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ON SPIN MANOEUVRES WITH A SYMMETRIC SATELLITE
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ABSTRACT

This paper contains some theoretical results and
practical formulae to calculate non-ideal spin-
manoeuvres with a symmetric satellite. In a non-
ideal spin manoeuvre the spacecraft is not rotat-
ing uniformly at the start of the manoceuvre and
the thruster used is not a pure tangential or spin
thruster. Such manoceuvres generate a nutational
motion and an attitude change. These aspects can
be studied as a special case of the theoretical
problem known as "the self-excited rigid body".
The nutation is described by Fresnel integrals
from which practical formulae giving the maximum
nutation and its rate of decrease are extracted.
A numerical illustration is given by the spin-up
of Meteosat-2. A closed form result for a small
attitude change caused by a pure spin up thruster
in the presence of initial nutation and by a
general thruster on a Kovaleski top (inertia
A, A, _A_) is mentioned.

2
Keywords: Spin-up, nutation, self-excited rigid
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NOTATIONS
A : lateral moment of inertia
€ : inertia around the nominal spin axis
™,,3 : torgue components in the principal axis

system
m' o omeedm, lateral component of the
torque as a complex number

my spin component of the torque. Throughout
this paper my>0.

x : fuy /m, T normalised time. Revlaces# as
independant variable

X :lmy/mzinitial value of x at the start

of the manceuvres

¥ : g8 e”? intermediate variable for the
attitude change

(), Sex) Fresnel-integrals

Rix) : (tnee Stx)

L3 : intermediate variable that locates the
instant of maximal nutation when starting
from a uniform spin A

& : nutation angle. Instantaneous angle
between the spin-axis and the angular

momentum. In terms of the components of
the angular velocity 4y@n,=w® /2wy

8, : nutation angle at &e® when starting from
rest

6; : initial nutation (o) when present

A : €/A slenderness ratio. d»7 oblate body

(spin axisis stable), 93¢+ prolate
body (spin axis unstable in the presence

: of energy dissipation)

LOTR | components of the angular veloecity in
the principal axis system

w®  : w,+¢wy lateral component of the w -
vector as a complex number

T :[¥€/mgee-m] ™ time constant

£ inlar- A

ve ¢ Euler angle

1. INTRODUCTION

Spin adjustment manoeuvres are quite common activi-
ties in spacecraft operations because different
phases in the lifetime of a spin stabilized space-
craft require a different nominal spin rate.
Typical examples are: launcher constraints, deploy-
ment activities and firing of an apogee boost motor.

In an ideal spin manoeuvre one starts from a uni-
formly rotating spacecraft and the spin thruster
gives only a constant spin up or spin down torque.
Under these assumptions the spin manoeuvre causes
no nutation and no attitude change. The calcul-
ation of the burn duration from the initial and
desired spin rate is trivial. In an operational
environment one has often to consider spin
manoeuvres where one or both of these assumptions
are not met. The influence of an initial nutation
must be assessed as well as thruster misalignments.
Some spacecraft have no pure spin thruster. This
is the case with Meteosat-2 for which this study
was undertaken. The spin changes are executed
with thrusters having a more important lateral as
spin-up component.

A reasconable model for non-ideal spin manoeuvres

is provided by the theoreticel problem known as
"The self-excited rigid body" (Ref. 1, 2). Self-
excited means that the torque vector has a constant
direction in a body-fixed reference frame. We
assume that the torque has also a constant magni-
tude which is equivalent with a constant force
assumption for the thruster. The moments of
inertia of the spacecraft are also treated as
constants, their variation due to out-flowing mass
is neglected. Furthermore we neglect internal
energy dissipation and consider only symmetric
spacecraft.

The first step of the complete solution of the
formulated problem is to obtain expressions for the
instantaneous rotation vector ei¢) in a body fixed
frame. Integration of the Euler equations shows
that w) can be expressed in terms of the Fresnel-
integrals (Ref. 1, 2). This result is rederived
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in a simple way and permits a detailed discussion
of the evolution of the nutation angle. It is
shown that for a spin-up from rest the maximum
nutational angle equals the angle between the
torque direction and the spin-axis. A practical
formula for the nutation induced with an arbitrary
thruster and starting from a uniform spid is also
given.

To complete the solution of the furmulubed problem
one needs the time history of a suitable set of
orientation parameters between the body-fixed and
inertial reference frame to calculate the attitude
change. The corresponding differential equations
contain the previous result forew and their
structure depends highly on the choice of the
orientation parameters. Ref. 3 reduces the case
of a pure spin thruster to a Weber equation in
orientation parameters related to the Cayley-Klein
parameters. In terms of the rotation matrix one
obtains a linear first-order matrix differential
equation (Ref. 1) for which a converging recurrence
formula is given in Ref. 4. The assumption of a
small attitude change does not introduce simplifi-
cations in each of these mentioned approaches.

Using the Euler angles the remaining

differential equations reduce to one linear
differential equation under the

assumption that the attitude' change is small.
Analytical results can then be obtained for a pure
spin torque in the presence of initial nutation
and for a general torque applied to a Kovalski top
(inertia's A, A, A/2) which was spinning uniformly.

2. BASIC EQUATIONS FOR THE NUTATION ANGLE

Consider a symmetric rigid body with inertia A
about any axis in the principal plane (xy) through
the center of mass and inertia ¢ around the g -axis.
The Z-axis is the third principal axis and the
nominal spin-axis. From 43%e onwards the body is
subjected to a constant external torque with
components M,,y in the principal axis system(ms.y,z).

The time-history of the nutation angle 0, #) can be
calculated from the components of the angular
velocity o ¢é) These components are obtained by
integrating the classical Euler equations:

Ay - (A-C)w, w, = m, (1)
A6 4 (A-C) &y 2 m, (2)
Cu, s my (3)

with woe) = W,

Due to the assumed symmetry Eq. 3 is decoupled
from Egs. 1 - 2 and easily integrated:

U,m: Wy + -."-'c-l- £ (1)

So a spin-up always occurs when 5o This
result is not true for an assymetric rigid body.
Eq. 4 is now substituted into Egs. 1 -2 which

are combined into a single linear differential
equation in the complex variable w"z w,+4 @, n
the equatorial or lateral component of the angular
velocity:

ai',-t'rl-“w:m w® =m (5)
is the slenderness ratio

the equatorial or lateral part
of the torque

where A=</4
mis m, g oy

and w "(o) = W tol 4 $ Wy le) x wy

The general solution of Eq. 5 is:
2 3
i(-2) [ugnr de
e o
e 3
.d‘a-l]]‘-,u:dn
L]

w4 s i’ ‘(,.ug'

(6)

Note that Eq. & has been obtained without any trans-
formation of variables in the original Euler
equations. To evaluate the integrals remaining in
Eq. 6 we first rewrite it as:

vy
e 5;45+‘ﬁ:
“io T)

AN E (yiwg)
x £ 2

-l (4=2) 22:_{ = ife=) Lu!
w'é)= | 2" e e
A

Eq. T is only valid when a spin-up component is
present (mg¢o) The remaining integral cannot
be expressed in terms of elementary functions. It
is easily put in the following normalised form

B iz axt
/¢ ! kz[r;rp)]‘a;[(n),;!m]‘(8)
X - o <
(ujsf wr X 5t da (39)

where

Snsf pazet 4 (10)
(-]

are the Fresnel-integrals (Ref. 5). The notations
are further simplified by using the time constant

€ i
T :I‘ 7;
g (4=

and the non-dimensionless variable x

(11)

Coy ¢
Foe=s E R 3 (12)

T °

oyt cErt x
wré)z € [a%'e T !%:flui(mg (13)
..

Now we can use Eqs.12 and 13 to calculate the
nutation angle O, ¢¢). By definition we have:

g 0, (a) = Lm0l (1)

A wygee

where | | stands for the module of the complex
number.

Using Egs. 12, 13 we obtain for Eq. 1l

‘w.' “{’o - -
t?Q.m:;‘.’__ e ,_::[Qa;]’. (15)

T

In the next points the meaning of Eq. 15 will be
discussed for some special cases of the initial
conditions and direction of the torque vector.
Table 1 summarises the cases to which Eq. 15 can

be specialised. The analysis of the evolution of
the nutation angle from Eq. 15 will be more complex
when the 2 additive terms are present as there is
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no simple result for the module of the sum of two
complex numbers.

2.1 Spin-up From Rest Wwith a General Thruster

(Case III)

Starting from rest the initial conditions are
%20, ey ze or xze and Eq. 15 becomes

l’ﬂ.(:}:.la_".'“l;l | B | (16)

The starting value of the nutation angle 8, /e)a8,
is not given immediately by Eq. 16 as AKee)=o
makes Eq. 16 undetermined. The series expansion
of €z}, S¢x) (Ref. 5, 6) gives

Lim, Ifﬂ"a 1
x—vo =

2
%"1 % Therefore
i x q%:“'f’.tﬂa’_"j“?)
EFae )
Fig. 1

The nutacion angle which is not defined before the
thruster is on takes at ¢ro"the value &-.- & is
the angle between the spin-axis and the torque
direction (Fig. 1). This result can also be ob-
tained from Egqs. 1 - 3 when the product terms,
which are of second order for small &, are neglect-
ed.

Now Eg. 16 can be rewritten as

lfa.ra:‘e)o. ’rm.:.rml (18)

In Fig. 2. the locus of complex numbers
Un=[Fpim] [ x is represented. Looking how
the module [Z¢@| changes with time (or x ) we
see that: [Zfm] is maximum for x=e or &¢se
So & is also the maximal value of the nutation
angle during a spin-up from zero. This result
gives an upper bound for the nutation angle when the
nominal spin-up is with a tangential thruster
{m#e, m® <) and the influence of misalignments
{m*#c) is evaluated. So, the maximal nutation
due to misalignments equals the misalignment angle.
Initially the decrease of the nutation angle is
monotonic : For xa+4 or &=T fpRAUTI=-g i 8
and for xsriga ,#~2T the nutation angle has
decreased to 43 6nurjzo. 28y & 8, For larger
values of x we see that 2¢x) spirals to zero
with curls of decreasing "amplitude" and centered
on the first bisector. The evolution of the
nutation angle can be described by an average value
#, t») taken on the first bisector and super-
imposed deviation§ 48, (») , both 3'_;,,‘ A486,¢x)
tend to zerc as time goes on.

Using the property that

Liwy ((2) = &h..rmsg

X =p 0O x =5 oo

(19)

one obtains easily the following approximate
expressions:

8, (4) = ¢386, (20 )
IR L

‘dg.‘ijz .6k Eo
A, xt, 4.

The decrease of 4 #,¢x) is faster than the decrease
of @,(x) . For &£apei T "5"-'!:" "

2.2 Spin-up From a Uniform Spin with a General
Thruster (Case IV)

At #a2e the satellite is spinning uniformly [*ye#e)
and a thruster with equatorial torque m* and spin-
up torque my 1is activated. Eg. 15 with w'=o
becomes

(21)

Lo = B% |Ro. Ao
x

(L

where ¥g,=
L] .'.c

Eq. 21 shows that the maximal nutation caused by
this manoeuvre is less than the residual nutation
level after a spin-up from zero to #y, . An
approximate expression for the maximum of the
nutation is derived in Ref. 6 by replacing &ia)
by its osculating circule at x=x, one obtains

2
{t,&n}.“gcyao_ugf (22)
. . <
where  is the solution of ﬁ{ - { ..{ x (23)
For 3,2 this result can be replaced by
6 =3 e SO (2k)
(A’ "}Au T x2eq ""’

Eq. 24 gives directly 8, ,,, 8s a function of %
and &, , without solving the transcendental
equation 23. Table II compares the results of

Egs. 22 - 23 versus Eq. 2L,

2 ofy w1y # —ts
1 70.34 .336 .318
2 82.63 .128 127
3 86.34 .06k .064
I 87.85 .037 037
5 88.60 .024 .02k

TABLE ITI

From Eq. 21 we can also derive a decrease of the
average nutation level &,/x) from the limiting
value diwm fin = £ (1¢<)

x -9

& Om s baoe|f1, Clnyrsix). (oy-50)(25)
x

This averaged decrease is also inversely proportion-
al to the time.

2.3 A Commernton the General Formula (CASE VI)

Equation 15 gives the evolution of the nutation
angle when before the activation of the general
thruster (m¥#o, myyo) the satellite is spinning
with an initial nutation &y & = /]y,
Mumerical applications of Egq. 15 are straightforward
when a table of the Fresnel-integrals is available.
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Using Eq. 19 #pfmg.%x becomes constant as time
goes on:

l'fl'.
| e e go (g - Aeny) | (26)
where the x-axis is chosen coinciding with w*® .

When Eq. 26 is maximal the initial phasing. @’
was the worst possible. Eq. 26 can be written

»

05 - o pm) 0D
and as E¢») tends to circle around H? 1), plry)
becomes perpendicular to mém) as x, increases. To
make the two terms of Eq. 27 co-linear w,’ becomes
perpendicular to m'rx) which means that the thrust
direction is perpendicular to w* Eq. 27 becomes

| % 20« &g 6 tpimai|
from which the maximum nutation level can be cal-
culated it is always smaller as the nutation cal-

in 2.2. augmented by &

3. ATTITUDE CHANGE

The determination of the
principal axes frame
v with respect to an
inertial frame completes
the solution of the self-
excited rigid body pro-
blem. This part is much
more difficult than the
calculations of the
nutation angle. In fact
X a complete analytical
solution has not yet
been found. We will use
the Euler angles (Fig. 3) to define the orientation
of the body-fixed frame in inertial space. At &xe
the connection between the two frames is given by
the initial values %, &, Ps . During the manceu-
vre one expects eventually a stabilisation of the
spin-axis in inertial space. It was indeed, shown
that the nutation angle goes to zero which implies
in turn that the influence of the equatorial torgue
(m*®) on the angular momentum averages out over a
nutation period. The limiting motion (bees)is a
uniform spin about some unknown direction: ¥, 8¢
The azimut 'f‘ of this direction can have any value
in the range ¢2® but it is nol completely absurd
to consider the small angle approximation on o
and & .

2\ @

Fig. 3

The differential equatiors that define the evolution
of the Euler angles are (Ref. 3, 6):

W, (b)) 2 s W simp f , wap 6 (28)
W h) s LB P g ey O (29)
w,(#) = 0F ¥ ey (30)

Introducing the small angle approximation on &
we can use Egq. 30 to eliminate in Eqs. 28, 29:

Yy B g Obiay § o wu) Bsiny  (31)

W h) 2O Jinmp_ Ouny o Wy (&) Bemap (30)

With the complex variable

&

-y
Yoloscy, =Pling, <Ownpascbe (33)
Egs. 31 and 32 are combined into:

,' ¢ <y 0y = < w”es) (3L)

geoa =<8 e (35)

which is also a linear first order differential
equation with as general solution

<Pty t P
’{-H: e [/ & cuy da, gl (3€)

-

¢
where Pma] oo ls) de = ..z._.‘"c“( xtxi) o I ._..*'-‘;-' (37)
r 2 ’-

For the attitude change & = j'yf.ﬂ] Eq.36 becomes:

x ;g xixnt

dﬂ]g/r[ t‘! T

To eliminate the remaining integral the expression
«%¢x) corresponding to the particular case
considered has to be used.

-%
w'o) dx 6 ¢ 7(38)

3.1 A Pure Spin-up Torque on a Spacecraft with
Initial Nutation

When m®zo0, &= [*"] we have (Ref. 6):

a0
e e & fpeatensd (39)
and Eq. 38 becomes: s 2
ol
pinm ) Ex

Defining &, g such that all constant terms in
Eq. U40 dissapear:

b x it VBT | Btn vE)|
Om = tlw YT | B x X))

(k1)

and 8, z lm O0r) = 1w T, (L2)
E - en
with :;.,/f V£ as the relevant time ( 43)
s

constant.

Notice that this initial orientation of the inertial
frame is not on the angular momentum. The limiting
value of the attitude change is after some calcul-
ations found to be:

18081 ( Lb)
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3.2 Spin-up from a Uniform Rotation with
a General Thruster

For this case @® is given by:
CFx*

w’s !‘.'1!' e [ﬁ;m- F,n.:] (bs)

and the remaining integral in Eq. 38 denoted Jm)
becomes:

% a

Tw= "!f’ﬁ‘ (0 da - =7 Eox) [ B
) ” £ ViF Bx) .wzﬁ_

B .t
L (e

When laag (top of Kovaleski) Eg. L6 reduces to:

arnt
Tezj= mxt &'

[Ew- f,'au]‘
)

b
o2 w-::l%f[w-am]‘,ge ! (u7)

No closed form of Eq. 46 for other values of A was
found. The equations 43, 46 constitute a good
starting point for further study of the attitude
changes taking place during spin manoeuvres.

. NUMERICAL APPLICATION TO METEOSAT-2

The formulae derived in point 2 have been used to
calculate the nutation during the spin-up from 10
to 100 RPM of Meteosat-2 which will be launched in
June 81. Meteosat-2 has no pure spin thrusters.
Spin-up manoeuvres can be executed with either of
the 2 thrusters called A, and ¥ Both of these
thrusters generate a large equatorial torque

(Table III) and the inertia figures of the Meteosat-

2 are: d=.29 E=avr byt

== b | T
(M) (W) o2 % (#0c)
R, | 19.59 1.92 10.203  84.40° | T = 23.79
V; | 2.6T 0.74k || 3.588 TL.L3O [T, = 38.22
TABLE III - Thruster data
(:g;} Xo Man.duration Max.nut. | End Nut.
10 | 4.837{1035"=17"'16" 14.910 0.8°
5 | 2.419|1092"=18"13" 43,470 1.58°
0 0 [1151"=19711" 8L.Lo° 8.540
Re (%= v213)
“e | Man.duration Max.nut End Nut
{RPM) (- . . . .
10 | 7.770|2673"=b4"33" 2.13° 0.100°
5 | 3.885|2821"=k7! 1" 8.08° 0.22°
0 0 |2970"=Lg'30" Th.430 1.870

Va (2g277.70)
TABLE IV - Spin-up to 100 RPM with#y,

Table IV shows that for initial spin-rates between
5 to 10 RPM the final level of the nutation is
quite acceptable. The major difference is the
maximum nutation level which oceurs at the begin-
ning of the manoeuvre. Ref. 6 contains more
numerical results and a comparison of these results
against integration on an analogue computer. The
agreement is good. A major difficulty during the
simulation is the large range of the variables
involved, a scaling of the variables which covers
the range 0 to 100 RPM allows not a sufficient
precision on the output variables. Moreover the
simulations are time consuming, they had to be

done in the real time option to avoid the influence
of internal filtering which showed up in the fast
option. If the same problem is treated with a di-
gital computer a variable step integration method
must be chosen to avoid excessive run times.

Finally one may not forget the two most important
assumptions under which these results are derived:

1) Internal energy dissipation is neglected. As
Meteosat-2 is unstable the dissipation of
energy tends to increase the nutation. At a
certain spin-rate and nutation level, this
effect can cancel the spin-up component of a
given thruster. If this happens one has first
to reduce the nutation by pulsed thrusting before
the same thruster can spin the spacecraft further
on. With the dissipation data of Meteosat-1
this problem does not arise with either of the
2 thrusters (A, V, ) considered.

2) The spacecraft is symmetric. Although Meteosat
is an almost symmetric spacecraft there is a
fundamental difference in the behaviour of
symmetric and asymmetric rigid bodies. For
symmetric bodies my3e 1is sufficient to establish
any desired value of the spin-rate, independent
of Jw,»(,m®, For asymmetric bodies, the so-called
separation plane defines two regions where the
average spin-rate is or about the nominal axis
or about the transverse principal axis. When
the initial rotation «* is about the transverse
axis (#; =ge®) it is not trivial if a thruster
with m*® such that Jw®] decreases and mgz>e
will succeed in establishing a spin-rate around
the desired spin-axis. This problem of flat-
spin recovery (Refs. T, 8) does not exist for
a symmetric rigid body and for a nearly symmetric
rigid body it is always present for high-enough
initial transverse rates. It was checked that
irrespective of the sign of the flat spin and
initial transverse rates of 4 RPM (corresponding
to 10 RPM about the nominal axis) and a nominal
orientation of the inertia ellipsoid the recovery
took always place just by firing the R, or W,
thruster. The formulae presented in this paper
can be used for a nearly-symmetric body as long
as the initial spin rate is zbout the nominal
spin-axis (which excludes Case V of Table I).
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w, w, -

I o v ° . ideal spin-up from 6, (¢ =0
Wy, onwards

11 Fo feo o . spin-up with a
tangential thruster "
in the presence of o =40 >
initial nutation &

III| o e Fo . spin-up from rest 15 (®), =
with a general e 9 & — / ‘7 8 = ~
thruster

W | e #o Fo . spin-up frome, on- 8. b, 1@ -K x|
wards with ? A ia <F e x
(no initial nutation

Vv #Fo o Fo . spin-up from a flat- é’ 8, (») = -:; a~r . ® Es“"
spin condition BT iy

‘fx, !
VI | #e ¢o Fo . general case ﬁp,m.: , Awm® o + {4(’5-&:”)

TABLE 1




