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ABSTRACT

The dynamic attitude reconstitution method makes
use of the information contained in the temporal
evolution of the Earth colatitude and the Sun-
Earth azimuth angles. These angular measurements
are readily obtained for spinning satellites
equipped with pencil-beam Earth sensors and V-
slit Sun sensors in geostationary transfer
orbits. Since the derivatives of the Earth
colatitude and azimuth angles define a third
reference direction, the dynamic method provides
reliable results in the case of Sun-Earth (near-)
colinearity where conventional methods break
down. Furthermore, its proper functioning is not
impeded by the loss of Sun colatitude measure-
ments as long as a time pulse for the azimuth
angle is available. The present paper summarises
the theoretical background of the method and
describes the various improvements which have
resulted in the operational software now in use
to support ESA satellites in geostationary
transfer orbit. Extensive software experimenta-—
tion on the basis of real satellite data (ESA's
METEOSAT I) have resulted in a reliable attitude
estimation method and increased our confidence in
the successful application of the method in
future launch support.

Keywords : Attitude Estimation, Sun-Earth
Colinearity

1. INTRODUCTION

The geostationary satellites so far launched by
ESA have been spin stabilised in the transfer
orbit. In fact, spin stabilisation is sometimes
also used for non-geostationary spacecraft (e.g.
ESA's GIOTTO).

The attitude in spin mode is normally obtained by
analysing infrared (IR) Earth and V-slit Sun
sensor data which provide us with the angles

between the satellite's spin axis and the inertial

directions defined by the Sun's and Earth's
positions, i.e. the Sun and Earth colatitudes,

8 and B. An initial attitude fix may be derived
deterministically from a few data samples whereas
a few hundred samples are needed in order to
reduce the effects of sensor noise to an insigni-
ficant level with the aid of stochastic methods.
The accuracy of the attitude estimate so obtained
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depends on uncbservable biases in sensor measure-
ments and alignments. It is well-known (e.g.
Ref. 1, Ch. 11) that the sensitivity of the
attitude estimate to errors becomes unacceptably
high when the angle between the Earth and Sun
reference directions becomes small (Sun-Earth
colinearity). Therefore, a launch window
constraint is usually imposed when colinearity
may arise, especially around the egquinoxes.

In many cases, a launch window constraint of
this type is undesirable, Therefore, the
dynamic attitude reconstitution method, which

is not subjected to colinearity constraints, has
been proposed in connection with the launch of
ESA's Orbital Test Satellite (0TS), cf. Peyrot
(Ref. 2). In addition to eliminating the launch
window constraint, the dynamic method has other
important advantages which fully justify its
inclusion in the operational software. It will
produce acceptahle results using IR Earth sensor
data alone which is extremely important in the
case of a (partial) Sun sensor failure.

2. GEOMETRICAL BACKGROUND OF
MEASUREMENT EQUATIONS

2.1 Nature of the Measurements

Attitude measurements for a nutation-free
spinning satellite are performed by Sun and
Earth sensors measuring angular data. As the
use of plane IR sensors is restricted to high
eccentric orbits (e.g. HEOS A1 and A2, COS B)
only the more common pencil-beam IR Earth Sensor
is taken into consideration here.

The IR sensor is mounted at an angle of inclina-
tion MU with respect to the spacecraft's spin
axis, Due to its rotation along with the space-
craft the sensor generates during each satellite
revolution one positive and one negative pulse
at the Space/Earth (S/E) and Earth/Space (E/S)
transitions, respectively. After calibration
and validation of the measurements (cf. pagoda
effect, Ref. 1, Ch. 9 and Ref. 3) these pulses
are transfomed in angular measurements such as
the Earth chord-length 2k , Fig. 1.

If the chord is larger than say 75% of the
apparent Earth diameter 28’ the bias error after
calibration is below 0.15 and the random noise
below 0.05° (30 values). Towards the Earth limb
the situation rapidly degrades and measurements
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should be disregarded. The inclination of the IR
sensors is selected such that at least one pencil
beam scans in a favouratle region during the
critical attitude reconstitution intervals.

Figure 1. Geometry of Angular Measurements

The sun colatitude is determined by the time
delay between the two pulses in each of the two
slits. To a very good approximation, one may
assume 6 to be constant over an half-hour inter-
val. The V=slit Sun sensors flown on ESA
satellites show errors below 0.1° (30 value)
including noise and biases.

An additional angular measurement which results
from a combination of Sun sensor and IR Earth
sensor outputs is the Sun-Earth azimuth angle a,
Fig. 1. The time delays between the Sun pulse
and each of the Space/Earth and Earth/Space
pulses result in the angular measurements a-k and
atk, respectively, It follows immediately that
the azimuth angle o is equal to the average of
these two measurements. The fact that different
measuring devices are involved makes the total
possible error on & _somewhat larger but in
practice below 0.25 provided that the IR penecil
beam scans inside the T5% diameter region.

2,2 Measurement Equations

The Earth colatitude B is obtained from the L
measurement of the i-th IR pencil beam by
considering the spherical triangle Z - S/E - E :

cos p = cos H; cos B + sin s sin B cos Ki(2.1}

This relation gives B implicitly as & function of
the measured Earth chord-length 2k. with sensor
inelination Y. and apparent Earth radius p as
known parameters. Alternatively one may consider
the spherical triangle Z -8 - E :

cos U = cos 6 cos B + sin 6 sin B cos a  (2.2)
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Here | = arccos (E.S) with E and S denoting the
Earth and Sun unit vectors as seen from the
satellite. The positions of the Earth and Sun
are obtained from orbit and ephemeris information
and can be considered to be exact in the present
context. Through Eq. (2.2) the Earth colatitude
B is expressed in terms of the angular measure-—
ments 6 and ¢ with y as known parameter. It is
emphasized that the accuracy of g will depend on
the type of equation or combination of equations
used.

Estimation of the unit spin axis vector Z is
normally based upon the well-known geometric
relationships

Z.8 = cos @ (2.3)
Z.E = cos B (2.4)
Z.(SxE) = sin B sin A sin @ (2.5)

The inclusion of the norm constraint ||z]|] = 1

by means of Lagrange multipliers has not proved
useful in practice (Ref. 4) and is not considered
here. The determinant of the coefficients in
Egs. (2.3) to (2.5) can be shown to be equal to:

(SxE) . (SxE) = sin® v (2.6)

so that at colinearit% of E and 8, i.e. for y
approaching 0° or 180 , the system of Egs. (2.3)
to (2.5) becomes undetermined and the error
sensitivity on the estimate Z becomes unaccept—
ably high. Inopractice it has been found that
the required 1- (30 value) attitude accuracy
cannot be reached within 15 from colinearity
with a short sample geometric method and within
about 10" from colinearity with a least squares
or filter method based on at least 30 minutes of
data.

When Sun—Earth colinearity occurs at some orbital
position corresponding to Earth vector E_, it is
possible to obtain an attitude fix by waiting
until the satellite has advanced sufficiently

far in its orbit that the second Earth vector E
can be taken as an independent reference direc-
tion, cf. Hanson and Brown (Ref. 5). In this
menner one takes the directions E, and E, rather
than the (near-) colinear E, and é} as reference
vectors.

The dynsmic method as implemented in ESOC is a
generalisation of this concept as the spread of
Earth vectors around an arc of the orbit is,
characterised by the vector-rate of change E =
dE/dt. Therefore, one can take E and E x E &s
well-defined reference vectors instead of S and

S8 x E. The components of the spin vector Z
along the new reference directions E and E x E
contain the derivatives of the Earth colatitude

B and the Sun—Earth azimuth angle a which will

be estimated from the measurements themselves.

In this manner, the dynamic method tekes full
advantage of the information contained in the
evolution of the measurement angles, Provided
that the noise-contaminated data are free of dis-—
continuities (e.g. due to change of sensor cover-
age) the dynamic method is capable of producing
the desired attitude accuracy over a shorter
span of data around colinearity than other
methods.
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3, FORMULATION OF THE DYNAMIC METHOD

The principle of the dynamic method is to make a
curve fitting on the actual measurements a(t),
B(t) as they vary with position around an arc of
the orbit. The attitude vector Z is then deter-
mined on the basis of the estimates &(t), B(t) as
well as the estimated derivatives a(t), é(

rather than from the measurements direclly. This
approach recognises the fact that the reference
vectors E(t) lie on a known surface (i.e. a
plane) so that a more stable algorithm can be
expected than would be the case if this informa-
tion is not utilised. For the variation of a(t)
and B(t) a model based on a Kepler orbit has
been taken which gives improved accuracy and
requires a lower sampling rate than the quadratic
function of time proposed by Peyrot (Ref. 2).

3.1 Attitude Vector and Orbital Motion

The equations linking the attitude of the iner-
tially fixed spin vector Z to the measurement B
and its derivative are obtained from Eq. (2.k4) :

Z.?(t) = cos B(t) (3.1)
z.E(t) = - 8(t) sin B(t) (3.2)
where E = dE/dt denotes the rate of change of the

satellite—Earth unit—vector. The equation for
the spin axig component along the third reference
direction ExE is obtained by considering the
changes of E, o and B over aninfinitesimal inter-—
val of time At; from spherical geometry one
obtains similarly as in Eq. (2.5)

Z.{Ex(E+AE)} = sin Aa sin B sin (B+AB)
which in the limit for At+0 becomes :
Z{E(t) x E(t)} = a(t) sin“B(t) (3.3)

It is obvious that the Sun vector motion can be
neglected in comparison to that of the Earth
vector.

The three reference vectors E, E and Exf form by
definition a right-handed orthogonal triad. In
the case of Kepler motion one may write (Fig. 2):

E=E, £=0UE, ExE=0uE (3.4)

1 2 3
where E., E., E, is an orthonormal triad rotating
along with the Satellite's crbital motion and
U is the orh1tal rate, The rates of change of
E and of Exk can readily be expressed in terms
of E, E and ExE :

ak/at = (U/0) E - O°E (3.5)

d(ExE)/dt = (U/0) (ExE) (3.6)
The orbital rate terms U,U are evaluated from the
last orbit determination over the cbservation

interval,

3.2 State and Observation Models

The state vector to be estimated is denoted by x
and contains the following components :

= (v,¥,0,8)T (3.7)

orbital motion

satellite

U3 =E3 2E1 XEz

Figure 2. Orbital Reference Frames
where y is an abbreviation for cosp = Z.E.

The evolution of the state x can be described by
the linear matrix equation dx/dt = A(t)x. The
elements of the Lxl matrix A can be collected
from Egqs. (3.1) to (3.6).

T R 0
hom [FOT B O 0

0 0 0 T .

o 0o 0o uhrey/Oin) ] (3.8)

Here, one should note that the coefficients for
the & equation contain v and %. In order to
obtain a decoupled linear system the a priori
constant values for y,y are taken in matrix A.
Since the sampling rate is high relative to the
orbital rate 1) one may take the matrix A constant
between samples so that the fundamental matrix

¢, for the transition x. to x.(where x. stands
f&r x(t ), ete.) can beJobtalnea analytlgally 2
95 = exp{A(t;)[t;, =t ]} = exp{Aq} =
=T+Ax+A 12,‘21 + A T3f3'+ eer  (3.9)
where 1 denotes the time-interval t. . and I

is the identity matrix. In practlcﬂ thﬂee terms
of the series in Eq. (3.9) give sufficient accu-
racy.

The well-known discrete linear Kalman filter can
now be used to estimate the state vector x con-—
taining the geometric angles and their derivatives

in Eq. (3.7). The following state and observation
model for the Kalman filter are taken :
State : = =¢. X. +E. .10
ate x.]+1 ¢J 3 €J (3 )
Observation: y. = H. x. + n. (3.11
e n: ¥ 5%y ¥ 03 {3.11)

The observation vector y is defined as y=(ygx)T
and the 2xL observation matrix H. has non-zero

entries only for H11 = H23 = 1, “The system noise
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and observation noise terms § and n are assumed
to be zero mean, uncorrelated and white noise.
The sequential Kalman estimate for x at time t.
is given by (e.g. Bryson and Ho, Ref. 6, Ch. 12):

x: = +K . ( H ¢. ) (3.12)

=¢._.X.

i T 8515 J .3-1 bledl
where the Kalman gain matrix K. is determined by
the uncertainty in the a priori state estimate
and the uncertainty in the new measurement.
Introducing the noise covariance matrices :

Rj E(n N T; @
one can calculate the a posteriori state cova-
riance matrix by successive propagation using the
state transition matrix ¢j 0

-1 T =1 =1

M. =¢.(M. + H, R. H.

J+1 4’.1{.1 37 J}

with given Mo (i.e. the initial state covariance).

;5 = E(gjﬁjT) (3.13)

i
¢j + qj (3.14)

3.3 Determination of the Spin Vector Attitude

From the Kalman filter estimate X the components
21, 22, Z., of the spin vector along the orbital
reference directions E can be derived
directly using the results of éqs- (3.1) to (3.4):

Z,=ZE =% (3.15)
Z, = :E, =Y/u (3.16)
Zy = Z+Eg = a(1=92) /% (3.17)

These components can readily be transformed to
inertial components by means of the transformation
matrix from the orbital to the inertial reference
frames. Because of the additional constraint
|[1z]] = 1, three different estimates for the spin
vector can be constructed :

i) Bé estimate :

Z = Z1E1+22E2+23E3

with 2z = V1—Z1—22 sgn(ZB) (3.18)

3

ii)Ba estimate :

Z= Z1E1+ZQE2+23E3

with z; = \/1—zf—z§ sen(2,) (3.19)

#ii BBy estimate :

= {z (ELE L E3]',-’ \/ z2 (3.20)

3

Depending on the relative accuracies of the angu—
lar measurements o and B one can expect different
accuracies for each of the three estimates.

As an overall measure on the quality of the result
one may taken the modulus

Za + 22 + 22.

1 2
3

In a later section a way of obtaining a best esti-
mate for the spin vector attitude from a combina—
tion of the three estimates of Egs. (3.18) to
(3.20) will be described.

4. OPERATIONAL IMPLEMENTATION
AND DIFFICULTIES

The practical implementation of the dynamic
method as outlined sbove posed a number of pro-—
blems. The operational environment does not
permit a lengthy analysis of printouts nor
experimentation with sampling rates, data
collection intervals and input parameters. On
the other hand, an acceptable accuracy of the
estimate must be guaranteed. A few of the diffi-
culties encountered and their solutions will be
described next.

L.1 The Beta Dot Stability

In the original version § is computed from the
locally most accurate equation amongst (2.1) and
(2.2). Since sensor biases are magnified in a
different way by different equations the B result
will change abruptly when switching from one
equation to an other. This naturally leads to
large errors in the B estimate and often results
in divergence of the filter. This difficulty has
been overcome by calculating B from a linear
combination of Egs. (2.1) and (2.2) which is
constructed in such a way that the resulting

Y = cosP has minimum variance to the first order.

Due to hardware limitations, at most two equa-—
tions of type (2.1) are available because not
more than two pencil beams can be operating
simultaneously. Equations of type (2.2) will
occur either once or not at all. All of the five
possible measurement equations have the form :

£ (B) = a; cosB + b, sinf -c; =0 (i=1,..,Nﬂ ;

n'}

with coefficients a,, b., c. depending on the
actual measurements K., O afid o and the para-
meteks Uy ¥ and p. t each point where more
than one measurement relation is available a new
function is constructed :

g(B) = § W fi(B) (L.2)

with weighting coefficients W, It is clear that
the equation g(B) = O has a s1mllar form as

Eq. (4.1) with coefficients now also depending on
w;. The solution of g(B) = O can be determined

in an elementary manner and contains the weighting
parameters w.., The weights w, will be selected

in such a mafiner that the varlance of Y = cosB

is minimum given the variances of the actual
measurements Ki,e and o as well as those of the
parameters W P and p.

The measurements K.,9 and o and parameters u .0
and o available at some point of time are
collected in the vector A , k=1,...,K . The
variation of ¥ as a functEon of the variations
in the elements of ¥ is expressed to first order
by the differential relation :
af afi ; i
Zm A Lw. (m==), A >,
v }B Y=1 : 1(31RJB° K (4.3)
which follows from Eg. (L.2). The subscript B
indicates that the functions are evaluated at a
reference value B = BO. Introducing the abbres
viations
of. Bfi
Ew {aY )B ; m = fmi(gi:)so (L4.4)
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one obtains the following first order result for
the variances of the result y expressed in the
variances of the measurements and parameters con-—
tained in A:

2

=E {(y=y) % = k 1B W O (L.5)

where 7 )}  desiguales the

kl

given variances of the elementary measurements
and parameters Akt

= E{(xk-ik)(xl—Il

For simplicity it is assumed that the elementary
measurements and parameters are uncorrelated, i.e.
g . =0

k1 b
An extremum of 0 as a function of w, is reached
when Y 4

2
3o ")

Bwi

=20 (1= TyesesN) (L.6)

Provided that n of Eq. (U.4) is non-zero one
finds :

amk mk an

it -7 ko SO, = (i=1,...,0) (4.7)
1

This system of equations for w., i=1,...,N is
homogeneous in the w..Thus, one may select the
norm of the wy to sa%lsfy the relation :

E n% Okk =n (4.8)

(4.7) can now be reduced to

an

m 5 g
F ot el (4.9)

Returning to the definitions of n and in
Egs. (L.4) one sees that Egs. (4L.9) form a linear
system of N equations for w;

N

c.. w, =d. (i=1,...,N)

L
=iy S5 R
with
3fi of. 5
= T—— — d.=\— k.10
clﬂ E{(alk)go(axk)ao a (BY )BO ( )
After solving for w. from this system, the
variance of Y follows directly from Eq. (4.5).

The implementation of this technigue has resulted
in a considerable improvement in the stability of
the B filter performance which must be attributed
to the smoothing properties of the linear combina-
tion of the measurement equations.

L.2 Filtering Sensitivity

It is well-known that in the presence of modelling
errors irreversible divergence of the Kalman filter
may result unless adaptive techniques are employed.
This situation is aggravated if discontinuities
oceur because of bad quality telemetry or by begin
and end of IR sensor coverage. The estimate of the
derivatives will be particularly sensitive to such
influences.

To overcome these difficulties divergence of the
filter is monitored by testing the modulus of the

attitude estimate obtained from Egs. (3.1)-(3.3):
in the case of filter divergence the norm of the
unit vector Z will drift awsy from unity. A
complete reinitialisation is undertaken whenever
the modulus test is not satisfied within a margin
of 5% over a certain number of successive checks.
This radical approach may eventually lead to
convergence but is certainly not very efficient
as & great deal of measurement information is
abandoned.

Another difficulty is to find a suitable point to
stop the filtering and calculate the attitude
vector from the @ and B estimates as desecribed

in Section 3.2. 1In the original approach filter—
ing continues until {he covariances on the two
estimates for @ and B reaches a given threshold.
This 'snapshot' approach has the disadvantage
that the last estimate may not be the best one
available. This is particularly true if after

a filter divergence the estimation process has
been reinitialised.

An additional problem is the choice of a final
attitude estimate out Qf the three p0551ble can—
didates indicated by BB, BG and BB& in Section
3.3. Experience with METEOSAT I transfer orbit
data shows that the P& estimate is the most and
the BB estimate the least accurate of the three.
Since a is a more direct measurement than B its
biases are relat:vely stable. This influences
the accuracy of the & estimate in a favourable
way. Furthermore, the particular configuration
of the spin axis with respect to the orbital
plane affects the relative accuracies of the
estimates : if the spln axis is near the orbital
plane the B4 estimate is more accurate than BB.
In the case where the spin axis is close to the
orbit normal the BR estimate is more accurate
cf. Peyrot, Ref. 2).

5. LEAST-SQUARES ESTIMATE OF ATTITUDE

Because of the difficulties outlined above the
following modifications have been introduced :

i) to include the Sun sensor measurements
whenever they are available

ii) to build a sequential weighted least-squares
estimate of the attitude vector based on the
output of the Kalman filter and the Sun
measurements.,

The usefulness of incorporating the Sun colatitude
measurement @ is clear as it provides in general
another independent reference direction for the
attitude vector, Also in the colinearity situa-
tion a significant advantage can be expected as
the covariances on 0 are lower than those on B

so that the uncertainty on the attitude estimate
can be reduced.

In the application of the least squares filter
the output of the Kalman filter (ie. a, B ,& and
B) are interpreted as observations. Along with
the real Sun colatitude measurements they are fed
into a weighted least-squares filter for the
estimation of the attitude vector Z.

Figure 3 provides a schematic block diagram from
which the complete estimation process can readily
be visualised. In order to keep the least squares
estimates of 7 as accurate as possible bad data
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Figure 3 Overview of Attitude Determination
Process

(according to the modulus criterion) are rejected.
Provided that the Kalman filter converges over
some interval the least-squares estimate will
properly reflect the actual attitude orientation.
Although the Kalman filter may diverge at a later
stage the least squares estimate remains un-—
changed and waits until good input arrives again.

5.1 Weighted Least-Squares Estimation

The spin vector attitude Z is to be estimated
from the five 'observations' a, B, au, B and 8.
Because of geometrical reasons it is c0nvenient
to estimate the three components z,, z, and z

Z alcng the apsidal inertial reference frame é
u (Fig. 2). The inertial spin vector conr
ponenés follow then after a straight-forward
coordinate transformation involving the orbital
elements i, w and Q.

The four different measurement equations for the
attitude vector Z are

E
2w § =cosb = (s, s,, 53}(21. Zys 23)T
Z - E =cosB = (El’ 62, 0} (ZI’ 295 ZS}T
Z-E = —Bsin g= (e €95 0) (z|‘ Zys 23)
- i
Z+ (EXE) = a51n B= {0 0, 0) (21, Zys 3) (5.1

Components with respect to the apsidal reference
frame are written in small letters. The
satellite — Sun vector components are s, 52, 33
and €15 €5 0 denote the satellite - Earth
vector components along the U U U, axes. In
abbreviated standard form Egs. (5 1} Ere written
as :

p=Bz+v (5.2)

where p is the m-dimensional (m<u) observatlon
vector, i.e. the right-hand sides of Egs. (5. 1)
The mx3 observation matrix B can be obtained
readily from Egs. (5.1). The mvector v designates
the mean—-zero noise in the 'observations' p. For
a Sun measurement @ the covariance of the noise
follows directly from the inaccuracy of the Sun
sensor, i.e. ¢ The B, B, & observations are
obtained from @he Kalman filter, cf. Fig. 3.
Therefore, it appears most reasonable to take the
a posteriori state covariance of the Kalman esti-
mate for 8, f and &, Eq. (3.14) as the noise co-
variance for these observations. The least-
squares estimation is initiated only after the
Kalman filter has stabilised sufficiently, i.e.
when the modulus test is satisfied (section 4.2).
The mean value of the three attitude estimates
(BB, Bd, BRA&) available at that time is taken as
the initial estimate for the least-squares
filter. A relatively large covariance matrix P
is attributed to this a priori estimate.

The sequential weighted least-squares estimate
for the attitude vector in the apsidal frame is
derived from the well-known result (cf. Bryson
and Ho, Ref. 6, Ch. 12)

B, B L #P. B k R (pk BkEk 3 (E=1,2,00:)
with
_sra T -1 _ =1
Pe= By * KR B) (5.2)

R stands for the covariance matrix of the obser-
vation noise v, and P, is the covariance matrix
of the error in the estimate ﬁk— Za

It is emphasized that only those B, B, & observa-
tions which have passed the modulus test are
considered in the least-squares estimation. Thus
bad data are excluded and stability of the least-
squares estimate over longer intervals can be
expected, Also the inclusion of the Sun measure-—
ments has a stabilising effect on the estimate as
their noise level is lower than that of the arti-
ficially constructed B measurements and the
indirectly derived & and B observations.

6. DISCUSSION OF RESULTS

The dynamic method has been tested extensively by
means of the actual telemetry data of ESA's
METEOSAT I satellite launched on 23rd November
1977. Although various program versions have been
used at different times for clarity only the two
main versions are discussed here. Version 1
refers to the program producing the three attitude
estimates BB, B& and BR& of Sections 3 and &,
Version 2 contains the least-squares attitude
estimate discussed in Section 5.

As is probably the case with all attitude estima—
tion programs a great deal of experimentation is
required before the right configuration (e.g
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systen and measurement noise levels; initial
state and covariance estimates) is established.
Because of its sensitivity to discontinuities in
the rzceived telemetry data the dynamic method
requires some extra care with respect to the
selection of the filtering interval (e.g.' no or
very few sensor switches; no IR data near the
Earth's limb) and the choice of a suitable sampling
rate. Sometimes a change in sampling rate by only
25% makes the difference between a stable and a
diverging attitude estimate. Also a proper balance
of the various kinds of measurement is important.

The best interval for a posteriori testing of an
attitude reconstitution method is the free drift
interval just before Apogee Motor Firing (AMF).
This is because the actual attitude can be derived
to an accuracy of less than 0.1 degree from the

AV direction achieved during AMF. The Av direction
follows directly from orbit determinations before
and after AMF.

6.1 Results of Version 1

A few of the results obtained for the BB, B4 and
BBa estimates are presented in table 1. All
entries refer to the last free drift period before
AMF, i.e. 23rd November 1977 from 13 hr 39 min to
19 min. The angular errors listed are taken w%th
respect to the actual attitude, i.e. @ = 353.2
and 6 = ~22,6 with an error less than 0.1 . It
is confirmed in Table 1 that the BB estimate is
always the least accurate whereas Bd is usually
the best.

Mean Time | Duration |Right Deecli- | Angu- | Type
of Inter- | of Inter | Ascen- | nation |lar
val val Error
16hr; 19min| 58 min |352.86°| -22,08° .6L°| BR
353.00 | -22.96 | .35 Bé&
352.87 | -22.4k | .35 |BB&
16hr;19min| 59 min |352.94 [ -22.Lo | .33 | BB
353.03 | -22.99 | .37 g&
352,95 | -22.64 | .21 |BB&
16hr;56min| 131 min |353.22 | -23.10 | L6 BB
35321 [—22.79 | .35 B&
353.21 | -22.98 | .34 |BA&
16hr;56min| 131 min [353.15 |-23.26 | .61 BB
353.14 | -22.80 | .16 B&
353.14 | -23.07 | .43 |BB&

Table 1 Results of Version 1 over last Free Drift
Pericd in Transfer Orbit of METEOSAT I

The first three entries in Table 1 are obtained
with a four times higher sampling rate than the
others, It is seen that a higher sampling rate
does not necessarily lead to better results. In
the third and fourth set of three entries in
Table 1 high and low noise levels on M., @ and 8

have been assumed, respectively. It appears that
these noise levels are not very significant.

6.2 Results of Version 2

The performance of the dynamic method has been
evaluated by means of a comparison with the results
from a Kalman filter based on the Denham—Pines
method., The filter includes the estimation of

sensor misalignments as well as iterations on
the non-linear measurement equations. Experience
has shown that this filter is very reliable in
routine attitude determinations.

Figure L shows the evolution of the estimates
for right ascension and declination obtained by
the two methods based on actual telemetry data
of METEOSAT I over the third free-drift interval,
i.e. 23rd November 1977 from 5 hr 19 min to

13 hr 38 min. Apart from some convergence
difficulties in the beginning (caused by sensor
switches) the agreement between the results is
excellent. In the second half of the interval
shown in Fig. 5 the angular difference between
the two estimated attitude directions is less
than 0.3 degrees with a minimum of 0.11 degrees.
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Figure 4 Comparison of Results from Dynamic
Method and Kalman Filter

The major justification for the development of
the dynamic method is the avoidance of divergence

near Sun-Earth colinearity. Therefore, it is of
interest to compare the results of the dynamic
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method and Kalman filter in such a case. Near-—
colinearity of 173 degrees occurs in the last free
drift period before AMF where the attitude is
known to an accuracy of less than 0.1 from a
posteriori Av analysis. Figure 5 shows the evo-
lution of the angular error n of the attitude esti-
mates obtained by the Kalman filter and the dynamic
method (one run ineluding the Sun measurements

and one without § information). It is seen that
the inclusion of the Sun measurements accelerates
the convergence and improves the stability of the
estimate, It is emphasized that the initial esti-
mate for the dynamic method runs was off by

18 degrees., Within eight minutes the error is
reduced to less than one degree. The attitude
uncertainty limit of 0.1 degree is reached after
about one hour of (relatively low) sampling.
Because of the colinearity the convergence of the
Kalman filter stagnates and eventually diverges to
an angular error of more than six degrees, In
fact, it takes over three hours before the Kalman
filter estimate comes within 0.5 degree of the
actual attitude again.
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Figure 5 Comparison of Results of Dynamic Method
and Kalman Filter in Near—Colinearity
Case

BIRD ET AL

T. CONCLUSIONS

A dynamic attitude reconstitution method which takes
full advantage of the information contained in the
rates of change of the Sun and Earth colatitudes
has been formulated. The colatitudes and their
derivatives are estimated by means of a Kalman
filter using an observation model derived from a
Kepler orbit. Three different attitude estimates
(BB, B& and BB&) follow directly from the Kalman
estimates, A single attitude estimate is obtained
by a weighted least-squares combination of the,
Kalman filter outputs and the Sun measurements.
The method has been evaluated by means of actual
METEOSAT I telemetry data., It is shown that in
the case of a near—colinearity of Sun and Earth
vectors the attitude estimate remains stable
whereas conventional methods diverge.
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