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ABSTRACT

The European Comet Halley mission involves a
sequence of mid-course orbit corrections to remove
deviations from the nominal flight path, as indi-
cated by orbit determination. As a function of
the spaceeraft design, several manceuvre execution
modes are studied, and the corresponding optimi-
zation problems -are discussed. For on-board pro-
pellant estimation, a simple sequential algorithm
is employed. The use of these optimization and
propellant budgeting methods in operations is
considered.

Keywords: Mid-course navigation, Fuel estimation,
Manceuvre optimization, GIOTTO mission.

1. INTRODUCTION

1.1 The GIOTTO mission

After the joint NASA/ESA cometary mission was
abandoned for budgetary reasons in early 1980,
ESA came up with a European project in order not
to miss the unique opportunity of the appearance
of Halley's comet in 1986.

Within the financial and scheduling envelope, the
spacecraft design has mainly been based on exist-
ing technology. The spinning GIOTTO spacecraft
will meet the scientific objective,

to approach the cometary nucleus close
enough to transmit high resolution images
and to analyse gas and dust in situ.

In the first half of July, 1985, GIOTTO will be
launched by ARIANE from Kourou into a transfer
orbit, together with a geostationary satellite.
After a few revolutions around the earth, a solid
motor will provide a velocity increment of about
1400 m/s to inject the spacecraft into an excess
hyperbola into its interplanetary trajectory
(Fig. 1).

The encounter with the comet is scheduled after
about 250 days, close to midnight March 13th/1kth
1986. In the last 4 hours before encounter,
nominally 40 Kbits/s of scientific data will be
transmitted in X-band to the 6lm radio-astronomy
antenna in Parkes, Australia. Survival of the
probe after fly-by is not envisaged.
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Figure 1

1.2 Mid-course navigation

The unavoidable injection error, detected from
orbit determination, necessitates correction
manceuvres in order to compensate for deviations
from the target at the fixed time of arrival.
Unfortunately, the motion of this target can only
be uncertainly predicted because of non-gravitat-
ional accelerations acting on the comet during
its perihelion passage which cannot be modelled
precisely. Observation data from the scientific
camera on the dual spin spacecraft are unlikely
to provide useful information for terminal navi-
gation. New information on the target position
will be derived from earth-based astronometric
observations in November/December, 1985. There-
fore, at this time during the cruise, re-targetirg
has to be planned. Eventually, information from
other cometary missions can be utilized a few
days before encounter for re-targeting. Appar-
ently, the navigation analysis has to consider a
variety of mission-specific features, however the
dominating portion of propellant will be consumed
correcting for the execution error in the perigee
kick. This first orbit correction manceuvre will
take place as soon as sufficient ranging data are
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available, preferably within the first two days
after injection, when the spacecraft is less than
600,000km from the earth. Within this distance
communication can be maintained by means of the
low gain cardoid antenna in S-band which offers
the opportunity of turning an axial thruster, i.e.
the spacecraft spin axis, into almost any direc-
tion required for the manceuvre. We call this
manner of manoeuvre execution an omni-directional
mode (OM).

Further away, the high-gain despun paraboloid
antenna has to be kept pointing towards the earth.
The angle of the antenna beam with respect to the
spacecraft spin axis is determined by the
encounter geometry. The side of the spacecraft
opposite to the antenna is covered by a dust pro-
tection shield which is turned into the approach
direction towards the comet during the terminal
mission phase. This mounting of the despun high
gain antenna, together with thermal and power
conditions, constrains the spin axis directions at
any time during the cruise to a small arc on about
a 45° cone around the earth's direction. Orbit
manoeuvres in the cruise phase therefore have to
consider the prescribed thruster configuration.

We call this type of manoceuvre execution a com-
bined mode (CM). More details on these mission
specific correction modes and combinations will be
given in section 2.1.

The fuel optimum correction sequences in any com-
bination of manoeuvre executionmodes involve, at
most, three impulses. The optimization problem
and solution methods are treated in 2.2 and 2.3.
The fast numerical methods have been applied in
Monte Carlo calculations of the statistical

properties of the injection error correction (3.3).

However, the statistical results based on very
simple one-impulse strategies compared, in most
cases, quite well with the optimum three-impulse
solutions (3.h).

In the overall propellant estimation, therefore,
only one-impulse corrections were considered; this
means at any time during the cruise, a manoceuvre
is calculated and decomposed such that the error,
as far as it is known at that time, is immediately
removed. With this approach, manoceuvre execution
errors, dynamical system noise, the orbit deter-
mination process and the target observations pro-
cess and the sequence of fine corrections later
%n the cruise can easily be modelled and included
3.1, 3.2).

From the experience and the results of these
studies, some consequences on the operational
flight dynamics support can be drawn (4). They
can be used in the context of:

. stochastic optimization of orbit injection and
mid-course corrections considering orbit deter-
mination accuracies of probe and comet;

- fuel budgeting after the perigee kick;

. calculations of mission success probabilities
in trade-offs during operations.

In particular, the results show the importance for
mission success of manoceuvre optimization, orbit
determination and cometary ephemeris estimation
relative to each other.

2. COMPUTATION OF MID-COURSE CORRECTIONS

2.1 The Correction Modes

Each of the two manoceuvre modes OM (= omni-
directional mode) and CM. (= combined mode) pro-
vides a single velocity increment. Table ™snows
the five different possibilities to correct a
target-miss—-vector of GIOTTO by up to three
maneouvres in either of these modes. More than
three manoeuvresneed not appear in an absolute fuel
minimum solution (Ref. 3). In the next paragraps
we will deal with the problem of computing opti-
mum solutions for these five mid-course correc-—
tion modes.

* for Table 1 please see following page.

2.2 The Propellant Minimisation Problem

Mid-course correction is a typical example of
trajectory controls, which only comprise
manoeuvres (ti, 3&} with small, almost impulsive
T =t () €2) _ (3)
velocity increments Ii = (vi ,vi ,vi ) at

the manoeuvre times ti’ Em o omas e

The set (t.} of switch-times emerges from a proper
discretisation of the time interval [t_, t,]
between the departure time t_and the arrival time
t,.. In interplanetary fligh%s, the t. may
typically be representative of daily time slots
with ground station contact.

If we assume linear equations of motion or
equations of motion linearisable around a refer-—
ence trajectory, the total effect Ax, of the N
manoeuvres (t., v.) on the n-dimensional (n&6)
target state in the target space Rn(tN) at ty
can be written as

3 ) )
I b T (1)
1 =1 T ot

Zkgﬂ =

n M=

i

The time dependent n-vectors pr }(ti) are well
defined along the reference trajectory. They are
the partia% ?erivatives of the state x, withres-
pect to v.'?’ at t.. The column vectorsbd ‘P '(t.)
form the n x 3 transition matrix B(t,,t.) from
¥. to x,. In the case of interplane¥3r§ flights
BftN,t. may be computed by techniques which
take account of perturbations during the depar-
ture from the earth-moon system or during the
approach to the target planet (Ref. L).

We introduce at each t. a suitable reference fram
for the velocity increments v., for instance a
frame with one of its axes polnting in the direc-
tion of the sun or in the direction of the actual
spin-axis. This procedure enables us to incorpo-
rate some satellite specific manoeuvre modes into
the optimisation processg by pure rotations of the
transition vectors b'P fti).

For the above linear and impulsive controls the
following rendezvous problem is to be solved:

Determine a permissible sequence of manoeuvres
{t;*, v;} with pinimum fuel consumption
tiie{t.} s b €Lt styl which provides a
preseribed tabget Increment of Az, at the
fized arrival time ty aceording to the
rendezvous conditions (1).
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Correztion Manoeuvres Spin-axis Purpose
Mode No. type mode
1 3 1AC oM arbitrary, permitted Nominal, fuel optimum
+2AC CM fixed 3-impulse solution
or
+2RP CM fixed
or
+1AC,1RP CM fixed
2 1 AC oM arbitrary, permitted one-impulse solution in
early orbit phase; not
necessarily fuel opti-
mum but simple
3 3 3AC (*1) CM fixed fuel optimum solution
or for fixed spin axis
"
2AC,TRP CM #1) if radial thruster
or failed
"
JAG,ehR O #2) if axial thruster
S failed
3RP (*2) iy
L 1 1AC,1RP CM fixed one-manoeuvre solution
for fixed spin axis
5 2 2ac(®x) CM fixed two-manoceuvre solution
or for continuation of
1AC,1RP CM b 3-manoeuvre solutian
or
2RP(*) M )

Mid-course correction modes

d burn
onal mode

TABLE 1:

AC = axial continuous burn
RP = radial pulse

OM = omni-directi

CM = combined mode

* =

The fuel used by & single manceuvre depends on the
thruster configuration and on the thrust mode. We
only consider thruster systems with constant ex-—
haust velocities. The fuel consumption formula
that are specific for GIOTTO will be given in the
next paragraph.

In operations, constraints on the menoeuvre times
and the spacecraft attitude must be taken into
account. Fortunately, any constraints on the t.
can easily be incorporated by removing forbidden
times from the set {ti}.

Constraints on the attitude and, hence on the Vo=
directions are assumed to have the following form:
V. - 5
lTl‘-gi(‘]}gcos¢§32j=1,..,J,i=1,..,N (2)
iy

~ (3) : (3) .

The §. are unit vectors. The @i are t?e)half

cone angles of forbidden cones about the gi e

For GIOTTO we have to investigate a "fixed time of
arrival" problem. The dimension n of Ax, is
equal to 3 as the arrival velocity is not control-
led.

possible contingency modes in case of thruster failure

In the omni-directional mode for the GIOTTO
mission, the V. may be subjected to sun-aspect

angle constraints.

The v. may also be constrain-

ed to small cones around the satellite-earth-line.
The corresponding manceuvres could then be well
calibrated from range-rate information.

2.3 The Propellant Consumption

In the case of GIOTTO we have:

a) the omni-directional mode: v.

is generated

by a continuous burn after an axial thruster has
been rotated into the (permissible) direction of
-v;- The fuel consumption is proportional to

o
Il = /"

b) the combined mode:
three thrusters, two

the direction of +v.

2 2 2'
s v (@, ) £3)

. can be generated by
thrusters pointing in
b e

respectively,

and a radial thrustér perpendicular to the axial

ones.
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: BN 1) R - o
With lei |2 =+ v; + v the fuel con

sumption is proportional to

2) | 4
FA TS R (4)

The different efficiency of the axial continuous
burn and the radial burns (pulsed) is represented
by & positive weight B;-

The fuel consumption for other thruster combin-
ations and spacecraft stabilisations can often be
modelled in a similar way, e.g. for 3-axes
stabilised satellites we either have a purely
omni-directional mode or fixed thrust directions.

If there are k=1,...., K manoeuvres in the omni-

directional mode and ¢=K+1,...., N manoeuvres in

the combined mode, the total fuel consumption is

proportional to

Z (v . gqv e =ilL) (5)
IR k=|1_k 3Gkt | REliTle

The cost functi?n)(5) is a convex function in the
3xN unknowns v. Pl k=1,...,K;p =1,2,3. Our
rendez-vous problem therefore becomes a convex
optimisation problem for the unknown impulses.

The cost function (5) has to be minimised under
the linear rendez-vous conditions (1) and - in the
omni-directional mode - under the convex
constraints (2). In general, this can only be
accomplished numerically.

2.4 The Discretisation Method

If we can prescribe at each switch point t.,
a sufficiently dense set of permissible directions
B J=1,...,M of velocity increments then the
cottvex problem degenerates into a linear optimi-
sation problem in which the unknowns are NxM
absolute values V.. of velocity increments (see

13
also Ref. 3).

When solving a problem with constraired velocity
directions one has to bear in mind that at some
t. the region with permissible thrust directions,
ite.the permissible domain Q(t,) for the control
function is not convex. Hence the images D. =
B(t,,t.) a(t.) of 9 (t.) in the targgt spacé are
not cofivex either. Théir union D = 50. is the
reachable domain introduced by Cont¥sdu and
Edelbaum (Ref. 1, page 39). Solutions of the
rendez-vous problem comprising any permissible
combination of vectors of D may not be feasible,
They may contain more than one manoceuvre at a
single switch time ty-

Therefore we have to seek for solutions of the
linear problem, which do not contain more than one
non = vanishing v, . at each t.,. This yields a
special linear opﬂimisation_problem.

It shows one more peculiarity; all coefficients
of its cost function (5) are positive. This
indicates the application of special numerical
techniques. As has been shown in Ref. 3,
replacing the classical simplex algorithm by a
gradient projection method may reduce the
computation time by a factor two.

We finally recall that most of the classical
solution methods for the above problems, as for
instance the analysis of the primer introduced
by Lawden(Ref. 2) either tacitly assume convexity
of the permissible region or become very complex.

2.5 One and Two Manoeuvre Solutions

In case of our special 'fixed time of arrival'
problem (dimension of A 5N=3) the fuel optimum
solution normally contains 3 non-vanishing
impulses and hence possibly 3 manoeuvres. During
operations not necessarily globally optimum
correction modes with only 1 or 2 manoeuvres have
to be considered.

As is well known the optimum one manoceuvre
solution can immediately be derived from the
following algorithm:

a) invert for i=1,...,N the rendez-vous condition

AXy = Bty » t.)v, (6)
This yields a velocity increment Ves with

b) If i€ K check whether vy points into a
permissible direction.

¢) Compute for permissible v. and for
i €K the fuel consumption z(v.) from
—i
formula (3),
however for
i >K the fuel consumption from formula (k).

d) Select the optimum time t. from the condition
that Z(Ii) should assume 1Its minimum value.

If one of the thrusters failed, the one impulse
solution might not be feasible.

The computation of the 2-manoeuvre solutions

can be based on the method presented in 2.L. N
Computing the fuel optimum solution for all (5)
combinations of 2 permissible times tj, at least
one optimum Eﬁmanoeuvre solution is to be found
among these (5) cases. This appears to be a
rather tedious procedure, however, it will only
be applied a few times during the mid-course
navigation.

3. FUEL STATISTICS

3.1 The Kalman Type Algorithm

As indicated in 2.2, any deviation from a refer-
ence trajectory will be sufficiently small to
allow linearization. Restraining to one impulse
correction and assuming white Gaussian zero mean
noise processes and initial errors, this leads
to a simple sequential algorithmic description
of the navigation process by means of well known
concepts of linear guidance and filtering. The
probability densities of the moduli of the
velocity increments (a fuel statistics) can be
derived analytically (ref. L).
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3.1.1 State Propagation

The random variable state of the system is repre-
sented by the n - vector x. at times {t:) of
events, namely measurement or correction times.
The stochastiec processes, {x consists of the
state deviations of the proée, the comet and
eventually some parameters (n = 6, 12 or more)
from nominal. The propagation between events is
described by the linear equation

Xp T BirioaXi T Ei (7
where ¢, denotes the state transition matrix

from evaﬁ% 1-1 to event i ana {w.} denotes a white
Gaussian noise process of unmodelled dynamical
disturbances with E(w.w.T) = Q.;the Q. can be
approximated from the original’continlious process.

3.1.2 Observation Equation

At times ti measurements

L= HK
Z H].El 31 (8)
are taken., The H. are the n x m matrices of
partial. measurement/state.{ v. } is a white
Gaussian noise process with (xi!iT) =R;.
The measurement vector can take the form of
arbitrary combinations of ranging of the probe
from some ground station, optical observations
of the comet's right ascension and declination
as seen from the earth or the on-board camera.

3.1.3 Correction Manoeuvres

At correction times t; mo observations are
assumed to be taken. Naturally, the portion in
the state vector referring to the comet will not
be affected. The state after correction Ei+ is
obtained by incrementing the velocity part of the
probe in the state vector before correction Ei_
according to

+ —_—
et e J(Ii +ﬂi} (9)
where v. is the computed velocity correction and
N is tﬁe zero mean Gaussian noise, modelling the
execution error of the manoeuvre with Covariance
M.. J is a 3 x n matrix introduced for the sake
ot homogeneous notaticns.

3.1.4 Stochastic evolutions

In the linearized theory all random variables
undergo only linear transformations, so they
remain Gaussian and are fully described by the
evolution of the mean and covariance matrix.

In the present application we have to distinguish
between two state random variables

- the actual state deviation x
- the estimated state deviation %

The actual state deviation cannot be known on
ground, therefore all manoceuvre calculations will
be based on . The covariance matrices of x and
% - x will be denoted by

E|x EF]called disgersion
E[(R - x) (% - x'!]called covariance

nn

c
P

The random variables x and x — £ have zero mean
in case of an unbiased estimator by definition
of the reference orbit.

The initial values P_ and C of covariance and
dispersion at orbit injection are obtained from
the terminal values of an orbit determination
process over the parking orbit starting with the
known launcher dispersion. Immediately before
the execution of the injection manceuvre we will
usually have P0 = CO.
Measurements will only affect 3, whereas
manoeuvres influence both veloeity parts of the
state vectors of the probe due to the mechaniz-
ation error.

3.1.5 Covariance Propagaticn and Measurement
Update

Between events the dispersion and the covariance
matrix naturally propagate according to

o P
P S8 0P ™ (10)

- T
3 "0 5P 1 11" e (11)

At measurements the dispersion is not influenced,
so

¢: = C. (12}

and by the well known equations

P = PLT S EHIP,
i i %At
with the Kalman gain

= - = |
K. =P K. (B2 H 4R,
1 L R - R 4 3 1

3.1.6 Correction manoceuvres

For fixed time of arrival guidance, the distance
from the target at final time (delivery error)
has to be compensated by an impulsive manosuvre
vy according to (6).

Introducing the decomposition

by - [@1 @e] (15)
k]
By
of the transition matrix we obtain
= (16)
T AR

with the 3 x n Guidance matrix
Ay =[S AP
[<I>2F"I o, ‘hp-—lﬁc]

Aip= T-‘sz ¢1 'is]

(17)

=3
n

where the indices p and c denote the transition
matrices for the motion of the probe and the
comet respectively.

Assuming the executive error of the manoeuvre
n; not to be correlated with the manoeuvre v,
1
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we obtain for the covariance matrix of the
manoeuvre

(18)

V. = V. +n.
L R oy

as it really is executed
LT (19)

5; = Elv;v; 5

ul

As for the minimum variance estimator, the esti-
_mate X is perpendicular to the estimation error
x = x — X, we obtain after some calculations

a - T
s; = Al Pi')ni + M (20)

Here, C. and P, are dispersion and covariance
before manoeuvre execution. From this

H et = L
BT =k, + MJ (21)

and using (15) after more algebra
+ - v Tl = 7
c; = (T+J Ai}{Ci P, VT +T ‘r‘i) P, +M,J
(22)

I is a n x n unit matrix. This completes the
sequential algorithm.

The algorithm clearly does not consider the orbit
determination process in sufficient complexity,
so orbit determination results should not be dram
from it. It turned out to be sufficient for pro-
pellant estimation.

3.2 Probability densities for fuel consumption

The propellant consumption for a manceuvre is
approximately proportional to the modules

Vi = igi| of the velocity increment.

In the omni-directional mode the density function
of v, can be derived from the diagonalized

11 0 0
g =lo. g ® (23)
= B0 A

by some typical transformations (ref. 4).

It finally contains a hypergeometric function,
evaluation of which has been done by numerical
inversion of Laplace-transforms.

In the constrained mode the corresponding statis-
tical transformations starting with a 2 x 2 matrix
or a scalar, imply the evaluation of a Bessel

function of the first kind and an error function.

For the Giotto mission the propellant consumption
for orbit corrections was estimated at about 180
m/s 99-percentile under preliminary assumptions
on the errors.

3.3 Monte Carlo statistics for injection error
removal

To investigate how the simplified one-impulse
correction propellant estimates compare with the
optimum three impulse solution, the injection
error was simulated for many random cases and
the optimum correction sequence was calculated
(in each case according to 2.4). It turned out
that for the removal of the injection error, the
optimization only leads to a considerable propel-

lant saving if the executionmode of the first
correction is combined (ref. 6).

3.4 Planned arrival time shifts

As only one ground station will be available to
receive the high bit rate data stream during the
4 hour encounter period, the time of arrival has
to be restricted such that this encounter period
lies within the daily time interval in which the
probe is visible from the ground station in
Parkes (Australia). On March 13th/1Lth 1986,
this period extends from 18.30 to 3.30 GMT,
assuming & minimum elevation of 30°. Therefore,
the probe has to arrive at the comet some time
between 22.30 and 3.30. If the on-board hydra-
zine system could provide a +9.5 hours shift of
the arrival time, this constraint could be remo-
ved in the launch window calculations, which
could then be extended to the end of July, assum-—
ing any solar aspect angle at injection is
acceptable.

Inspection of the partial derivatives along the
orbit shows that most efficiently, a 9.5 hour
arrival time shift is accomplished by a manoeuvre
of 127 m/s 77 days after injection. If the
manceuvre has to b® decomposed along the pre-
scribed attitude, 105 m/s radial and 85 m/s axial
will be required. This decomposition at day 77,
of course, is not optimal.

Propellant may be saved by combining part of this
planned mid-course correction with the statisti-
cal correction manceuvres which have to be
executed anyway. In particular, the combination
with the dominating first orbit correction after
two days which removes the injection error has
been studied. This combination will save only
about 15 m/s, independent of the percentile which
is looked at (ref. 5).

L. OPERATIONAL IMPLICATIONS

When preparing the operations it must be kept in
mind that the success eriterion of the Giotto
mission is:

delivery of the spacecraft as close as
possible to a properly chosen target
point.

This is different from the standard geostationary
missions, where any propellant saving during the
orbit insertion may extend the operational life-
time and, therefore, is the driving optimization
criterion.

If the propellant tanks of Giotto are well sized,
only in very rare cases or in emergency situa-
tions, will propellant optimization be necessary.
Comparisons showed that optimum manoeuvre
sequences do not lead to a propellant saving of
more than 5 m/s below the primitive one-impluse
solution for 99% of the injection errors.

This means the nominal operations can adopt a
very simple scheme of orbit corrections, which
fixed the manoceuvre times in advance without
sophisticated optimisation, following criteria
of operational convenience.
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Nevertheless, optimization software must be avail-
able for any non-nominal case, e.g. malfunctioning
of thrusters or operational problems in the
initial phase, such that the first correction
cannot be executed in omni-directional mode. Then
only a well prepared complete package of' optimi-
zation and mission planning software can guaran-
tee nission success. Part of this package has to
be a rrogram for fuel budgeting. Iu puriiculur,
in optimizing the orbit injection, the propellant
estimation during the cruise phase must be inclu-
ded. The mission analysis programs do not cope
with the variety of operational constraints and
possible cases, nevertheless the development of
operational software may start with the experi-
ences of mission analysis. In particular, it has
been shown that the areas which are critical for
mission success are the areas which directly
influence the delivery error; these are the orbit
determination and the cometary ephemeris estima-
tion from earth-based astrometric observations.

Special attention must be paid to these latter
problems withinthe next four years.
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