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ABSTRACT

This paper deals with large angle attitude maneu-
vers of flexible satellites. It is outlined the
design of a feedback control law, based on partial
informations of the state variables, which gives
very interesting results when implemented into a
sampled data control scheme.

Keywords: Large angle maneuvering, flexible space-
crafts,nonlinear control, sampled-data schemes.

1. INTRODUCTION

In many missions the attitude operation plan fre-
quently requires reorientation maneuvers in order
to point or scan certain areas of interest.

Many attitude control systems for satellites are
currently based on a sequence of rotations about
each of the three principal axes separately because
of the consequent linearity of the equations of
motion; hence the relative simplicity of the on-
line command generation problem. Arbitrary attitude
maneuvers can be so executed as sequences of single
axis rotations. Such an approach can give unsatis-—
factory results if particular attitude constrains
are required.

A different approach will be followed hereafter; on
the bases of the ideas developed in [1-2] some re-
sults of nonlinear control theory will be applied
to the problem under study. A good reference book
for the study of the more recent results in non-
linear control is [3]; in [4,5,6] other interest-
ing applications have been developed.

It is considered a satellite which consists of
flexible appendages attached to a main body; the
controls are assumed to act uniquely on the main
body and to be generated either by gas-jet or reac-—
tion-wheel actuators. A sampled-data control scheme
will be proposed which makes use of the outputs
coming from a rate gyro-package located on the
main body.

The design of the feedback control law is based on
the "Control-model" (C-model) introduced in section
2. The C-model consists of the kinematic equations,
in the quaternions parametrization, together with
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the dynamical equations which describe the be-
haviour of the discretized structure. The design
of the control law is developed in section 3. It
comes from: the application of input-output linea-
rization and stabilization techniques, [ 7-8], the
study of the corresponding sampled-data control
scheme, [2 ], and the use of a compensation tech-
nique which allows not to take into account of the
model displacements and velocities in the evalua-
tion of the control law.

Simulation results are, finally, presented and
discussed in section 4. The real behaviour of the
flexible satellite is simulated by the "S-model"
introduced in section 2; that is a mathematical
model which takes into account also of centrifugal,
and Coriolis effects (neglected in the C-model)

and is based on a more accurate representation of
the flexible parts.

The proposed control law leads to improvements
which are also apparent from the simulation re-
sults. The main difficulties w.r. to the control
law proposed in [1] , where the same control problem
is studied, stand in:

- "partial compensation" of the sampling effects
allowing to increase the "sampling and hold"
interval;

- design of a control law based on partial state
informations: angular rates and quaternions.

2, DYNAMICS AND KINEMATICS MODELLING

In this section we introduce the mathematical model
which will be used in the simulations and a sim—
plified mathematical model which will be used in
the design of the control law. The first one is
denoted by "S-model" and will be assumed to re-—
present the "real" behaviour of the spacecraft.
The second model, denoted by "C-model", is ob-
tained from the previous one by neglecting, as
usual, Coriolis and centrifugal effects and using
a "less accurate" representation of the flexible
appendages. The C-model will be used in the design
of the control law. Once for all we note that the
same results can be obtained by using a hybrid
coordinate approach.

It is well known that an appropriate mathematical
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model for studying attitude control problems of a
satellite with flexible appendages, w.r. to an
inertial coordinate frame, can be obtained by con-
sidering the kinematic equations together with the
dynamical equations.

We recall that the kinematics, i.e. the dynamics
of the attitude error, can be expressed as:
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where the mi's, i =1,2,3, denote the body rates
and the ﬂi's, i=0,1,2,3, denote the unitary

3
quaternions subject to the constraint E Si = 1.
i=0

The dynamics of the body rates can be obtained by
the well known Euler theorem:

- N
Liop 0N hg e B (2)

once that the torques due to the reaction wheels
and the flexible appendages have been modelled; in
(2) u_ denotes the vector of external torques

acting on the main body, Ltot the total angular

momentum and "A'" denotes the usual vector product.

The dynamics of the reaction wheels is described
by:

== 4 J;]'ur (3)

where:

Q: (3x1) vector of angular rates of the satellite
reaction wheels;
ur:(3xl} vector of reaction torques;

J_:(3x3) diagonal matrix of the moments of inertia
of the reaction wheels.

The dynamics of the flexible appendages is assumed,
hereafter, to be described by:

ME+KE+CE = H(E,E,0,0) + F (4)
where:

E : (3Nxl) vector representing the physical dis-
placement of the particles which constitute the
discretization of the flexible appendages;

({3N=x3N) mass matfix;
(3N%x3N) stiffness matrix;

(3Nx3N) damping matrix;

= O F =2

(3Nx1) vector representing the intertial forces
(centrifugal, Coriolis and forces due to non
uniform angular rate variation) due to the main
body rotation;

F : (3Nx1) vector of the external forces.

For our purposes we will assume that the external
forces act uniquely on the rigid body; hence:

F=0 (5)

Moreover:

Loge = Jo+ Il  (E,E) (6)

in (6) the angular momentum due to the flexible
appendages, without taking into account of the
spin effect, is given by:

N
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i=1
where:

m, the mass of the i-th particle;
r .: (3x1l) vector representing the position, w.r.
oi : z . y
to the satellite axis, of the particle in the
undeformed structure.

Finally, denoting by Hi' i=1,...,N, the i-th

(3%1) subvector of H representing the inertial
forces due to the main body rotation acting on the
i-th particle, the general expression of H can be
obtained recalling that

H, ==m, {(r 4N G+ 2éi+w\ (r;+EIN Wb (8)

The equations (1)%(4) together with (5)%(8) con-
stitute the mathematical model which will be used
in the simulations (S—-model): it will be assumed
to represent the "real" evolution of the system
under study.

OQur C-model is now obtained by considering a less
accurate discretization of the flexible appendages,
with N < N particles, and by neglecting the Co-
riolis and centrifugal effects in (4), i.e.

H= Ao 9)
where:
b : (3ﬁx3) matrix of coupling coefficients.
Simple manipulations on equations (1)%(4) taking

into account of (5),(6),(7) and (9) give a mathe-
matical model of the form:

: m=3 3
x = £(x) + ’): G;u, + '): G;u, (10)
i=1 1=1

where the state x is the [ (10+6N)x1] vector:

T e @t ol e = HHT
One has:
§ =3 s(9
@ = -P1J N(w,Q, z)—J-lPZT(Cle(lE)+P1J_L(ue—ur)
Q=-0+ 3l (11)
E=2
z = -P2J_1N(w,ﬂ,z)—P3(Clz+KlE)+?2J_1(ue—ur)
where:

AL =¥t s, KL= KK
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PL:=(I-J"1A1TA1)"1
P2:=A1P1 (12)
P3:=(1+a1J” tp2T)
N(m,ﬂ,z)-Nl(m)+N2(m,9)+N3(m,z) =
- 0hio + 0A3e + ohas
and:

J : (3%3) inertia matrix of the undeformed struc-
ture.

We will refer, hereafter, to the system of equa-—
tions (11) as the C-model when both gas-jets and
reaction wheels actuators are present; by putting
u =0, u # 0 the gas-jets control mode is re-

produced, with u, = 0, uL # 0 the reaction-wheels

control mode. We recall that the controls are as-
sumed to act on the rigid part of the satellite.

3. THE SAMPLED NONLINEAR CONTROL LAW

In this section we will firstly recall the design
of a continuous state feedback contrel law, acting
on the system (11), proposed in [1] . The digital
implementation of such a control is then discussed
and an improved control law is proposed following
the ideas developed 1in [2]. Finally, on the bases
of those arguments it will be proposed a control
low which makes use of partial information on the
state (does not make use of the measures of the
physical displacements and velocities E,E) and
whose digital implementation gives satisfactory re-
sults.

3.1. The continuous control law

Given a system of the form (10), fixed a set of m
state dependent variables, Yi» is well known the

condition under which it is possible to find a
state feedback of the form

u(x) = a(x) + p(x)v

in such a way that each Y; does depend only on the
corresponding vy (decoupling problem). Namely the

following (mXm) matrix, A(x), must be invertible:
A(x)={<aLdi . )}
= e Tiv Y
where di is the smallest integer k such that
g ke
(— ; A
afoyl,cJHEG

for at least one j. Under that hypothesis the feed-
back

u(x) = A1) (v = I(x))
d. +1

(13)

is well defined on U the open subset of the state
space over which A(x) is nonsingular. That control

law not only provides a solution on U to the posed
decoupling problem, but, regarding the variables
y; as outputs, the feedback system is diffeomorphic

to a system which has a linear input-output dyna-
mics and a possibly nonlinear, unobservable part

[ 8] ; in particular each input-output decoupled
linear channel results to be an open loop chain of
di+1 integrators. Hence, if the unobservable part

of the system is asymptotically stable, the stabi-
lization of the linear dynamics ensures the stabi-
lization of the whole system., In conclusion, de-
noting by K a suitable (mxn) gain matrix, and by
T(x) a coordinate transformation under which the
input-output dynamic of the feedback system is
linear the stabilization over U can be achieved
under the control law (13) with:

v = KT(x) (14)

Such a control law can be used to close a prefixed
maneuver by choicing Y = 9, 1 =1,2,3, as discus-
sed in[1].

Let us consider, firstly, the gas-jets control mode,
u, # 0, u = 0; it is an easy matter of computation

to verify that one has:

d) =dy=dy=1
9 %5 9
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where |w| = Ewi and Ei’ i =5,6,7 denotes the

components of the drift term in (11).{13),(14) and
(15) together with an appropriate choice of the
gain coefficients k1 and k2 characterize the con-

trol law which is defined on U = {x; 382 = 1 and

i
s, # 0} ((11).

It is a matter of computation to verify that the
feedback system of Fig. 1 is diffeomorphic to the
following system (16) under the coordinate trans-
formation, on U:

) = (8, x x E 2% = (z-al0)h)
One has:
) L EE
B === %
Q
X = klx + kzx + v' (16)
€ =2+ 208719, 0%

-K1E-C1Z + 2C1+AlR ' (9,,0%

(B )
n

where v' is an auxiliary external input. The ma-
neuvering problem is now reduced to the stabiliza-
tion of the free evolution of the system (16) by
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fixing k1 and kz. Since ¥ and K goes exponentially
to zero and R (8 ,X) to the identity matrix, the

convergence to zero of E and z follows

Fig. 1

It must be noted that the proposed continuous con-
trol law results to be the superposition of three
control actions, say uj,up and uj, which act as
follows: uy is a direct compensation of the gyro-

scopic torques and the ones induced by the flex-—
ible appendages; u, introduces a nonlinear dynamics

on w in such a way that the links between ; and ¥
be a decoupled double chains of integrators; ug

assignes the dynamics to each chain of double
integrators. In fact, by developing the computa-
tions, from (13),(14) and (15) one has:
u(xJ=ul(x)+u2{x)+u3(x)=N(m,z}+JPL_LJ-lP2T{Clz+KIE)+

.2 2
T T S R

25 XV X Ty

o o

The same computations can be developped in the
reaction-wheels control mode (u =0, u, # 0); one
has:

ARw(x) = —AGJ(x) PRH(X) = + PGJ(X)

We stress that the implementation of the designed
control law is based on the knowledge of the whole
state vector; moreover devices which work conti-
nuously w.r. to time are needed. It will be discus-
sed hereafter the implementation of a sampled con-
trol law which is based on the availability of the
sampled values of the angular rates.

3.2, The proposed sampled-data control scheme

Let us regard to the torques induced by the flex-—
ible appendages as disturbances. As before noted,
the proposed control law acts by compensating those
disturbances and we will denote by u (x) such a
control actlon. One has:

2k

u(x)= ( + 3—01) X+Kywrho A Jw +

(17
+ uf(x):= ur(x) + uf(x)

Let us now assume that a control action based on a

rigid model of the spacecraft have been implemented;
with the notations introduced this corresponds to
the implementation of the control law ur(x). The

corresponding dynamics of the angular rates is
given by:

" 2k *

w=[ (5 eo 28 3570 x+k -P1J" uf(x) (18)

as can be easily verified.

From (18) the knowledge of @ should be needed, for
the computation of uf(x), while just the knowledge

of the angular rates is assumed. As we look for a
digital implementation of the whole control law we
can use (18) to evaluate uf(x) at time t = k& from

the knowledge of w over [ (k-=1)6,k8] and uf(x] at
(k-1)6.

We recall now that the desired behaviour of w (cor-
responding to the application of u(x)), say w,,
should satisfy:

2k 252
Wy = (3a ze’a)x + k2 4 (19)

Equation (19) be sollved by means of a fast in-
tegrators over each time interval [ (k-1)5,k&]
starting from wd((k—l)ﬁ) = w((k-1)8).

A good evaluation of uf(x) can kow be obtained
from (18); one has:

uf(x(ké))=uf(x(k*l)ﬁ)) +
(20)
+ & 3217} (0, (k6)~(k8))

with uf(x(O)) = 0, since we assume E(0) = z(0) = 0,

and where w(kS) denotes the measure of w at time
k&. The performance of the overall control system
depend on the performance ensured by the digital
implementation of the control law ur(x). The direct

implementation of ur(x) into a sampled data control

scheme does not give a satisfactory solution as
evidentiated by the simulation (Fig. 4). In order
to improve the whole digital control system we need
to recall some fact ([2]).

Let us denote by F a fixed decoupling and linear-
ising control law of the previous kind. It is clear
that a piecewise constant control, obtained by the
holding of the values computed by means of F from
the sampling of the state evolution, does not give
a precise solution to the control problem; more
precisely the implementation of F into a sampled
data control scheme gives a solution whose "quality'
decreases by increasing the amplitude of the sam—
pling (and holding) interval, &. Such a problgm was
studied in [ 2] where an "extended feedback", F, was
proposed to improve the performance of the control
scheme. We recall brefly, hereafter, the main re-
sults of that study.

Definition: An approximated solution at order L of
a given control problem is achieved when the trun-
cated Taylor series, at the order £ w.r. to &, of
the output satisfies the design properties.

Proposition: The implementation of the control law
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(13)-(14) into a sampled data control scheme gives an
approximated solution at order di+1 w.r. to any
output yj, i=1,...,m, to the decoupling and
linearization problem. O

Remark. each approximated output at the order
di+1, results to be characterized by a linear dy-

namics with transfer function:
d.+1 d, d.-1
&5t (z=1) “+(dj+1)(z=1) * ...+(d;+1)!
(d.+1)! d.+1
i (1) %

W, (2) =
(21)

Such a dynamics coincides with the exact sampling
of di+1 integrator; for it is enough to note that:

d.+1
o (k)
E(k+1}-£ +6§ L 1 el T
1 1 2 (di+l) i
E .(k+1) =E + 6v.(k) ; y. =E
di+1 di+1 i i 1

has the transfer function (21). Hence the approx-
imated output at order dj+1 has exactly the same
value of the output of the continuous feedback
control system at time t = k&.

The order of approximation can be increased by
considering sampled-data control schemes with
feedback control laws,which depend on products of
inputs. A feedback, ?, which enables to get ap-
proximations at the order di+2 was proposed in [ 2] ;
it has the form:

&
1% L = ui(x,v} (22)

3 £+ E g.u, (x,v)
P

t(x,v)=u(x,v)+€ol(

it will be referred to as "extended control".
The computation of the extended feedback, from
ur(x), is developped in the Appendix.

In conclusion the proposed sampled-data control
scheme that we propose is depicted in Fig. 2. On
that scheme are based the simulations implemented
which are discussed in the next section. As far as
the functions of the blocks in Fig. 2 are concerned
we have:

SM is the simulation model which represents the
real dynamics of the spacecraft;

EC represents the computation of the extended
control law ur(x(ké));

11 represents the integration of the kinematic
equations;

12 represents the integration of the desired

angular rates w,;

S and H represent sampling and holding of & am
plitude.

To conclude we note that the same arguments here
developped can be used to characterize the control
law when reaction-wheels actuators are used. In
fact the simulations discussed in the next section
use reaction wheels actuators.

Fig. 2

4. SIMULATION RESULTS

The simulation model described in section 2 has
been implemented on a VAX-780 digital computer. A
test vehicle (Fig. 3) has been selected; it con-—
sists of a main rigid body with attached four
booms; the structural parameters are reported in
Table 1 together with the other simulation para-
meters. We note that the S-model takes into ac-
count of eight vibration modes while in the C-model
only the antisymmetric vibration modes have been
considered. Some user defined subroutines have been
purposedly written to implement control laws, sen—
sors and actuators.

Figures 4 to 7 illustrate the results of four si-
mulations referred to an attitude maneuver of 120°;
the variables plotted for each simulation are: the
quaternion 9y, the first flexible coordinate, zj,
the three control torques uj, i = 1,2,3.

Fig. 4 shows the results obtained by a direct di-
gital implementation of the control law u_, to-
gether with ug; the control torques are updated
each 0,1 sec. The result obtained is not satisfac-
tory since the amplitude of zy decreases slowly.

Fig. 5 shows the results obtained by means of the
digital implementation of the extended control ug;
with the same updating of the control torques,each
0,1 sec., the results can be considered satisfac-
tory since the attitude error and z] goe to zero
in about 10 sec. By comparing the results
figures 4 and 5 it is evident the improvement even
if the holding time is small.

The implementation of the extended control tr gives
very good results also by considerably increasing
the holding time; Fig. 6 is referred to a simula-
tion in which & = 1 sec. It must be noted that the
direct implementation of the control law u, should
bring to instability after 5 seconds.

Finally Fig. 7 shows the results obtained by means
of the combined control action of gas-jet apd reac-—
tion-wheel actuators. The extended control uy is
computed and a positive (negative) impulsivemtorque
is applied just on the basis of the sign of uy: a
dead-band of 0,2 radiants has been considered. The
zero error is achieved by using reaction wheels.
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TABLE 1
Moment of inertia Jxx = 1.0 Kg.m2
Moment of inertia Jyy = 1.52 Kg.m2
Moment of inertia Jzz = 1,98 Kg.m2
length of booms 1 and 3; £ = 1.4 m
lenght of boomb 2 and 4; L = 0.7 m
mass of booms m = 0.45 Kg.
mass of main body M = 2.0 Kg.
moment of inertia of R.Wheels = 0.001 Kg.m2
Elements of K matrix = kil = ki2 =0%
integration step d = 0.1 sec

initial conditions:

9 = 0.5404
[+

9, (i=1,2,3) = -0.4858

w; (i=1,2,3) 0.0 rad/sec

z; (i=1, N) = 0.0 m.

5. CONCLUSIONS

A method for the design of attitude control systems
for flexible spacecrafts has been presented. The
design procedure employs input—output linearization
and stabilization techniques; computation of the
sampled-data control laws and compensation techni-
ques have been applied in such a way to reduce the
influence of the flexible part on the control system
design. An idealized test vehicle subject to a va-
riety of control laws has been simulated. The im-
provements obtained by using a sampled-data scheme
with an extended control are evident from the re-
sults of the simulations.
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Italian society 'Telespazio s.p.a. per le Comuni-
cazioni Spaziali" under research contract.
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APPENDIX
The computation of the extended control associated
to ur(x) in (17), for the system (11),(12) in the

gas—jets control mode will be developed hereafter.
Since dl = d2 = d3 = 1, one has:

N . &
ur(x) i ur(x) $ia Li(x)+Gu (x) ur(x)
where:
=1 G cho

u(x) =w A Jw+JPl ((e,o + 55:) X+ Kyw)
We have:
o P b 5 Bur et
u( x) = u x) j-sg—{f(x) u (x) (14)
where:
du qu. I du | Bu !} du ! Ou
S LBt o e S (RIS 1)
3 89, 1 1% T | %
and:

du 2k T

o = (ot + ST

o o 29
o
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du du
r = _—of_ =0
¥E 2 =
Moreover:

% s@?9

T
2kl ww
f(x)+Gu(x) (_ﬁ: * %;)x + kzw

*
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Finally from (1A), one has:

=2 2k
v 65, w 1 - 3T 1
I-IrCX} "ur(x> +§{ (ﬁ "-5;‘-)-11’1 1[ ——'—2‘30)( wy + fR(ao,X)w]

-1 3(-52 2k1
. szPl [ (Es— + —3——)X"k2d
o o
2k1 32
+[ (—5: ;5 E)x + kzwlA Jw}.



