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ABSTRACT

A relatively general formulation for studying dynamics of a
system, consisting of n connected flexible deployable members
forming a topological tree or a closed configuration, is pre-
sented. The mathematical description of the system can be,
in general, a combination of discrete and distributed coordi-
nates. Joints, elastic and dissipative, permit relative rotation
and translation between bodies. The elastic deformations can be
discretized using admissible functions, finite elements or lumped
mass method. Rotations of the members, as well as of the entire
system, can be described using a set of orientation angles, Eu-
ler parameters or Rodrigues vectors. The formulation accounts
for: the presence of momentum or reaction wheels; thrusters
distributed over the flexible and rigid portions; and any pre-
scribed forms of energy dissipation mechanisms. The formula-
tion is valid for orbiting as well as ground based and marine
systems. Application of the formulation is illustrated through
an example, in spacecraft dynamics, which is of contemporary
interest.

Keywords: Dynamical Formulation; Flexible Transient
Systems; Application to Diverse Earthbound, Offshore and
Space-Based Systems.

1. INTRODUCTION

Flexibility effects on satellite attitude motion and its control
have become topics of considerable importance. Over the years,
a large body of literature pertaining to the various aspects of
satellite system response, stability and control has appeared
(Ref. 1). A recent issue of the Journal of Guidance, Control,
and Dynamics published by the AIAA (American Institute of
Aeronautics and Astronautics) contains a series of articles re-
viewing the state of the art in the general area of large space
structures (Ref. 2).

Attention is also directed towards planning of in-orbit experi-
ments such as SCOLE (Satellite COntrol Laboratory Experi-

ment), the Orbiter Mounted Large Platform Assembler Experi-
ment, NASA /Lockheed Solar Array Flight Experiment (SAFE)
and a host of others to check, calibrate and improve algorithms.
It is generally concluded that in-orbit information acquired dur-

ing the construction phase of a space station is the only depend-
able procedure for its overall design. With the U.S. commitment
to a space station in early 1990’s, the need for understand-
ing structural response and control characteristics of such time
varying, highly flexible systems is further emphasized. This as
background, the paper presents a relatively general Lagrangian.
matrix formulation of the nonlinear, nonautonomous, and cou-
pled equations of motion, describing dynamics of a large class
of systems characterized by flexible interconnected structural

members (Fig. 1). Essential features of this highly versatile
formulation may be summarized as follows:

o arbitrary number, type (tether, membrane, beam, plate, shell)|
and orientation of flexible members, connected so as to form
a topological configuration, open or closed, deploying inde-
pendently at specified velocities and accelerations;

e the appendage is permitted to have variable mass density,

flexural rigidity and cross-sectional area along its length;

governing equations account for gravitational effects, shift-
ing center of mass, changing inertia and appendage offset
together with transverse, axial, and torsional oscillations;

e appendage as well as system rotations can be described using

Euler or Rodrigues parameters, or any of the orientation

angles; '

elastic deformations can be discretized using modal repre-

sentation or admissible functions, finite elements, or lumped

mass method;

e in general, joints between the flexible members are taken to
be elastic and dissipative permitting relative rotation and
translation between bodies;

* the system may contain momentum or reaction wheels, gim-

balled or fixed, as well as thrusters;

the equations are applicable to earth-bound underwater and

space-based systems;

e in spacecraft dynamics studies, the generalized coordinates
corresponding to librational degrees of freedom can be so
chosen as to make the governing equations applicable to both
spin stabilized and gravity gradient orientations;
the equations are programmed in nonlinear as well as lin-
earized forms to permit the study of:

(i) large angle maneuvers;

(ii) nonlinear effects.

The program is written in a modular fashion to help isolate the
effects of flexibility, deployment, character and orientation of the
appendages, inertia and orbital parameters, number and type
of admissible functions, etc. Environmental effects due to solar
radiation pressure, aerodynamic forces, Earth’s magnetic field
interaction, etc., can be incorporated easily through generalized
forces. The same is true with internal and external dissipation
mechanisms.

2. APPROACH TO FORMULATION OF THE PROBLEM

As can be expected, development of such a general formula-
tion presented a challenging task and involved efforts spanning
over several years. Obviously, details of the development, which
form a part of the Ph. D. thesis in preparation, are beyond the
scope of this concise presentation (Ref. 3). Emphasis is on
methodology, philosophy of approach, and physical insight dur-
ing development of the formulation.
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Inertial Coordinates

Figure 1 System description and coordinate system.
Note the reference point will be usually c.m.
of the system in space dynamics application.

2.1 Kinematics

Objective here is to obtain mathematical expressions for posi-
tion and velocity of an arbitrarily located mass element. This is
achieved by approaching the element in the direct way as against
isolating each body and imposing reactions and constraints.

Consider a system of n elastic bodies connected arbitrarily to
form a branched or closed loop topological geometry as shown
in Fig. 1. Let X,Y,Z be an inertial coordinate system and
I, Yo, zo with origin at O, a reference frame of coordinates. Now
let body 1 be referred to as the main body. Fixed to it, at
a convenient location, is the coordinate system z;,y;,2. On
the successive bodies, at their respective hinge points on the
direct path connecting 1 and 1 — 1 members, are located body
coordinates z;, y;, z;. Thus coordinates z, y3, 2; are fixed to body
2 at the hinge connecting bodies 1 and 2. Similarly, O acts
as a hinge for body 1 . The hinges are permitted to have
three dimensional translational as well as rotational degrees of
freedom. :

Consider a mass element dm; on link i defined by a position vec-
tor 7' with reference to the inertial coordinate system X, Y, Z,
(Fig. 2). The geometry of the system is described by a matrix
5! hence numbering of bodies in sequence is not necessary,

F=) 8,648 with

Here: j=0

T =G (1)

s =

{0, if j is not in the direct path to t;

1, if j is in the direct path to

C;j = relative rotation matrix relating coordinates j to
the inertial set;

n = number of connected bodies;

4; = position of coordinates j with respect to coordinates
7 — 1 on the direct path;

{; = position vector to the element dm; with respect to
coordinates z;, y;, z, (Fig. 2), 7;+ ¢ibi;

p; = position vector to the element dm, in nominal
undeflected position;

¢; = matrix of admissible functions;

6; = generalized coordinates; ¢6; represent deflection
of dm; from nominal equilibrium position.

Differentiating with respect to time, the expression for inertial
velocity can be written as,

»: .
H=¥4) 86T, (2)
j=0

Pl X 8L Uity

=0

[¥8

@; = skew symmetric matrix representing rotation of
coordinates j with respect to coordinates j —1;

37 = position of dm; with respect to coordinates j.
77 is shown in Fig. 2.

Note, the first term on the righthand side represents transla-
tional velocity contributions due to deformations, deployment,
hinge translation, etc., while the second term contains contri-
butions due to rotations of the hinges.

2.2 Kinetics

For the Lagrangian approach, the next logical step would be to
obtain expressions for kinetic, potential and elastic energies of
the system. As can be expected, because of the complex and
quite general character of the system, derivation of the expres-
sions demands considerable time, space, and effort. For concise-

ness only more important steps relevant to the development are
indicated here.

X

Inertial Coordinates

Figure 2 Geometry of position vectors defining location
of the mass element dm,; on body 1
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22[? -F'd (3)

Substituting from equation (2), the kinetic energy can be shown
to have a form,

T= %ETEn+wrGu+ %wTHw = %&TM':E, (4)
4 e R o [iB &%
where: = {w}’ M [G H}

and v is defined by an array of all the linear velocities appearing
in the kinetic energy expression, (m;, a;, &;,6;).

From the consideration of physical appreciation, it is important
to recognize that E has the dimensions of mass; G the dimen-
sions of the first mass-moment; and H the dimensions of the
second mass moment. Thus E represents mass associated with
deployment, ejection, translation and vibration, while G corre-
sponds to their first moment about the hinges. H matrix has
more direct meaning. Let H’* represent a submatrix. Then for
j = k, H” represents a 3 x 3 matrix corresponding to inertias
about the axes at j. For j # k, the submatrix has elements in-
volving distances to joints j and k with common mass elements
affected by rotations of both the hinges.

The next logical step is to introduce holonomic constraints and
modify {z},|M] making them consistent with the constraints.
The kinetic energy can then be rewritten separating contribu-
tions from specified, s, and generalized coordinates, g, as follows:

_l'sTNLT{b} T 7. LT
T_E{&} [L M| 2q Mq+qu-t-2 Ns

;qTMq+I‘Tq+ To. )
Note here both 5 and g, in general, will be arrays of the form
(mj, 4, é,6;,w;). It is important to recognize that this general
expression for kinetic energy consists of quadratic as well as lin-
ear terms in generalized velocities and a term independent of
the generalized velocity. The quadratic term represents contri-
bution from the generalized coordinates while Tg.is that from
the specified coordinates. The linear term is due to a coupling
between the system of two coordinates.

2.2.2 Potential energy. Contribution to the potential energy

arises from two sources: gravitational field and strain energy due
to flexibility. Gravitational contribution, U, is given by,

= K B0} - Bl + B07IHD,, @

where:

m= massoft-hesyst.emZm,—;

{% = sz.s’cs-x":'l'zc./ gidm;;

=1 j=1
H® = inertia of the system about the reference point O
(associated with wp);
pe = universal gravitational constant;
G = position vector from the earth’s center to the
instantaneous center of mass;
{0} = direction cosines of the unit vector along Gy w.r.t.
%o, Yo, 20, coordinates.
Note, the first term represents gravitational energy due to the
system treated as a point mass; the second term appears due to
separation between the reference point and the center of mass

and vanishes when they are coincident; while the remaining two
terms are due to finite size of the system.

Strain energy for a given flexible body, V, is given by,

V=%./:0T(dr=-12-fre?(kdr. (7)

Considering the strain to have linear and nonlinear contribu-
tions from deformations §, it can be written as:

{e} = {B%} + {67 P's},

where B° and B’ depend on the chosen admissible functions
¢. Substituting this expression for € in equation (7), the strain
energy expression can be written as

v =58T[Vi+27V]+6TVi*]s,

where: Z Z Cik [

=1 k=1

vi= ZE c.,f Bdr;

k=1 =1

Vsjt_ Z:Clmf -3 -

l:l m=1

0 (B-)"dr ;

Now the elastic force is given by,

o =Vs= Kb, (8)
where:

K = stiffness matrix = K; + K; + Ks ;
K=Ww+VW;

6
Ko =2[6Tv] + (V)75 + Y 5Vj];

=1

6 6
Ky = [5T[Va’k + {ng}r]‘s] +2_ 2 Ga[ v+ (viHT].
j=1 k=1
Note, the notation for partial differentiation used above for

brevity. Global stiffness matrix can now be assembled with & as
generalized coordinates or nodal displacements.

EQUATIONS OF MOTION

Using the Lagrangian procedure in conjunction with kinetic and
potential energy, expreoxions (5), (6), and (8),
( ICERY)

Ty
39 =Q+A4

gives
Mi+[Mt+Glg+{§" 4T+ Kg+ (U= To) g = Q+ 472, (9)
where:
M = square symmetric matrix of generalized mass, Eq. (5)
G=[{r;,}" - I‘gj], skew symmetric matrix;
v = [Mj-q— (]/2))\6‘,‘,.] , square matrix associated with
the Coriolis force contribution;
I' = coefficient associated with the linear contribution in
the kinetic energy, Eq. (5);
K = stiffness matrix, Eq. (8);
U = gravitational potential energy, Eq. (6);
To = kinetic energy contribution independent of
generalized velocities, Eq. (5);
Q = generalized forces.
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Note, the Lagrangian character of the formulation is amenable
to point transformation making it possible to obtain govern-
ing equations using alternate standard procedure of Hamilton.
More importantly, the equations clearly isolate contribution of
forces from different sources thus retaining physical insight into
the problem. Furthermore, the form is ideally suited for im-
plementing control strategies. It should be emphasized that
most available formulations of multibody systems do not possess
the above mentioned features. Terms representing contributions
from various sources are explained next:

Mg = inertia forces;
Mg = reaction forces due to deployment and
mass expulsion;
Ggq = gyroscopic forces;
{474;q} = Coriolis and centrifugal forces arising from
generalized coordinates;
I'¢t— To, = centrifugal forces arising from specified
coordinates;
Kg= elastic forces;
Uq = gravitational force;
AT = nonholonomic constraint forces as well as
holonomic constraints not accounted for
earlier.

Figure 3 A partiular case showing application of the general formula-
tion:

(a) an orbiting rigid body with a flexible deploy-
able appendage attached to it;

(b) artist’s view of the Orbiter based manufac-
ture of the beam type structural components
for construction of space platforms. Princi-
pal body coordinates z,y, z with their ori-
gin at the instantaneous center of mass and
beam coordinates ¢,n, £ with the origin at
the attachment point are also indicated. In
general the two origins are not coincident.

4. AN ILLUSTRATIVE EXAMPLE

Consider a spacecraft with central rigid body, and a flexible de-
ployable appendage attached to it, in a specified arbitrary orbit
(Fig. 3a). Let the reference point O be the instantaneous cen-
ter of mass of the system and the inertial coordinate X, Y, Z
located at the center of the Earth. Thus O is the hinge point of
body 1 . Now in this special case, @y represents position vector
from the center of the Earth to the instantaneous center of mass
and hence specifies the trajectory. Let 1 be the center of mass of
the rigid body. Thus @, represents instantaneous position of the
moving center of mass with respect to point 1. @ defines posi-
tion of the appendage attachment point taken stationary in this
case. The system variables now become, {z} T = (@, €, 82, @0).
Note, m; and m; do not appear explicitly because of the con-
straint relations between ms and €. For numerical results, the
rigid body is taken to be the Orbiter and the appendage a flex-
ible beam (Fig. 3b).

Case 1: The Rigid Orbiter Without Any Flexible Appendage

{E}T = {‘éﬂral]] 3

Here @ is the specified coordinate defining the Keplerian motion
and the generalized co-ordinate &g describes the attitude motion
a (pitch), B (yaw), and 4 (roll).

Case 2: The Orbiter Having a Deployable Flexible Beam
with Libration Degrees of Freedom Held Zero

{BHT= ('ﬁo,é:,gz,ﬂ-"o) ¥

beam /

Z —-——
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4.1 Results and Discussions

For analysis, the flexibility and deployment rate parameters
were taken to be of the same order of magnitude as used or
likely to be employed in practice. In the diagrams e represents
orbital eccentricity; ¥, A, ® (roll, yaw, pitch, respectively) are
the librational angles; EI is the beam flexural rigidity, assumed
constant over the length in this particular example; and L cor-
responds to the deployment rate. A, and A, denote beam
inclinations to the local vertical in and normal to the orbital
plane, respectively. The perigee was taken to be 331 km. The
truss or beam vibrations were represented by a maximum of
the first four modes, ¥;, of a cantilever. P, @ represent gener-
alized coodinates associated with the admissible functions used
to represent beam-type appendage oscillations in the !th mode
in ¢ and n directions, respectivly. P, and @ represent trans-
verse generalized coordinates normalized with respect to the
total length.

Numerical values for some of the more important parameters
used in the computation are given below:

Orbiter: Mass = 79,710 kg ;
= = 8,286,760 kgm?; I, = 27,116 kgm® ;
I,y = 8,646,050 kgm?; I, = 328,108 kgm? ;

I = 1,091,430 kgm®; I, = —8,135 kgm? .

Here z,y, z are the principal body coordinates of the Orbiter
with the origin coinciding with the center of mass. In the nom-
inal configuration z is along the orbit normal, y coincides with
the local vertical and z is aligned with the local horizontal in the
direction of motion (Fig. 3b). 4 (roll), # (yaw), and a (pitch)
refer to rotations about the local horizontal, local vertical, and
orbit normal, respectively.

Beam: Mass (M) = 129 kg;
Length (L) =33 m;
Flexural Rigidity (EI) = 436 kgm® .

To get some appreciation as to the system dynamics during tran-
sition to instability, the Lagrange configuration was subjected
to pitch, yaw, and roll disturbances separately (Fig. 4). With
a pitch disturbance as large as 30° (Fig. 4a), the roll and yaw
remain unexcited and the system is stable. The same is essen-
tially true with a yaw disturbance (Fig. 4b). However, even
with a relatively small roll disturbance (Fig. 4c), the diverg-
ing yaw oscillations set-in tending towards instability. Thus roll
control seems to be a key to ensure stability of the Orbiter in
the Lagrangian configuration.

Effects of beam deployment on the tip dynamics is studied in
Fig. 5. Initial tip deflection is 4% of the beam length. Two time
histories with the same duration of deployment are considered.
As can be expected, the frequency of oscillation in and out of
the orbital plane gradually decreases with deployment finally
attaining a steady state value upon its termination. It is of
interest to recognize that they reach the same steady state am-
plitude although it is much larger during deployment compared
to the deployed case.

5. CONCLUDING REMARKS

The formulation presented here will prove useful to design engi-
neers involved in planning of future communications satellites.
It will also assessing dynamical, stability, and control consider-
ations associated with the Orbiter based construction of space-
platforms.
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(a) e=0 , BI0)=y[0]=0 , a[0]=30 deg.

0

o
-
]

a, B,y deg.

ol (c¢) e=0 ., al0] =gl0)=0 .
y[0]1=6 deg.

orbits

Figure 4 Librational response of the Orbiter to an in-
dependent excitation in pitch, yaw, and roll.
Note the pitch and yaw disturbances lead to
essentially uncoupled motions. The system ap-
pears to become unstable in yaw through its
coupling with roll.
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Figure 5 Effect of deployment strategies on tip response of a beam deploying normal to the orbital
plane. Note a reduction in beam frequency during deployment. The steady state ampli-
tude is essentially independent of the strategy for a given time of deployemnt.



