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ABSTRACT

Fuel and time minimum manoeuvres for a low-thrust
station acquisition are determined by solving a
special linear optimization problem. The proposed
method also works if constraints are imposed on the
manoeuvre times and directions.

Low thrust station keeping compensates the effects
of natural perturbations and may be regarded as a
series of station acquisition phases. It requires

an gptimal long term strategy defining the target
orbits. Although this strategy is almost trivial for
the secular perturbations of inclination and semi-
major axis, the optimal compensation of long perio-
dic effects of the eccentricity needs some analysis.
Corresponding algorithms are derived by use of the
"rope stretching method" and implemented in a station
keeping simulation, the results of which are pre-
sented.

Keywords: Low-thrust, Station Acquisition, Station
Keeping, Fuel and Time Minimum Control Problems,
Longterm Strategy, Rope-stretching Method

1. INTRODUCTION

In future geostationary migsions the application of
highly accurate launchers (Ref. 1, page 2.17) and
the replacement of the apogee boost motor by a re-
startable engine (Ref. 2) will lead to small AV-re-
quirements for station acquisition which can even

be generated by low-thrust systems in a reasonable
short time interval. The use of low-thrust systems
like electric propulsion systems instead of chemical
systems will drastically reduce the fuel cgnsumption
in this phase of geostationary missions, and in the
subsequent station keeping phase. The study will pre-
sent some methods fror the determination of optimum
orbit correction sequences for station acquisition
and for station keeping with low-thrust systems. The
main optimality criterion will be a minimum fuel
consumption, however, minimum time problems will be
touched also.

The low-thrust systems considered here are character-—
ized by the fact that the influence of a manoeuvre on
the orbit cannot be described by a single impulsive
variation of the satellite velocity. We consider sys-—
tems with constant exhaust velocities ev. Hence the
fuel consumption Am during the controlled motion is
proportional to the AV-requirement, i.e. the integral
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Am = fl|5(e) || de = av (1)

over the absolute values of the accelerations ;(t}
exerted by the control system on the satg%lite.

ol is the Euklidian norm in the R and
u(t)|| is restricted by a sufficiently small and
eonstant upper limit u.

The station keeping phase can be split into cycles

of duration T,, i=1,..M. The T. depend on the station-

keeping tolerances, i.e. the pérmissible eccentri-
city and inclination of the crbit and the permissi-
ble longitude band. Each cycle comprises several
orbits. In each of these cycles and in the station-
acquisition phase one has to solve a typical rendez-—
vous problem : One is seeking for a sequence of
orbit corrections which annihilate small deviations
of a given departure orbit from a given target orbit
during a fixed time T. We may call this a short-—
term problem since the influence of the natural
perturbations {earth potential, sun, moon) on the
orbit can be decoupled from the control problem.

The targets for these rendez-vous problems have to
be defined by means of a long-term strategy, the
station-keeping strategy. Only the combination of
such a strategy with an optimum solution of the
resulting short-term problems allows to correct
the injection errors (station acquisition)and to
compensate the influence of the natural pertur-
bations on the orbit (station keeping) in a (fuel-)
optimum way.

Operational constraints occurring mainly during
station acquisition, complicate the rendez-vous
problem. Periods during which the thrusters may
not be fired (eclipse intervals, tracking periods)
split the station acquisition phase into a sequence
of disconnected intervals, and constraints on the
firing directions cause similar problems as des-
cribed in the paper "Midecourse Navigation for the
Furopean Comet Halley Mission" to be presented in
this symposium. These constraints have to be taken
into account in the short-term solution.

As is well known (Ref. 3, page 124 ff.), the equa-
tions of the controlled motion can be formulated in
elegant way by means of the following variables. The
control u(t) and the natural perturBations are re-
presented by the 3-vector function b(t) with compo-
nents
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T(t) in direction of the actual velocity
N(t) in direction of the orbit pole
R(t) normal to N(t) and T(t).

The orbit state is given by 6 nonsingular elements,
for instance by a = semi-major axis; ex, ey = com-
ponents of the eccentricity vector in the equato-
rial plane; A\ = mean off-station longitude in the
rotating system andix, iy = components or the orbit
pole in the equatorial plane. With the following
auxiliary notations

V = mean velocity in synchronous orbit

(2)

mean angular velocity in synchronous orbit (3)
(&)

a(t) = AA(t) +o_ (t-to) + Ao = satellite mean (5)
loneitule
(6)

and for small eccentricities and inelinations of
all orbits in question, the (Gaussian-) equations of
motion read (Ref. 3, page 13L)

w =
e

lo’

station mean longitude at epoch to

a

Qo = AA(to) + Ao

a =21 (1)
éx = 3 [sina R(t) + 2cosa T(t)) (8)
¥y = ‘_: [-cosa R(t) +2sina T(t)] (9)
bk = % [-2R(t) + 3(ap-a)T(t)]) +/3—§-we (10)
ix = sina H(t) (11)
iy = —cosa N(t) (12)

The problem specific integration of these eguations
in the following chapters will be a first order in-
tegration. If necessary, its applicability must be
justified by a comparison with a correct, possibly
numerical integration of the nonlinear system (7) -
(12). A first order integration is equivalent to an
integration of the equations of motion linearized
about a reference trajectory. Hence our problems fall
into the class of linear control problems. This
formulation of the problem has two advantages: It
provides a closed solution of the linear system and
permits to separate the influence of the natural
perturbations on the orbit.

2. 'FUEL AND TIME MINIMUM RENDEZ-VOUS'

2.1 Selution methods for the fuel minimum problem

Fuel or AV-minimum rendez-vous problems in a central

force field are often solved by analysing the "primer".
This method was introduced by Lawden in 1963 (Ref. L).

For our linear system, the primer is a 3-vector fun-
ction of the time t depending on 6 constant Legrange-
multipliers A., j=1,...,6. Due to technical reasons
we can exclud® intermediate thrust arecs from our so-
lutions. Thus the fuel and time minimum solutions

we are seeking for are always of the type "bang-bang".
For details we refer to Marec (Ref. 3, chapter 7.2),
fuel minimum problem) and Krabs (ref. 5, time mini-
mum problem). In both cases the bang-bang principle
normally leads to solution methods for the control
problem which request the solution of a nonlinear
system for the multipliers in parallel to a deter-
mination of the switch-on times ts and the switch-off
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times te of the thrust from a switching function.

The number of switeh times is a multiple of the

number of orbits during the rendez-vous. Hence in

our case a large number of unknowns is involved in
this process. This number is increased by the ccn-
straints imposed on the manoeuvre times and on the
thrust directions. Especially the latter constraints
are not easily treatsble by the primer methnd, because
it 1mp11c1tly assumes %ﬁat u(t) is defined on a
convex region in the R

We therefore tried to solve the rendez-vous problem
by means of the following discretisation method

¢ First one selects in the rendez-vous interval
[0,T] a sufficiently dense set {t;} of permissible
times or switch-points t. i i=1,..7,N.

o At each t. one fixes a suff1c1ently dense set of
perm1551b1e thrust directions e.. = {eT..,eR,
), =1 ij ij ij,
13 o PORPRAN

Then the above control problem turns tc the follo-
wing linear optimization problem :

Determine N x M absolute values V.. of impulsive

veloeity increments . = V,.'2,. Por whick zre
cost function +J ij i
N M
T E e Ve (13)
i=1 j=1 * Y
assumes its minimum under the linear conszrain:s
0sv sV, - u(e,-t < Bl GEY
and uns2r the linear rendez-vous conditions
VA N M
5 = £ F Vel (15)
A0 i=1 j=1 J
N M
V lAex = o .[ (sxm:i eRi. +2cosui eTij) vij (16)
i=]1 j=1 J
N M
V Aey = _Z ’Z (-cosﬂi eRij +2$1ntl.i eTij) vij (17
i=1 j=1
N M
VAL = T T (-2eR,. +3(uo-cx)eT vy +(/ - o)1
i=1 j=1
(18)
N M
ViAix = T T sing eN.. V.. (19)
i=1 j=1 v 2
N M
VAiy= £ I -cosa, eN,. V.. (20)
i=1 j=1 s 4

emerglng from the first order integrationof egua-
tions (7) - (12). The Aa,... ,A01y are the deviations

to be annihila‘ed. They enclose the effects of the
natural perturbations on the orbit during [0 T] . The
g, are positive weights representing either the thrus-
tér efficiencies or the thrust mode.

This linear optimisation problem is an upper bounding
problem. It must be solved under one specific condi-
tion: The solution must not contain more than one
nonvanishing V.. at each t.. Otherwise the absolute
value of a 51ngie veloclty increment

V== v..%
IV, | Ij=l i &
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at t. will exceed the upper limit V.. These upper

1limits V. in (13) are the maximum velocity incre-

ments pr%ducible by the thruster system within the

given time intervals [t.,t. . ], i=1,...,N between
: . 1*7a=1

the switch points.

The linear optimization problem can be solved by a
modified version of the upper-bounding method. The
upper bounding method can be found in many text books
on linear optimization like Lasdon (Ref. 6). For
sufficiently dense discretisations the number of
unknowns N x M may be rather large. However, the
order of the problem is defined by only 6 rendez-
vous conditions (7) - (12). Hence, the optimisation
program is dealing only with 6x6 matrices and can
be coded in such a way that only the coefficients
cosa., sina, and a. of the Gaussian equations of
motidn at the N switch-times have to be stored.

One special case of this problem is of particular in-
terest. In the station acquisition and in the station
keeping phase almost all 3-axis stabilized satellites
are kept in the following position with respect to the
orbit: Ime axis poinis to the center of the earth and
one axis is perpendicular to the orbital plane.This
implies that the permissible optimum thrust directions
are fixed along the orbit tangent and along the orbit
normal. Hence the permissible directions at the
switch time t. are given by €4 = (0,0,1) and (or)
e., = (0,0,-1). The problem deéouples into a linear
higimensional in-plane problem and into a linear
2-dimensional out-off-plane problem. Their solutions
provide approximations for -say- K lower and upper
bounds t Kk and t respectively of the thrust-on
intervalé and they give the thrust uT, and uNk in
those intervals. The 2K switch times %an be improved
by migimizing the cost-function
I gk(tzk—t-]k) 21
k=1
under the following conditions.

® The E1pr t2y remain in the permissible intervals.

e They must be in chronological order, i.e. 22
0= t11 = t;z < ...t1k < tgk Sieaind g
® and they fulfil the rendez-vous conditions Q3
K
ha = %? kE]uTk(tgk = tqk]
(24)
2. : )
Aex = ﬁﬁ; kfluTkEs1na(t;k)-sxnu(t1k)}
(25)
2 K
Aey = Yoo > 3 —u'l'k[cosa(tzk) —cosu.(tqk}]
e k=1 (26)
e = gu'r [a(ts, ) ~a(tz,)] +'r-g/£'—m )
Yo oy K ek 2k a3 e

(27)

Similar relations hold for the out-off-plane problem,
which will not be considered here. By virtue of the
relation (4) between @ and t, the equations (2L) -
(27) become nonlinear equations

he(t11....,t2k) =0y @=Lk (28)

and t
1k Qk

in the 2K unknowns t respectively, whereas
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the conditions (22) and (23) are linear constraints
in these unknowns.

The above problem is equivalent to the problem emer-
ging from the primer method. Provided there are
given appropriate initial values for the unknowns,
it can be solved for instance by a penalty method,
in which the linear cost function (21) and the non-
linear conditions (24) - (27) are tied together by
means of posit%ve penalty parameters Pys-ePy, to a
new cost function
K 4
3 < (29)
ki]sk (tzk t‘k) +3§|Pehg(t11.o--;tak)

For suitably selected p , the values t_ . , t rende-
ring (29) a minimum undér the linear cégstrg¥nts be-
longing to (22) and (23) provide an improved solution
for the in-plane rendez-vous problem, For suitable
gradient methods we refer to Avriel (Ref. T). The
cost function (29) was used in Ref. 8 for the
determination of optimal switching times in combi-
nation with an approximate analytical solution pro-
viding the initial values.

2.2 Solution of time minimum problem

Since the fuel available for station acquisition is
usually computed at an X%-probability level of NSO-
dispersions it will exceed in X% of all cases the
fuel really needed for a rendez-vous . The excess
fuel could be used for speeding up the station acqui-
sition which turns the fuel minimum problem into a
time minimum problem.

Because of the non-convexity of the domainon whidia%b
defined, again some classical solution methods for
time minimum problems fail, like the method of Eaton
(Ref. 2) or Fujisawa-Yasuda (Ref. 9). Ohe way out of
this dilemma is the following approach :

One selects monotonically decreasing rendez-vous times
T, < T g i=1,... and solves for each T. the corres-
ponding }uel minimum problem. The minimum T., for
which there still exists a solution of the Puel mi-
nimum problem is at least a, permissible approxima-
tion for the minimum time in which the rendez-
vous can be completed. One can show indeed, that

this procedure provides a solution method for time
minimum problems if the linear control problem is
normal. Unfortunately, our problem is not normal

if constraints are imposed on the manoeuvre times,

so one must live with a solution method not nece-
ssarily yielding an unique solution.

2.3 Test examples

The figure 1 shows the deviations of a low-thrust
controlled, near synchronous orbit Trom the synchron-
ous target orbit during a 10 days in-plan s<ation
acquisition. It is the solution of a fuel minimum
problem. The following longitude intervals [Re,lﬁ]
were forbidden for manceuvres

Table 1
orbit No. | 2 3 4 5 6 7 8 9 10
Ae(deg) 166 167 168 169 170 171 173 175 === ===
Au(deg) 204 203 202 201 200 199 197 195 === ===

These intervals contained the perigees »f all inter-
mediate Jrbits. Hence >ne of the thrust-on intervals
in each orbit was cut into two pieces. Such a set of
forbidden intervals is for operations during "eclipse
seasnns" around the equinoxes.
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Figure 1. Deviations NSO -8) during staticn
aguisiticn

The discretisation with 300 switch-points during
10 days resulted in a solution with a total AV -re-
quirement of 8.050 m/s. The gradient search reduced
this value to 8.001 m/s. For a 500 kg satellite
and an exhaust veloecity ev = 20.000 m/s, the fuel
consumption would amount to 0.2 kg. The chosen
thrust level of 0.01 Newton made it necessary to
fire the thrusters over a total angular interval
of 1686 degrees. This corresponds to a duty-ratio
r = 50.2% between switch-on time and available
time.

Next we computed an approximate solution of the
Lime minimum problem. Table 2 contains the AV-re-
quirements and the duty ratios for different
station acquisition times T.

Table 2

T(days) 10 8.7 8.0 7.8 Ticd

AV(m/s) 8.05 2,84 10.70 11.19 no solution of
fuel minimum

r(%) 50.2 91.10 problem

63.87 B84.56
The minimum station acquisition time will be between
7.7 and 7.8 days. It is interesting to notice that
the maximum duty ratio stays below 92%. This is due
to the fact that the given time minimum problem is
not normal.

S days

3. LONG TERM STRATEGY FOR LOW THRUST STATION XKEEPILG

In addition to the injection errors the natural
perturbations acting on the satellite cause in-
creasing deviations from its desired geostaticnary
position. Hence the orbit has to be corrected from
time to time so as to compensate for the perturba-
tion effects. The frequency of corrections and the
target orbits have to be defined by & long term
strategy which is designed to minimize the fuel
under the constraints imposed by the low thrust
system.

The natural perturbations may be split into secular,
long periodic and short periodic contributions to
the non-singular elements, a, ex, ey, &\, ix, iy.
Since the secular effects vary linear with time,
they will eventually violate the tolerance window
and have to be compensated by corrections in regular
time intervals (correction cycles). Some long
periodic effects show amplitudes of some 10-2 de-
grees and have to be - at least partially- compen-
sated if the tolerance window is smell, for instance,
+091. Most of the periodic perturbations are, how-
ever, very small and may be considered globelly by
reducing the tolerance window by some 10-3 degrees.

3.1 Corrections of secular perturbations

The conventional long term strategy for correcting
the secular effects with high thrust systems makes
use of the space far the tolerance window so as to
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minimize the frequency of corrections. The orbit
is corrected whenever one of the elements reaches
the boundary of its admissible range. Hence the
time interval between corrections is dictated by
the tolerance window.

In case of Low thrust station keeping, the mag-
nitude of corrections is limited by the maximum
variation 5 of the elements that can effective-
ly be achieveéd by a single burn., This leads to very
small corrections AE; which are carried out rather
frequently, up to twice a day. However, the total
velocity increment required for the entire mission
does not depend on the frequency and magnitude of
corrections except for the efficiency loss associat-
ed with non-impulsive burns.

Hence the long term strategy for correcting the
secular effect of an element Ej simply consists of
corrections

T - S (20)
Where E¥ and Eg are the desired and actual values
of the €lement E;, E. its secular rate and 4t the
time interval between corrections. Since E? -+ E;
for perfect station keeping, At must be chGsen
sufficiently small in order to guarantee feasible
; X
corrections |aEi| < ]ﬂEi I

This strategy applies to corrections of the semi-
mejor axis and the inclination where all periocdic
effects are sufficiently small for tolerance win-
dows of about *091 in longitude and latitude.

3.2 Corrections of long periodic perturbations

The optimal long term strategy for correcting the
long periodic perturbations shall be demonstrated
for the case of eccentricity corrections; Solar
pressure causes the eccentricity vector e = (ex,ey)
to approximately describe a drift circle with radius
R in the ex, ey plane during one year (Fig. 2).
Complete compensation of this motion would require
yearly corrections amounting to

(31)

However, this amount can be reduced by choosing a
strategy which takes advantage of the space offered
by the tolerance window.

; - A=
If one reguires |e| <e throughout the mission,
the corrections Ae have io be chosen so as to mini-
mize the cost function

N
F= I |a'e’n| (32)

n=1

- - =+
under the constraint that the point e = (ex,ey)
steys within a tolerance circle of radius r = e

around the origin. The number N of corrections Eﬁ%ing

the entire mission may be very large for low thrust
station keeping. o

Inspite of the constraint |e| < r, the long term
strategy has to include the case ie| > r because of

execution errors and approximations in the simplified

algorithms. If the initial eccentricity ey is in-
side the tolerance circle, one has to solve a fuel-

optimal problem. Otherwise, if |e | > r, the

tolerance circle should be reached as soon as poss—
ible, i.e., & time-optimal problem also arises.

Hence, depending on the radio of the drift and
tolerance circles, the 4 cases shown in Table 3
mey occur:

Table 3
r<R r>R eontrol
gl =) 1 II |fuel optimal
|§o| > r| 111 IV |time-optimal

The algorithms defining the eccentricity corrections
for the 4 cases will briefly be outlined below.

3.2.1. Case I (leg| € # <R) 1In Fig. 2 the eccen-
tricity is marked by the point E within the toler-
ance circle Kp. It moves along the drift circle Ky
with & given angular velocity and would exceed the
tolerance circle after some time if no corrections
were applied. Since the tolerance region is convex
and the fuel is proportional to the length of the
correction vector Ae, the latter can be found by
means of the so-called "rope stretching method"
(Ref. 10). A rope is thought to be fixed at the
centre 0 of the tolerance circle and drawn through
a series of other circles Kp, n=1,2,...,N with
radius r and their centres located on the drift
circle Kg. Each of the circles K, is associated
with the time where the uncorrected eccentricity
would pass through its centre. The other end of the
rope is freely movable inside the last circle Ky
which may be several revolutions apart from the
first one and corresponds to the end of the mission.

Kz

Figure 2. Application of the "rope stretching meth-

od" in Case I (|e,| ¢« r < R).
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The point E representing the eccentricity
is inside the tolerance circle K, and
moves around the drift circle Kg during 1
year. The centres of the circles K, lo-
cated on the drift circle KR correspond
to the correction times. A rope (broken
line) is thought to be fixed in O and
drawn through the circles K, the other
end being freely movable within Ky.
Stretching the rope in O leads to an

open polygon 0,P2,...,PN which gives the
optimal eccentricity corrections. Note
that the circle K4 does not influence the
result.

The optimal corrections can then be found by stret-
ching the rope in the point O, which results in a
polygon whose lines represent the correction vec-
tors to be carried out between the times associated
with the circles.

Inspite of the simplicity of this method, the at -
tempt to develop analytic formulas for the computa-
tion of the corrections is almost hopeless if N>2.
Fortunately, typical in-plane correction cycles of
1 or 2 weeks correspond to polygons with 25 to 50
corners per year which is a good approximation to
the limiting case where the polygon approaches a
circle K, with radius p = R-r argund the centre of
the drift circle and a tangent OP from the origin
to K, (Fig. 3). Note that OF is also parallel to a
tangent E.E¢ common to both the drift- and the
tolerance circles.

Figure 3. Optimal strategy for freguent eccentri-
city corrections (N+e) in case I.
For the very frequent corrections en-
forced by the low thrust system the poly-
gonal of Fig. 1 approaches a circle Kp

—_— ———

and the tangent OP = E.E ,. The correc-
tion EgE, should be carried out while
the natural perturbations move the ec-
centricity from E; to Eg . Hence the com-
bined effect is & motion from E, to E,.
The contribution of each correction cycle
can be chosen such that this combined
motion follows roughly a straight line
(dashed line from E, to E,).

This means that one should first correct along
this tangent so as to complete the vector EyE. =
PO by the time Ty when natural perturbations
would have moved the eccentricity from E  to Eg.
Afterwards the corrections should continue along
the cirecle K with radius R-r, which obviously re-
quires less fuel than the complete compensation
according to Eq. (31).

The correction PO mey consist of contributions by
several successive correction cycles. Since the
"rope stretching method" does not specify the con-
tribution of each correction cycle, additional
considerations are neccessary.

It can be seen from Fig. 3 that the combined effects
of natural perturbations EgEy and corrections
Ey should move the eccentricity from E_ to E
by the prescribed time T,. Furthermore, ghe :ofer-
ance circle should not be exceeded during this
motion. This can simply be guaranteed by forcing
the eccentricity to move - at least approximately -
along the straight line from E, to E.. Since the
correction of each cycle has to be parallel to PO,
the magnitude is chosen such that the_combined
effects of natural perturbation fe = E,Eq plus
correction Ae = E Ep puts the eccentricity into
the point Ep on the straight line EyE,.
i o 1 — ——  — P —
Defining pogition vectors e, = OE , e, = OE, y
= > €c = OE; and the+angle gp assoc;a%ed with
the natural perturbation e during one cycle, one
obtains
6 + e +y(e,-e) =0, O<y<1 (33)

Scalar multiplication by ;r results in
<+ + > -+ L+ \
Sece = ylep - & }er (34)

* 2 : -+ .
because Ae 1is perpendicular to e,.. The perturbation
vector de is given by

" (‘I-'ccsﬁg) sin&p) = o (5%

B m -sindp 1-cosp (eo - ec) 35
and ;r can be obtained from the conditions

-2 2 e -+ - - .

e mxsy (e ep)(eip -e) =0,

-+ - R -+

%p_ I (36)

with the result

T =R . g~(R-r)z

e = v
Tl Ve rns r-R c

(37)

o
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Since ; is known, y_can be obtained by (34), (35)
and (37? and hence Ae from (33). The two signs in
(37) correspond to the two possible tangents com-
mon to the circles K, and Kgr. For increasing v the
upper sign has to be chosen.

3.2.2 Case II (|e | <r, r>R) If the drift circle
initially lies completely inside the tolerance
circle, obviously no corrections are necessary.
Otherwise the "rope stretching method" (Fig. L)
shows that one has to apply corrections parallel
to -e, = E,0 so as to shift the drift-circle K
into the tolerance circle K. (Fig. 5). Again, the
time history of this shift is not defined by the
"rope stretching method". It can be obtained as
follows.

If 8 is the_intersection of the two circles, the
angle ¢ = OECS increases from wo > 0 to m as the
two circles approach each other,

Figure 4. Application of "rope stretching method"
in Case II (|ey] <r, R <r).
As in Fig. 2 the centres of the circles
K, are fixed on Ky and a rope ig drawn
from O through the circies, ending some-
where inside Ky. As the number of circles
N + =, an enveloping cirele K, (broken
curve) is formed. Stretching the rope
in O moves the end intc P on K, and
yields the correction PO, whicg shifts
the drift circle Ky on the shortest way
into the tolerance circle K.
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Figure 5. Optimal strategy for frequent correc -
tions in Case II (|ey| < r, r > R).
The eccentricity marked by E stays with-
in as long as ¢ < § during the shift
of Kg into Kp.

In order to guarantee that E stays always inside
Ky, one has to require ¢ > v until K; is complete-
ly inside K.. Thiz can be acchieved, for instance,
oy requiring for each cycle

==
W= e Y (38)
wnere the subscript O refers to the initial state
and 8¢ is the known angular motion of E on dur-

ing one cycle. Since the correction during one
cycle is origntamed along -ec, one obtains ¢ and
tha vector Ae from the relations

{i;ci-Rceswn)e + (Rsinyo)? =

i|e, + ae|- Feosy)® + (Rsiny)? = r2 (39)

c

U= Yo + &Y (Lo)

with the result
A% = =& [1-(Reosy + /rZ-REsinaD) / [€ |1 (11

3.2.3 Csse IIT (.| > r, r < R) Since the eccen-
tricity is initially outside the tolerance circle
(Fig. 6), it sheuld be moved as fast as possible
to a position En on that eirecle such thet fusl
optimal corrections are pcssible afterwards. While
the eccentricity completes the angle vn from E, to
En on the drift circle, the two circles should
approach each other such that the tolerance circle
touches the drift circle from ingide in the point
En. Then the correction vector Ae for a singlg

. - ——
¢ycle is obtained form the relation 0%0 = OxE, +
Ec0 or, using the previous definitions

—o__-_R_r
nhe = e, =T

cos®  -sing

n n - -
’ (eo - Ec) (L2)
sing =~ cos®

wn = ndp (43)

where n is the number of cycles necessary to
acchieve the total correction. If be is the
largest possible correction per cycle this numver
is obtained by iteration form the inequality

|ne| > (n=1) e (L)

nhe >
= max
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Figure 6. Optimal correction in Case III (|e_ | > r, R > r).
The total correction is a relative shift of the circles K. and Kp such that
Ky touches Kp from inside in & point En which is reached by the eccentricity
after n cycles. The number n is to be chosen as small as possible, observing
that the magnitude of the correction per cycle is limited because of the low
thrust.

3.2.4 Case IV (le.| > r > R) In this case the
drift circle should be shifted into the tolerance
circle as fagt as_possible, i.e., in a direction
opposite to e, = OE; (Fig. T). If n cycles are
necessary, the shift Ae is obtained from

o = EE, = ¢, + %c_(r-R), (45)
é

where n is again defined by (k).

3.3 Station keeping simulation

The algorithms developed in the foregoing section
were applied to simulate 181 days of low-thrust
station keeping of the eccentricity for the follow-
ing example:

Start of station keeping: 01.01.1983, O'h U.T.

Station longitude: 19° West

Initial eccentricity: 10630 = (-8, +31)
Area/Mass ratio: 0.0501 m2/kg
Radius of tolerance circle: r = 0.0004

Radius of drift circle: R ~ 0.00055

Correction cycle duration: 10 days
Station keeping period: 181 days
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Figure T. Optimal correction in Case IV (le | > r > R).
The drift circle Kg should be moved into the tolerance circle
K, as fast as possible, which results in a total correction
E_E%.
ctc

The results is shown in Fig. 8. Curve A represents
the eccentricity variation due to natural pertur-
bations without corrections, according to an
approximate analytical orbit model obtained from
(Ref. 11) neglecting short periodic perturbations.
The combined effects of perturbations and correc-
tions result in curve B. Since the example corre-
sponds to Case I, the corrections are applied such
that the eccentricity first increases until it
reaches the tolerance circle and thn continues to
move along that circle.
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Figure 8. Controlled (curve B) and uncontrolled (curve A) long term eccentricity
variation during 181 days.
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L.  CONCLUSIONS

It was shown that the optimum control problems with
low thrust station acquisition and station keeping
during geostationary missions can be linearized and
solved by discretisation of the thrust times and
the thrust directions. This technique has consider-
able advantages in comparison to the classical
methods especially in the presence of constraints.
Furthermore, & procedure applying the discretiza-
tion method to a seguence of fuel-optimal minimum
problems may be used to solve certain time minimum
problems even in cases where some classical methods
fail.

The simple concept of the "rope stretching method"
turns out to be a useful tool in deriving algorithms
for the long-term strategy of correcting eccentri-
city perturbations. Some examples of both short-
term and long-term optimal control problems associa-
ted with low thrust systems demonstrate the capa-
bility of the described methods.
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