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AN ANALYTICAL SINGULARITY- FREE ORBIT PREDICTOR FOR NEAR-EARTH SATELLITES.
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Abstract

A completely analytical, first order satel-
lite theory intended for low earth orbits is pre-
sented. Perturbations are unified under the non-
gingular Poincare-Similar element formulation. The
theory includes short period, long period and se-
cular effects of J, and all higher zonal harmonics;
secular and quadrctic effects of atmospherie drag;
and the average mean motion considering all har-
monics of the geopotential. Extensive use has been
made of recursive equations instead of explicit
formulas. In the drag theory, the density model
accounts for not only changes in altitude but also
the important effects of the sun and its loeation.
The theory has been implemented in an operational
computer program.

Introduction

Recent theoretical developments des-
cribing the orbital motion of a satellite
using only analytical expressions have now
been completed and implemented in the form
of a computer program. The theory is in-
tended to be used for computation of near-
earth orbits including those of the Shut-
tle/Orbiter and its payloads. This paper
gives an overview of the theory and discus-
sion of the numerical comparisons.

Orbit computation methods can usually
be given one of the following two classi-
fications:

a) Numerical methods - The calcula-
tions are carried out in a step-by-
step manner. High precision is pos-
sible, but computer runtime can be
excessive.

b) Analytical methods - The calcula-
tions are carried out in one step
regardless of the prediction inter-
val. Therefore, these methods have
extremely fast computation times.

The fast execution times of the ana-
lytical methods make them very attractive
as mission analysis and planning tools.
But earlier analytical methods were dif-
ficult to apply because of the following
problems:

1) The solutions were expressed by
extremely lengthy formulas which
required much more computer storage
than numerical methods.

2) The solutions were based on simpli-
fied models of the perturbing for-
ces and did not accurately repre-
sent the true orbital environment.

3) The analytical solution method did
not provide enough accuracy.

4) The different perturbations were
not unified under one non-singular
formulation.

The above mentioned problems have been
overcome by the approaches described in
this paper. All perturbations are treated
by using the powerful tools provided by
Hamiltonian mechanics. The geopotential is
treated entirely using Von Zeipel's so-
lution method.

The perturbations are unified under
one non-singular formulation, namely the
Poincaré-Similar elements (PS¢). This is
a canonical set of elements in an exten-
ded phase space with the true anomaly,
not time, as the independent variable.
The nature of these elements allows an
important reduction in the number of for-
mulas needed to express the solution.

Another important feature is the ex-
tensive use of recursive equations instead
of explicit formulas. The recursive rela-
tions are well suited for computer ap-
plications and reduce considerably the
overall computer storange. In addition,
the recursive expressions enable the im-
plementation of much more complex models
of the perturbing forces. Thus, the
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theory includes the perturbations of all
the harmonics of the geopotential and also
the perturbations due to drag, in which the
atmospheric density is strongly effected

by the sun and its location. These are im-
portant features when the application is
for near-earth satellite orbits.

True anomaly DS-elements

The DS¢ elements ref.(1),(2) listed
below, are different from the classical
Delaunay elements in that the unperturbed
Jacobian equation is separated after the
transformation of the independent variable
rather than before.

The angular variables are
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(T = independent variable)

The perturbing Hamiltonian

The geopotential perturbations are

treated entirely by applying Von Zeipel's
solution method to the DS¢ elements and
carefully rewriting the solution in a non-
singular form using the PS¢ elements. The
geopotential is expanded in recursion for-
mulation to allow any order or degree mo-
del. Considerable simplifications are of-
fered by the PS¢ elements. By including
the true longitude as a canonical element,
the zonal Hamiltonian becomes a finite
fourier expansion in the canonical elements.
Also, since the mean motion is related to
the total energy, only the second order
time dependent harmonics perturb this
value. The result is errors in the down
track which are of the same magnitude as
the errors in the out of plane and radial
directions.

The DS¢ Hamiltonian may be written
in the form

2
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PM are the associated Legendre poly-

nomials; R, is the mean equatorial radius;
Ch,m> sn,m are the geopotential coeffi-
clents; ) is the longitude of the satel-

lite with respect to the Greenwich meridian.

F1,F; and F,. may be written in
the form of a fourier series in the DS4

canonical angular elements, ref.(11).
€EP. + ¢'F_=
1 z
= o n=1fR\"
2 e
—IF G
9 nz-:z ;?;;J k.l_“(:' ) nop n-1,o0k &
‘A“oll‘oswnﬂpk s Bno“"wnnpi(} %
EzF =
5 n "
nz-:z mgl ;2;0 kx-.z ﬂmP n=1,mk
Anm-.wsv'“mpk + Bnm"‘:"”"'nmpk} (8)
where
Cnm n=m Lven
A .

-5 n-m odd



ANALYTICAL SINGULARITY-FREE ORBIT PREDICTOR 301
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v = ratio of earth rotation rate and
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Recursive expressions for F_ ., may be
found in Giacaglia ref.(3). Unlike the ex-
pansions in classical elements, the true,

not the mean anomaly appears in the angular
argument. Note that the zonal perturbation is a
finite series and does not contain the time element
L. The eccentricity function Gppmk is si-
milar to the Hansen Coefficients ref.(4)in clas-
sical theory except that an additional
small argument V appears in the series
expressing the function. Since Vv for low
earth satellites is about 1/16, the series
expression for Gppik tends to converge
faster than Hansen Coefficients.

These expressions may be rewritten in
the non-singular PS¢ elements to remove the
singularities. The expansions then become

p .
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Nonsingular recursion relations exist
for anP Rkq and Igq which are all
polynomial of oy 0, 03, pp and p3 .
Ghnmk may be obtained from a series ex-
pression similar to those of Hansen Coef-
ficients.

Von Zeipels Solution Method

The objective of the Von Zeipel me-
thod is to transform the system so that
the angular variables (¢,g,h,ugl) are re-
moved from the DS Hamiltonian and, there-
fore, admit a solvable system of differen-
tial equations.

To eliminate the short and intermedi-
ate periodicities one assumes a generating
function of the form

§ =5+ €5 +:25

0 1 2
- 12
s, 5, + S, (12)
where S, gives the identity transforma-
tion, Sp 1is a periodic function of ¢ and

wg? and S; and S, are periodic functions

of ¢ only. The transformation in the DSg¢
space is given by
as s
PR O SR e & (13)
3B’ a8
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We desire to transform the elements
such that the new Hamiltonian is no longer
a function of the angular variables. The
necessary Von Zeipel equations to derive
51 and Sy are given by ref.(2).
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The first order long period pertur-
bations may be found by assuming another
generating function of the form
- = - - 7
s Sy + €8, (17)
to eliminate the appearance of the g in
the Hamiltonian. The necessary equations
are .
aF] 35,
W6 Jg T Fi(B',g"') + FI(B')
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=
=

=

Finally, one must rewrite the solu-
tions for s* and s entirely in the PS¢
elements removing any singularities for
small inclinations and eccentricities. The
short, intermediate and long periodic eli-
mination in the PS¢ elements, neglecting
second order terms becomes
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Applying the Von Zeipel method to the
geopotential expansion one finds
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If one is interested in corrections
for the mean motion, all terms in Sg should
be considered. Otherwise, only terms where

n-2p+k=0 should be computed.
The new DS¢ Hamiltonian becomes
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Observe, since F'' is only a function
of the DS¢ momenta, one is able to solve
for secular changes in the angular DS? con-
Jjugates.

S ULIRE: "
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True Anomaly PS Elements

For vanishing eccentricities and in-
clinations the above set of DS¢ elements
is not suited because their perturbing
differential equations have singularities
in these cases. It is then necessary to
introduce 8 canonical elements p,, O in
a similar way as it is customary in clas-
sical theory where the corresponding ele-
ments are called Poincaré-elements:

Py = ] > Cri= p+g+h
pp=C cos (g+h) , 03 = = C sin(g+h)
P3=D cos h 3 @3 == D igdn h
Py=1L Oy = L
where
¢ = VZ(9-G) and D = VZ(G-H)

The expressions may then be rewritten
in the PS¢ space. For example,

N iy " " 29
oy ay + ay + ay (29)

Replacing the above expressions and
grouping

" ) ) AR ) o | BT (30)
01-(3_3_‘1“35'2"?;) n

Similar expressions can be found for
the rest of the PS¢ elements. The reverse
transformation neglecting 0(e2) terms
may be found by reversing the signs in
equation (19).

Observe that although considerable
use has been made of the singular DS¢ ele
ments to derive the solution, in the com-
putational algorithm this is quite trans-
parent since all calculation are made us-
ing the well-defined PS¢ elements.

Geopotential Numerical Comparisons.

All the theory involving drag
except for the small daily periodic ef-
fects have been implemented in an opera-
tional computer program - ASOP, ref.(10).

The analytical geopotential solutions
have been compared to precise numerically
integrated solutions to determine the ac-
curacies. The results are shown in Figures
1, 2 and 3. A typical shuttle type orbit
has been integrated numerically for 100
revolutions using an 8th order, 8th degree
(8x8) model. This has been compared to the
analytically 8x8 model labeled #1, an 8th
order zonal model (#2), and a 2nd order
zonal model (#3). In Figure 1, the com-
bined out of plane and radial position
differences are shown for each solution.
Note that there is nodiscernable difference
between #1 and #2 and that both remain
small and periodic. However, by neglecting
the higher order zonals in #3, one sees a
small secular error growth. The small
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periodic error in #1 and #2 is due mainly
to the daily periodic effects which have
not bezen implemented. In Figure 2 the in
track position differences are shown. Note
that only solution #1 (which corrects for
the mean motion due to the time dependent
terms) remains small and periodic. This
periodic error in #1 remains always less

than 600 meters. In Figure 3 wc prosent the

in track and out of track differences for
#1 over one day. The inclusion of the dai-
ly periodic effects into the program could
reduce this error to about 10 m. The error
growth exhibited by #1 in Figure 2, is
smaller than the modelling error expected
from the insufficient precision knowledge
of the gravitational constant: p
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Atmospheric Drag Perturbation

The goals of the drag analytical sa-
tellite theory were 1) to base the theory
completely on an canonical formalism where-
by one can use the powerful tools provided
by Hamiltonian mechanics;2) to not simpli-
fy the model used to describe the forces
acting on a satellite such that the theory
becomes only a mathematical exercise; and,
3) to result in a concise theory so that
the accuracy gained outweighs the extra
computer costs to reach that accuracy. We
feel all these goals have been satisfied.

The assumption in the theory is that
the drag force is proportional to the
square of the velocity magnitude relative
to the inertial atmospheric velocity and
acting along this relative velocity.

Mueller ref.(6) has developed an ac-
curate density model which takes into ac-
count recent investigations (7) and (8),
showing that the density of the upper at-
mosphere is extremely effected by the sun
activity and its position. Complicated
models are available but prove to be too
unwieldy for application in satellite
theories. A completely new model had to be
developed in which it is able to simulate
the more complicated models yet can still
be written in the form of a fourier series.

The approach taken was to construct a
model which simulates the Jacchia density
model along a particular orbit. The value
of the coefficients in the new model are
determined by a procedure called "calibra-
tion". A simple formulation allows the
model to be inverted, i.e., given the den-
sity at different points along the orbit
(as determined from Jacchia), one can com-
pute the coefficients of the model. The
coefficients are implicit functions only
of long period effects and can be consi-
dered constants in the analytical theory.
The new model was then implemented into
the theory using a careful balance of ex-
plicit equations and recursive relations
to minimize core requirements.

The coupling of drag and Jg is neg-
lected except in the eritical effects of
Jg on the radius and thus the density. A
surprising result is that the true longi-
tude (which is so important in computing
Jg short period effects)is not affected
by the in plane drag perturbation. This is
a critical decoupling of Jg and drag and
reflects the fact that the geometry of the
motion is fully separated from the dynam-
ics within the orbit, typical of the PS¢
formulation.

Canonical Drag Equations of Motion.

The generalized PS¢ differential
equations are

ko OF

ke B 3

dt P Tk (31)
k=1,2,34

ol | R

dr &Jk k
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where F is the geopotential Hamiltonian
described earlier, and Ty and Uy are the
canonical drag forces., The derivation of
the canonical forces has been described

in the extended phase space in references
(2) and (5). The canonical in plane forces
reduce to

0
2 0
T = L yoC 1—‘)(u e ! 1o, -(1-2x)v2at
L % %o doy
(32)

G
2
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The out of plane forces may be expressed

in the canonical forces as
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Analytical Density Model.

In a manner similar to Santora ref.(9),
we define a density along a mean reference
orbit above a sphere which has a radius
equal to that of the average the satellite
observes in its orbit. Just as the radius
may be expanded in a power series in ¢
we write the reference density as

n
by " D
o

k
(ak + dbk)c. (34)
k=0

where a, and by are the coefficients to
be found through calibration and d re-
flects the magnitude of the diurnal effect.
The expression for d is

(g
R (35)
where
cosy = % z sinfg+ 088, (xcosy + yain Y):r

Y=a +¢;:(a ,63) = right ascension and
= 8 declination of sun

¢ = defines the lag of diurnal bulge behind
the sun (¢ = 379)

The total density model then may be
expressed as

IBh . (1+nh) (36)
£ = p.e 2l Rt

where a is a constant defining the change
in density with small changes in height and
Ah is the small changes in the altitude

about the reference orbit and sphere. This
includes the variations in height due to
J2 periodicities, the oblate figure of the
earth and when the satellite is low, the
drag effect itself.

Drag Numerical Comparisons.

As in the geopotential solution com-
parisons, the drag analytical theory is

compared to a precise numerical solution.
In all the cases, the numerical solution

includes the Jg and drag forces using the
Jacchia 71 density model. This is compared
to the analytical Jg (first order secular
and short period terms only) and drag so-
lution where the analytical density model
is calibrated to the Jacchia model used in
the numerical solution. In both numerical
and analytical solutions the solar flux
F19.7 and geomagnetic index K, were set
equal to their average values. %he total
position difference between solutions over
a 5 day period is shown in each of the
figures 4, 5 and 6. Also shown is the posi-
tion difference with drag turned off. In
each case the initial conditions are the
same. We chose a polar orbit with an

hp=300 km and h_ =556 km and a perigee
which lies above the equator. The node is
positioned such that the orbit lies in the
diurnal bulge when the sun is at the vernal
equinox. Figure 4 represents the case where
the sun is at the vernal equinox and is in
a period of high solar activity Fig.7 =250.
Figure 5 represents the case in which the
sun is at the summer soltice and Fjg,7=250
again. Figure 6 is the case in which the
sun is at the vernal equinox but the solar
activity is low, Fy9.7 =75.

Table 1 gives some typical numbers on
the differences of analytical versus nu-
merical integration for a realistic shut-
tle orbit after 20 revolutions.

Model e=0 e=.,015 e=.1

position difference in km

Neglect
Drag 1481 1506 1920
With
Drag .97 1.01 2.18
TABLE 1
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Computer Program.

The theory has been implemented into
a structured modular designed program cal-
led Analytical Satellite Orbit Predictor
(ASOP). All the different perturbations
are separated into modules, so that a
user may select only the modules he needs.
The execution times vary with orbit and
size of model but are on the order of 25ms
to initialize and 5ms to take a step
(Univac 1110). The program storage require-
ments can also vary with the size of model
but ranges in the neighborhood of 18 k,
36 bit words (all coding in double pre-
cision).

Conelusion

Inaccuracies of the computer program based
on the methods described are given by the physical
limitations of the force models rather than the
neglections made while carrying out the analytical
solution itself. - For near earth orbiters we may
have reached the point where numerical integration

of orbits becomes obsolete.
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