficult options (non-Keplerian perturbations, 

longitude targeting, slew rate limitations, eclipse shutdown). 

 

The initial osculating orbital parameters are hp=350 km, ha=70000 km, i=28.5°, Ω=265°, 

ω=170° and M=0°. The satellite has an initial mass of 1500 kg, the thrust is 0.5 N and the 

specific impulse is 1800 s. The target orbit is a perfect GEO orbit for which the subsatellite 

longitude at 50° East is targeted. The initial epoch is 01-Jan-2016 00:00:00 and the non 

Keplerian perturbations considered are J2 effect, Sun & Moon third body perturbations and solar 

radiation pressure with CrA=90 m
2
. During eclipse, the thrusters are shut off. The angular rate of 

the thrust direction in inertial frame is constrained to below 100°/hour. For the averaged method, 

the osculating initial and target elements have be replaced by the mean elements because only 

the secular effects of J2, Sun& Moon etc. are considered in the orbital propagation. 

 

Figure 5 compares the time evolution of equinoctial elements for the averaged and non-averaged 

case. The matching is pretty good and will be even better for longer transfers with lower thrust.  

 

 

Figure 5. Time evolution of equinoctial elements for averaged (blue) and non-averaged 

(red) method. Note that only the last 20 days are displayed for the subsatellite longitude. 
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The delta-v determined with the averaging method integrated with RK4 and a step size of one 

day is 2272.2 m/s. It is 0.1 percent higher than the delta-v of 2269.3 m/s from a non-averaged 

integration with RK4 and a step size of 10 minutes. The CPU time is 15 s respectively 200 s. 

Figure 6 compares the time evolution of the co-states for the averaged and non-averaged case. 

From that plot it is clear that the converged averaged co-states λ0 are very good initial guesses for 

the non-averaged co-states, thus accelerating the convergence for the relative CPU intensive non-

averaged case. 

 

 

Figure 6. Time evolution of co-states averaged (blue) and non-averaged (red) 

 

With the non-averaged method it is also possible to abandon the low thrust assumption and 

LOTTO can even optimize a sequence of two high thrust chemical LAE burns, but this will not 

be presented here. 
 

4.2. Minimum fuel vs minimum time transfers to GEO and lifetime savings. 

 

In some regions of the orbit it is less efficient to change orbital elements than in others, for 

instance inclination corrections at the perigee are much more “expensive” than at the apogee 

because of the very high velocity at perigee. Therefore it is obvious that the total delta-v needed 

to reach the target orbit can be reduced if the thruster can be shut off in the “inefficient” portions 

of the orbit. This section shows how much fuel can be saved by not firing continuously and 

extending the transfer time. For simplicity, it uses pure Keplerian motion without any other 

perturbations, no constraints and applies intra-orbit averaging. The initial orbit is a typical GTO 

orbit: hp=300 km, ha=35786 km, i=6°, Ω=270° and ω=180°. The satellite has an initial mass of 

5000 kg, the thrust is 0.8 N and the specific impulse 1800 s.  

 

The lowest possible delta-v is 1486.0 m/s and corresponds to the Simplified Nodal Transfer 

(SNT) solution [14] that can be used because the apses are located at the nodes (ω=180°). It can 
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be reached asymptotically for an infinite transfer duration, in which case the thrust will be off 

during the entire orbit, except at in infinite short time at the apses. 

The minimum duration solution has 149.42 days, with a delta-v of 2196.9 m/s and a consumption 

of 585.11 kg. Figure 7 shows the time evolution of the orbital elements for this case and also for 

a duration of 153 days with a delta-v of 2091.76 m/s and a consumption of 558.74 kg. Coasting 

is mainly around perigee and extends from day 32 to day 103 (see figure 8 right, top/right). 

 

 

Figure 7. Time evolution of a, e, i for min duration (blue) and min fuel with 153 days (red). 

 

Figure 8 left shows how the delta-v and the fuel consumption decrease with increasing transfer 

duration. The duration is extended by at most 25 days in which the required delta-v to reach 

GEO is reduced by 333 m/s compared to the continuous firing case.  

 

 

Figure 8. Left: delta-v and consumption as function of transfer duration. Right: optimum 

on (magenta)/ off (green) periods for 4 selected durations.  

 

For a geostationary satellite for which the yearly delta-v is about 50 m/s for inclination control, 

this corresponds to more than six years of propellant lifetime gain (!), assuming that it uses the 

same propulsion system with identical Isp for both stationkeeping and transfer orbit.  

We have also observed that the coasting periods correspond to those regions in which the slew 

rates are the highest in the continuous thrust solution. When entering regions of very low 

efficiency, solutions with continuous thrust present high rates which are risky and inefficient 

manoeuvers for the spacecraft, adding little gain. By adding just one or two days to the minimum 
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duration, these regions are normally avoided. On top of that, due to the initial high slope of the 

curve (Figure 8), the gain in lifetime by adding just a few days to the transfer is very interesting: 

we can basically trade days by years of lifetime (adding just 2 days gives around 2 years of 

lifetime increase).  Another advantage of this approach is that it is well suited for a fixed mission 

completion date because unexpected underperformances in the early phase of the transfer can be 

compensated by less coasting in the remaining part of the transfer. 

Each fixed duration run used as initial guess the converged solution of the previous duration and 

the CPU for a single fixed duration run was about 6 seconds. 

 

4.3. In-orbit low thrust relocations. 

 

In this example, we apply the minimum fuel, fixed duration optimization without intra-orbit 

averaging. A 15° relocation from a GEO orbit at 65° East to 50° East is performed in a fixed 

time of 10 days. The satellite has an initial mass of 5000 kg, the thrust is 0.2 N and the specific 

impulse 3000 s. All non-Keplerian perturbations are neglected. 

 

 

Figure 9. Time evolution of Keplerian elements for GEO relocation. 

 

The minimum delta-v is 9.996 m/s and the minimum consumption 1.6985 kg. The start sequence 

and the stop sequence are nearly perfectly symmetric and both are split by the switching function 

(fig. 10) into 2 burns: b1=[0:1.2357], b2=[1.5159:1.7262], b3=[8.2739:8.4841], b4=[8.7644:10].  

 

  

Figure 10. Switching and pitch steering angle during a GEO relocation.  

The interruptions between burns 1 and burn 2 and between burns 3 and burn 4 are required to 

target eccentricity and longitude simultaneously (see figure 9). 
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The thrust vector lies in the orbital plane, but is not perfectly aligned with the velocity vector: the 

optimal pitch steering angle varies between -0.2° and 3.3° during the two start burns (see figure 

10) and between 176.7° and 180.2° at the two stop burns. 

 

5. Conclusions 

 

A new low thrust trajectory optimization tool LOTTO based on an indirect method has been 

developed and successfully validated. It does not need an initial guess and in most cases 

converges without problems. It is fast, typical CPU times lie in the order of seconds. It has the 

capability to solve different kind of problems like longitude targeting, non-averaged high thrust 

scenarios or transfers where coasting phases help to reduce the total propellant consumption 

compared to a minimum time solution. It can handle constraints like eclipse shutoffs or slew rate 

limitation.  
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