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ABSTRACT

Geometrical procedures developed for attitude
accuracy analyses and sensor bias determination
can provide better physical insight and faster
analysis than parametric studies of mission
geometry for a wide class of problems such as:
Attitude determination and attitude accuracy
Sun, Moon, and Earth interference

Eclipse conditions

TDRS coverage

Launch window constraints.

This paper discusses the application of inertially
fixed and spacecraft fixed global geometry plots
to the above groups of problems; types of problems
for which these methods are and are not appli-
cable; and specific examples of applications to
spacecraft in low Earth orbit, geosynchronous
orbit, and geosynchronous transfer orbit.
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1. [INTRODUCTION

This paper describes techniques for analyzing
various geometrical relationships as seen by an
observer located ON THE SPACECRAFT, rather than
at the center of the Earth as is frequently done.
The various globe plots throughout the paper are
essentially drawings of a celestial globe centered
on the spacecraft. The major advantage of this
approach is that it provides far better physical
insight into the constraints being placed on a
mission analysis problem and shows the impact of
major variations in these conditions. Because of
this advantage, relatively simple global geo-
metrical analyses are normally an order of magni-
tude faster and, consequently, far cheaper than
the normal technique of automated parametric
studies.

This paper 1is concerned with methodology rather
than with specific results which have been
obtained. In principle, similar results can be
obtained by any of a variety of methods. In

practice, however, different methodologies can
produce very substantial differences in the amount
of information that can be gained with a given
amount of time and effort. As a single example,
consider the case of a spin stabilized spacecraft
for which the attitude of the spin axis is deter-
mined by measuring the angle from the spin axis to
the Sun, Q, and the rotation angle about the spin
axis from the Sun to the center of the Earth, U,
as shown in Figure 1. Although this has been a
very basic attitude technique for many years, so
far as I am aware the general conditions under
which the attitude solution was mathematically
singular were not recognized until the intro-
duction of the global geometry technique. At that
time, the singularity conditions became obvious as
discussed below and, once known, were straight-
forward to prove analytically (Ref. 1).

Figure 1. The spacecraft centered celestial

sphere. Given the positions of the Sun and the
Earth, the attitude of a spinning spacecraft can
be determined by measuring the Sun angle, Q, and
the Sun to Earth rotation angle, U.
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The basic approach described here was originally
developed for the analysis of attitude accuracy
and sensor bias determination for NASA's Goddard
Space Flight Center (Ref. 1-4). However, this
technique is applicable to a wide range of mission
analysis problems which concern geometrical
relationships over much or all of the celestial
sphere. Specifically, this paper discusses the
generai method of undertaking a global geometry
analysis, the types of problems to which it is and
is not applicable, and specific applications to
the following areas:

e Attitude determination and attitude accuracy
studies

e Eclipse and occultation conditions
e Spacecraft to spacecraft viewing conditions

¢ Launch window analysis.

2. THE GLOBAL GEOMETRY TECHNIQUE

The normal method of undertaking spacecraft geo-
metrical analyses is what, for lack of a better
term, 1 will call “classical parametric studies."
By this I mean that a straw man mission is
defined, then a series of computer simulations are
run to evaluate the various geometrical relations
and, typically, several mission parameters are
varied one or two at a time to determine how the
geometry changes. Of course for any realistic
number of variables this can represent an enormous
expense in computer and personnel time such that
only the most "interesting" variations are con-
sidered and the effect of large variations from
the straw man concept are very rarely analyzed.

The alternative to this approach, which I will
call global geometry analysis, is to map out,
either manually or via computer aided plotting,
the entire sky AS SEEN BY THE SPACECRAFT and to
examine the relative geometrical relationships
between all of the objects which can be sensed by
the spacecraft. This "spacecraft centered celes-
tial sphere" is illustrated in Figure 1. In order
to simplify plotting, it is convenient to omit the
spacecraft in the center and to plot objects on a
representation of the celestial sphere of unit
radius with a normal spherical coordinate system
such as right ascension and declination, which is
the celestial equivalent of longitude and latitude
on the Earth. This is done in the remaining fig-
ures in this paper. For most purposes I have
found the orthographic projections used throughout
this article to be convenient. However, other
projections may be useful for specific purposes,
such as an Aitoff equal area plot when the rela-
tive density is the most important feature or a
Mercator projection when one is computing maneu-
vers based on a fixed angle with respect to some
reference vector such as the Sun.

To illustrate the global geometry technique,
consider the very simple example of a spacecraft
in an equatorial geosynchronous orbit which con-
tinuously faces the Earth and which can sense only
the Earth and the Sun. The spacecraft rotates
once per day about an axis which is approximately
north in inertial space. A representation of the
sky AS SEEN BY THE SPACECRAFT is shown in Figure 2
with a spherical coordinate system fixed relative

WERTZ

“1"1~ NORTH)

TYPICAL PATH
OF THE SUN IN

# PATH OF SUN AT SUMMER

W SOLSTICE = NORTHERN LIMIT

Figure 2. An "external" view of the celestial
sphere as viewed by an Earth-facing spacecraft in
an equatorial geosynchronous orbit (spacecraft
fixed coordinates). The spacecraft yaw angle is
the rotational error about the axis toward the
center of the Earth and equals the difference
between the predicted and measured values of 4.

to the spacecraft. The spin axis is at the top
and the Earth, which remains fixed in spacecraft
coordinates, is along the spin plane 90 degrees
from the spin axis. The spacecraft rotates from
west to east; i.e., such that the angular momentum
vector points north. Therefore, the Sun appears
to revolve from east to west in the spacecraft
sky, making one revolution per day at a nearly
constant angle from the spin axis. As the seasons
change, the angle of the Sun above or below the
spin plane oscillates between *23 degrees, being
in the spin plane (= equatorial plane) at the
equinoxes. Eclipses of the Sun will occur when-
ever the Sun passes behind the disk of the Earth
as seen from the spacecraft. As seen in Figure 2,
this will occur once per day whenever the distance
from the Sun to the equator is 1less than the
angular radius of the Earth from geosynchronous
orbit, 8.70 degrees. This will be between
approximately February 27 and April 13 and between
approximately September 1 and October 16, as can
be found from any almanac. The duration of the
eclipse will be just the fraction of the Sun's
"orbit" covered by the Earth, or (17.4/360) x
24 hr = 70 minutes at the equinox. Times on other
days can be obtained by simple spherical geometry.

Somewhat less obvious than the eclipse cycle is
the measurement of roll, pitch, and yaw from the
spacecraft. Roll and pitch are measured by deter-
mining the position of the Earth relative to the
Earth sensor on the spacecraft. However, unless
the oblateness of the Earth can be sensed (which
is not necessarily impossible) the Earth sensor
cannot determine yaw, which is the rotation of the
spacecraft about the vector to the Earth's center.
However, unless the Sun 1is collinear with the
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Earth's center (which happens twice a day at the
equinoxes) or is hidden behind the disk of the
Earth, then yaw can be directly measured at any
time of day by measuring the rotation of the spin
axis relative to the observed position of the Sun,
as shown in Figure 2. The spacecraft yaw angle is
the difference between this measured angle and the
predicted angle given the known geometry between
the positions of the Sun, Earth, and spacecraft.
This can be measured at any time of day, except
for those mentioned above, by simply measuring the
two components of the position of the Sun in
spacecraft coordinates.

This process of numerically or analytically
examining the relative geometrical relationships
over the whole globe is what I mean by "global
geometry analysis." On several occasions the
author has used this technique to "discover"
theorems about mission geometrical relationships
that were previously unknown but which, when
known, could then be analytically established.
For example, processing of attitude data for
spacecraft 1in geosynchronous transfer orbit at
NASA's Goddard Space Flight Center has typically
involved a Sun angle measurement, a nadir angle
measurement, and a Sun to Earth rotation angle
measurement with fixed but unknown biases per-
mitted on each parameter. A geometrical analysis
essentially similar to that above showed that
under the most common conditions the Sun angle
data contributed no attitude information and the
rotation angle data contributed almost no infor-
mation (Ref. 4). When this data was subsequently
ignored in the processing, the attitude solutions
remained the same, but the statistics became much
more realistic.

Generally, the global geometry technique will be
useful for obtaining results and improving physi-
cal insights whenever we are interested in chang-
ing geometrical relationships over a large
fraction of the celestial sphere or in the impact
of multiple parameters on a particular problem.
Thus, this technique can prove beneficial in any
of the following types of analyses:

e Attitude determination accuracy where the
reference vectors can move over a large
fraction of the celestial sphere (e.g., Sun,
Moon, and Earth sensors or any of these in
combination with star sensors)

e Attitude sensor coverage and optimum placement
of sensors under the above conditions

e Attitude sensor calibration or bias deter-
mination under the same conditions

e Attitude maneuver analysis — including sensing
and control strategy, interference, rhumb line
maneuvers, and maneuver planning

e Eclipse and occultation conditions

e Sun or bright object avoidance conditions or
geometrical constraints imposed by thermal
requirements

e Spacecraft to spacecraft viewing conditions and
interference from other objects

e Analysis of launch constraint conditions.

The global geometry technique will be of little
benefit in problems where the geometry is essen-
tially fixed, where variations are maintained at a
sufficiently low level that linear analysis is
adequate, or where the primary issue of interest
is dynamics rather than kinematics. Thus, the
global geometry technique will generally not be
beneficial for problems such as:

e Normal (small deadband) control system analysis
e Star sensor data analysis

o Analysis of attitude dynamics.

3. APPLICATIONS

This section discusses the application of the
global geometry technique to evaluating eclipse
and occultation conditions, spacecraft to space-
craft viewing conditions, and launch window con-
straints, and summarizes the application to
attitude determination analysis. References 1 to
4 contain a more detailed discussion and examples
of the application of this technique to attitude
and bias determination, sensor placement, and
attitude maneuvers. In addition, Reference 4
contains a detailed presentation of the method of
manually constructing plots such as shown here and
a reference to existing subroutines for automated
plot generation.

3.1 Attitude Determination Analysis

The purpose of global geometry attitude deter-
mination analyses is to determine the relative
attitude accuracy which is possible for various
geometrical conditions or, conversely, to deter-
mine regions of the spacecraft sky for which
specified accuracy conditions can be met. Refer-
ence 4 provides a detailed discussion of both
types of analyses. This section explains the
basic principle of geometrical attitude analysis
and identifies the geometrical criteria for mathe-
matical singularities in attitude solutions.

Irrespective of whether the process is carried out
explicitly (and it virtually never is), the gen-
eral process of attitude determination for any
given spacecraft axis is based on determining the
locus of possible attitudes for that axis on the
celestial sphere given by two or more specific
measurements. The attitude estimate is then the
intersection of the loci of the several measure-
ments. For any one measurement the Tlocus of
possible attitudes consists of those points on the
spacecraft centered celestial sphere which are
possible spacecraft attitudes consistent with the
given measurement. For example, if a measurement
implies that the angle between the attitude vector
and the Sun is 60 degrees, then the corresponding
locus of possible attitudes on the celestial
sphere consists of all points 60 degrees from the
Sun, i.e., a small circle of radius 60 degrees
centered on the Sun.

As an example of the attitude determination pro-
cess, consider the case of determining the space-
craft spin axis by measuring the Sun angle, Q, and
the rotation angle, U, from the Sun to the center
of the Earth. The single axis Sun angle measure-
ment is the simplest to visualize and implies that
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the reference axis of the Sun sensor lies on a
small circle on the celestial sphere of radius Q
centered on the Sun. Thus, in Figure 3 the con-
stant "latitude" lines are the loci of possible
attitudes for a spacecraft axis located at any
given angle from the Sun.
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Figure 3. Loci of possible attitudes for various
Sun to Earth center rotation angles for a Sun-
Earth angular separation of 30 degrees (inertially
fixed coordinates). The latitude lines are the
loci of possible attitudes for various Sun angles.
Thus, for example, a Sun angle of 60 degrees and
Sun-Earth rotation angle of 30 degrees implies
that the attitude will be at either point A or
point B.

The loci of possible attitudes corresponding to a
given rotation angle about the attitude from the
Sun to the center of the Earth are considerably
more complex, as illustrated in Figure 3 for a
Sun-Earth separation of 30 degrees. The fact that
these loci are not small circles implies that the
attitude solutions do NOT behave like simple cone
intersections. The spin axis attitude is now
determined by finding the intersection of the
appropriate loci on Figure 3. For example, for
the geometry of this figure, a Sun angle of 60
degrees and a rotation angle between the Sun and
the Earth of 30 degrees implies that the space-
craft atttitude is at either point A or point B.
(Both solutions are consistent with the given
data. Normally, other information exists to allow
us to select the proper solution.)

The accuracy with which the spacecraft attitude
can be determined anywhere on the celestial sphere
depends on both the density of loci in that region
— high density corresponds to a more accurate
attitude — and on the angle at which the Sun angle
and rotation angle attitude loci intersect. If
the loci are nearly perpendicular, as they are
between the Sun and the Earth, the attitude solu-
tions are accurate and if the loci intersect at
shallow angles then there will be a large attitude
uncertainty because a small variation in either

measurement would result in a large shift in the
attitude. It can be seen from the figure that the
lines of constant “"latitude" (= Sun measurement
loci) are parallel to the rotation angle loci all
along the great circle through the Earth which is
perpendicular to the Earth/Sun 1ine. Thus, when-
ever the spacecraft attitude lies on this line,
attitude solutions based on the Sun angle and the
Sun to Earth rotation angle will be singular.
This is the singularity condition referred to in
the introduction. In addition, any attitude
solution based on the Sun to Earth rotation angle
measurement will have a Tlarge potential error
whenever the attitude is near the point in the
spacecraft sky which is perpendicular to the
directions to the Earth and the Sun because of the
low density of loci in this region. (This point
perpendicular to the Earth/Sun great circle is
labeled "nu11" in Figure 3.)

Although we have used a specific geometrical
procedure to identify singularity conditions,
these singularities will exist for any method used
to compute the attitude based on the given meas-
urements. That is, the singularity refers to the
basic information content of the attitude measure-
ment and NOT to the specific technique by which
the measurements are processed. For a more
extended discussion and examples of attitude and
bias determination geometry see References 1 to 4.

3.2 Eclipse Conditions

This section describes the process of analyzing
eclipses as seen by the spacecraft and provides an
expression for the level of illumination during a
partial eclipse. The general method of eclipse
analysis was illustrated in the introductory
example — an eclipse occurs whenever the Sun goes
behind the disk of the Earth, Moon, or other
object as viewed from the spacecraft. However, an
additional complication arises from the finite
size of the solar disk. As illustrated in Figure
4, an eclipse will be either partial, total, or
annular depending on whether the Sun's disk is
partially covered, totally covered, or behind, but
larger than the object blocking it such that por-
tions of the Sun's disk can be seen all around the
eclipsing object. A1l three types of eclipses
occur both on the Earth's surface, when the Moon
obscures the Sun, and in space. (When the obscur-
ing object is sufficiently small so as to block a
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Figure 4. Solar eclipse geometry
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negligible fraction of the incident 1light, the
event is referred to as a transit rather than as
an annular eclipse.)

Each total eclipse must be preceded and followed
by a partial eclipse in which the 1ight intensity
is very nearly proportional to the percent of the
solar disk which is obscured. A partial eclipse
will occur whenever the angular separation, S,
between the Sun and the center of the Earth (or
other spherical obscuring object) falls in the
range RE - RS < § < RS + RE, where RS and RE are
the angular radii of the Sun and the Earth,
respectively. A full expression for the occulted
area is given in Appendix A of Reference 4, but is
unnecessarily cumbersome to evaluate for normal
eclipse conditions. For most practical purposes,
an adequate approximation is

A = 0.5 RS? (25 - ¢ + sin 4) (1a)
where A is the unocculted area of the Sun and
¢ = 2 arc cos [(S - RE) /RS] (1b)

Returning to the geometry of Figure 2, the most
rapid change in illumination for our geosyn-
chronous satellite example will occur at the
equinoxes when the Sun is moving perpendicular to
the disk of the Earth. At these times each par-
tial eclipse will last 2 minutes such that the
total eclipse sequence will be: full intensity —
Z2-minute partial eclipse — 68-minute total eclipse
— 2-minute partial eclipse — full intensity.

3.3 Occultation Conditions and Spacecraft-to-
Spacecraft Viewing

This section describes specific conditions under
which occultations and transits will occur and
discusses the motion of a spacecraft as seen from
a second spacecraft. This particular problem is
relevant at present because of the increase 1in
spacecraft-to-spacecraft tracking brought about by
the forthcoming Tracking and Data Relay Satellite
System, TDRSS. Although the detailed relative
spacecraft motion is normally quite complex, the
physical insight gained from the global geometry
approach allows the user to understand the sources
of the motion and the impact of changes in the
relative orbit parameters and to put numerical
bounds on the apparent motion of a spacecraft
viewed from a second spacecraft.

The general problem of occulting of portions of
the celestial sphere and of Earth, Moon, or Sun
avoidance can be conveniently dealt with by con-
structing the occuited areas on celestial sphere
plots such as those shown in the figures here.
This is usually most conveniently done by having
the plots fixed in inertial coordinates, rather
than in spacecraft coordinates as was done in
Figure 2, and showing the relative motion of the
Earth or other objects of interest. Examples of
this type of plot are given in Figures 6 and 7
below.

A more specific problem which occurs frequently is
that of the occultation of a possibly nearby
object by the Earth for a spacecraft orbiting the
Earth, as in the occultation of TDRS by the Earth.
In this case, it is frequently convenient to

consider the geometry from the perspective of the
object being occulted since, of course, an occul-
tation of an object by the Earth is equivalent to
an occultation of the spacecraft by the Earth as
seen from the object. Thus, we could analyze
eclipses by plotting the orbit of a spacecraft as
seen from the perspective of the Sun or, in a
somewhat more practical example, we could deter-
mine the conditions for a total solar eclipse by
examining transits of the spacecraft in front of
the Earth as seen from the apex of the Earth's
shadow cone.

In order to analyze viewing and occultation con-
ditions, we need to determine the apparent shape
of a spacecraft's orbit as viewed from elsewhere
in space. In general, an elliptical orbit viewed
from any location in space will remain elliptical
when projected onto a plane, but even for a circu-
lar orbit the center of the observed ellipse is
not coincident with the center of the orbit except
when viewed from infinity. This is illustrated in
Figure 5 for a circular spacecraft orbit viewed
from nearby and above. For a circular orbit of
radius R viewed at distance D from the center of
the Earth and from an angle 1 above the orbit
plane, the minor axis of the apparent ellipse will
be along the line from the observer to the center
of the Earth and will extend above the center of
the Earth by the angle M, and below the center of
the Earth by the angle M2 where

tan M, = R sin 1/(D + R cos 1) (2)
R sin I/(D - R cos 1) (3)

tan Hz

The semimajor axis, M., of the apparent ellipse is
given by (Ref. 5): J

sin? M, = 2 R%/(0% + R + V) (4a)

J

where

2
X = (02 + R%) - 4 02 R? cos? 1 (4b)

For simplified computations note that M. falls in
the range J

arc sin (R/D) > Mj > arc tan (R/D) (4c)

which is adequately narrow for most applications.

Figure 5. Appearance of a CIRCULAR orbit viewed
obliquely from near point A
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As can be seen from Figure 5, occultation of a
spacecraft in a circular orbit can occur without
transit occurring, but if a transit occurs then
occultation must also occur. For a noncircular
orbit the general conditions for occultation and

transit are:
RE < Mlmin Neither transit nor occultation
will occur.

RE > M Occultation will occur, transit may

max
beex Gr may not occur.

RE > M2 and D > A Both transit and occul-
max o =
tation will occur.
where M]min’ Mlmax’ and "Zmax are the minimum and
maximum values of Ml and M2 as defined above

(Ref. 4). These may be obtained by a direct
extension of Equations (2) and (3) as:

tan M, . =P sin I/(D + P cos I) (5a)

tan Mlmax = A sin I/(D + A cos 1) (5b)

tan My .y = A sin I/(D - A cos I) (6)
where

P = spacecraft perifocal distance
A = spacecraft apofocal distance
U = distance from observer to center of Earth

RE = angular radius of the Earth as seen by the
observer

I = inclination of spacecraft orbit relative
to the observer's 1line of sight (i.e.,
90 degrees minus the angle between the line
of sight and the orbit normal)

If none of the above conditions are satisfied,
then whether occultation or transit occurs will
depend on the specific orientation of the observer
relative to the spacecraft perigee and the orbit

:i]l need to be evaluated on a point-by-point
das1s.

As an example of the application of the above,
consider the case of the occultation of TDRS for a
spacecraft in a low Earth circular orbit. In this
case, Mlmax MlMin’ RE is the geosynchronous

angular radius of the Earth, 8.70 degrees, and I
is given by

ind = sin 1 si -
sinilo= sin 1 sin |Lspc LTDRS' (7)
where i is the inclination of the spacecraft orbit

relative to the Earth's equator, LSpc is the

longitude of the ascending node of the spacecraft
at the time in question, and LTDRS is the TDRS

longitude. Because Mlmin = Mlmax‘ Equation (5)

becomes an absolute condition on whether or not
occultation will occur. In addition, for a circu-
lar orbit, the condition RE > MZmax becomes an

absolute condition on whether transit will occur.
(Note that in this case transit refers to passage
of the spacecraft in front of the disk of the
Earth as seen by TDRS.) Since I oscillates over

the range 0 to i as Lspc rotates about the Earth,

Equation (5) can be used to determine on which
orbits either of the TDRS spacecraft will be
occulted without having to generate sample orbits
for point-by-point testing.

Irrespective of the occultation conditions above,
it may be of interest to determine the actual path
of a spacecraft on the celestial sphere as seen by
a second spacecraft, as in the case of TDRS track-
ing by a low orbiting spacecraft. For concrete-
ness, we will consider the case of a spacecraft in
a 3000-km circular orbit with an inclination of
34 degrees as illustrated in Figure 6. The heavy
solid T1ine from lTower left to upper right is the
"orbit of the Earth" on the celestial sphere as
seen by the spacecraft. The two dashed lines
parallel to the Earth's orbit are the envelope of
the disk of the Earth as it moves across the sky.
Thus, the two caps around each pole outside the
dashed lines are the regions of the celestial
sphere never occulted by the Earth for this orbit.
(The expression for the envelope of the Earth's
disk for a noncircular orbit is given below in the
launch window discussion.)

The line labeled "Ecliptic" is the annual path of
the Sun as seen by either the Earth or the space-
craft. The autumnal equinox of approximately
September 22 occurs as the Sun crosses the equator
from north to south directly below the center of
the figure. The maximum duration eclipse will
occur when the Sun crosses the orbit plane. We
see from the figure that, for the orbit illus-
trated, this occurs at a declination of about
14 degrees (or -14 degrees for the crossing on the
other half of celestial sphere not shown in
Figure 6). From any astronomical ephemeris we
find that this occurs on approximately August 15
(or February 12 for the other crossing). Simi-
larly, the summer/fall eclipse season ends when
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Figure 6. Celestial sphere as seen by a spacecraft
in 3900 km circular 34 degree inclination orbit
showing the apparent motion of the Earth, Sun, and
TDRS spacecraft (inertially fixed coordinates).
See text for discussion.
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the Sun crosses the envelope of the disk of the
Earth at a declination of -9 degrees on about
October 17. At this time, the Sun will remain
uneclipsed for several months before the next
eclipse season begins on the opposite side of the
celestial sphere from Figure 6.

The motion of a second spacecraft in the sky is
substantially more complex than that of the Earth
or Sun because it is the sum of the motion of the
two spacecraft. This will of course be familiar
to those who are astronomically oriented as equiv-
alent to the apparent path of any of the outer
planets relative to the Earth. Again using TDRS
as an example, we can subdivide the relative
motion on the sky into components due to the
motion of the low orbiting spacecraft and that due
to the 24-hour orbit of TDRS itself. If we first
ignore the motion of TDRS in its orbit, then its
apparent path on the sky due to the motion of the
low orbiting spacecraft will be just the mirror
image of the motion of the spacecraft as seen by
TDRS. As discussed above, this will be an ellipse
whose major axis is parallel to the plane of the
"orbit" of the Earth as seen by the spacecraft.
Three representative ellipses are indicated by A,
B, and C on Figure 6. (Compare with Figure 5 and
Equations (2) to (4).) The apparent position of
TORS will travel along the ellipse with a period
equal to the spacecraft orbital period, or about
2.5 hours for our example.

Superimposed on the above motion will be the
motion of TDRS itself which will carry the center
of the apparent elliptical path around the celes-
tial sphere in 24 hours. The net motion is a
looping apparent path shown by the 1light solid
line in Figure 6. From Equation (3), the maximum
apparent distance of TDRS from the equator will be
B8.67 degrees. Thus, the rather complex motion of
TDRS will be confined within a band of +8.67
degrees of the equator as shown by the dotted
lines on the figure. This band could be narrowed
somewhat by inclining it slightly relative to the
equator to account for the reduced foreshortening
on the far side of the orbit as given by
Equation (2).

3.4 Launch Window Analysis

The normal technique for examining multiple launch
window constraints is to block out unallowed
regions for each constraint on a plot of date
versus time of day and then to examine the plot to
see if any window remains. This is an appropriate
approach for 1looking exclusively at the launch
window itself, but is very unsatisfactory for
mission analysis in that it doesn't supply physi-
cal insight into either the causes of the con-
straints or how major changes in them would affect
the launch window. An alternative which provides
the requisite physical insight is to plot the
necessary conditions as constraints on the place-
ment of the orbit ON THE CELESTIAL SPHERE so that
the impact of each constraint can be examined
directly.

To examine the global geometry approach and
contrast it with the usual technique, let us
consider the example of a spacecraft in a 24-
degree inclination geosynchronous transfer orbit
and initially require that throughout the orbit
the Sun remain within 23 degrees of the orbit
plane in order to maintain thermal conditions no
worse than on station, and that there be no

eclipse throughout the transfer orbit so that
continuous power and yaw sensing are provided. Is
th1s.a reasonable set of constraints? Does it
provide an adequate launch window throughout the
year? What is the impact of changing the orbit
inclination? How do these constraints relate to
those in a low Earth parking orbit or in the
initial geosynchronous orbit?

Figure 7 shows the geometry for the above example
in the usual global geometry format. Again the
Earth's orbit as seen by the spacecraft is the
heavy solid line from upper left to lower right
and the dashed 1ine is the envelope of the Earth's
disk as the spacecraft moves in its highly ellip-
tical orbit. This envelope is most easily plotted
by determining for various points along the orbit
the average radius of the Earth, p, and the angle,
8, between the orbit plane and the direction to
the envelope at that point, as shown in Figure 8.
8 is given by:

@ = arc cos (ap/av) (8)

where Ap is the change in angular radius of the
Earth, p (= arc sin RE/D), over a small change in
true anomaly, av. Note that the argument of
perigee is determined in Figure 7 by requiring
that apogee occur on the equator. A second essen-
tially identical plot could be prepared for apogee
at the ascending node. Our requirement for no
eclipse during the transfer orbit implies that the
Sun must be outside the dashed line in Figure 7.
Our second requirement of having the Sun within
+23 degrees of the orbit plane implies that it
must lie within the light solid line parallel to
the Earth's orbit. In addition, the Sun never
ranges further than %23.5 degrees from the
e?uator, so this condition is also marked on the
plot.
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Figure 7. Celestial sphere as seen by a spacecraft
1n geosynchronous transfer orbit showing the
possible positions for the Sun which are within
:23_degrees of the orbit plane, but for which no
eclipse occurs during the transfer orbit (iner-
tially fixed coordinates)
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Figure 8. Geometry and parameter definitions for
computing the envelope of the Earth's disk

The declination of the Sun on our plot will be a
function of the launch date. Our various con-
ditions on the transfer orbit impi,; that for any
given date (and, therefore, declination of the
Sun) we must adjust the right ascension of the
ascending node of the spacecraft orbit (and,
therefore, the launch time) such that the Sun
falls within the shaded region. Because the
shaded area covers all possible declinations, a
launch window is available at all times of the
year. Further, the minimum width of the Tlaunch
window will be about 24 degrees (= 96 minutes) at
the solstices. When the Sun is within about 3
degrees of the equator (from approximately
March 13 to 28 and September 15 to 30) there will
be two launch windows per day.

In addition to the above results, which could
equally be read from a more normal launch window
plot, Figure 7 makes clear what the general impact
would be of changing any of the constraints. For
example, increasing the transfer orbit inclination
would narrow the window slightly, but would have
no other significant effect. However, decreasing
the inclination by more than a few degrees would
eliminate the launch window at the equinoxes. If
it is our intent to use the Sun as a yaw reference
for a motor firing at apogee, then a potential
basic problem is immediately apparent since for
the conditions we have set out the Sun will be
within approximately 30 degrees of the Earth's
center except when launch occurs near the time of
the equinoxes. This implies either a potentially
more stringent accuracy reguirement for the yaw
Sun sensor or some change in mission planning.
Reaquirements for other mission phases can be
examined by plotting the other relevant orbits
directly on Figure 7.

We may transform Figure 7 into the more usual
launch window plot by determining the launch times
associated with a given right ascensicn of the
ascending node, RANODE, relative to the Sun
according to:

RANODE

RA(launch site) + 270 deg (9a)

"

EL + GST + 270 deg (9b)

where RA(launch site) is the instantaneous right
ascension at launch, EL is the east longitude of
the launch site, and for simplicity we have
assumed a due east launch. (A different launch
azimuth would affect only the constant 270 degree
term.) The Greenwich Sidereal Time, GST, measures
the angular orientation of the Earth in inertial
space and is related to Universal Time, UT
(expressed in degrees), by

GST = 99.6910 deg + 36000.7689 T + UT (10)

where T is time since noon UT on January 0, 1900
(= Jan. 0.5, 1900) in units of,Julian centuries of
36,525 days and a term in T° has been omitted.
(For a further discussion of sidereal time and
other relevant expressions, see, for example,
Reference 4 Appendix J.) From the above, the
Universal Time for a given right ascension and
date is

UT = [(RANODE - EL - 270 deg - 99.691 deg

- 0.985647335 D) Modyg01/1.002737909 (11)

where aD (= Julian Date - 2,415,020) is the number
of days from January 0.5, 1900, to O hr UT on the
day in question and all other quantities are in
degrees.

Figure 9 shows the results of transforming the
regions of Figure 7 to a more normal launch window
plot. The four l1imiting curves have been labeled
A, B, C and D on both plots for comparison. While
Figure 9 is convenient for launch window timing,
it does not provide the direct physical insight
appropriate to undertaking mission analysis or
examining the impact of possible variations in the
launch constraints.
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Figure 9. Typical plot of launch window availa-
bility for the conditions of Figure 7. Curves A,
B, C, and D correspond to curves with the same
labels on Figure 7.

4. DISCUSSION

The example above illustrates the major advantages
of the global geometry approach to mission analy-
sis. The principal advantage is that it provides
a direct physical insight into spacecraft geometry
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problems, and, consequently, helps the mission
analyst understand the causes and impact of vari-
ous conditions and, equally important, the impact
of varying the mission conditions. This under-
standing of the spacecraft geometry helps to
ensure optimal solutions to mission problems and
verify that proposed solutions are based on sound
engineering judgment rather than partial para-
metric studies.

In addition, global geometry studies can normally
be undertaken in a matter of hours rather than the
days or weeks frequently required for the more
complex parametric analyses. This means both
greatly reduced cost and the potential for using
such studies at an earlier phase of mission devel-
opment to ensure that the general direction of
planning is reasonable and that superior solutions
have not been inadvertently bypassed.

Global geometry techniques should supplement
rather than replace the more traditional analyses.
Detailed parametric studies are critical in the
later stages of mission development to "fine tune"
mission and hardware parameters. However, they
should be augmented by simpler, faster techniques
for preliminary mission analysis or whenever a
clear physical insight is missing.

Finally, I would like to thank R.F. Brodsky and
Landis Markley for their very helpful suggestions
and comments.
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