39
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ABSTRACT

The effects of structural perturbations on the
decoupled control of a large space structure are
considered. Control of the structure is
accomplished through the use of multiple sub—
controllers, each of which controls a subset of
the spacecraft modes. The stability of the entire
system is assured by constraining the gain matri-
cies for the individual sub—controllers such that
the stability of the system is not affected by the
coupling between the sub-controllers. The effect
of structural perturbations is to re-introduce
coupling among the sub-controllers which may lead
to instability. This coupling is shown to be
related to changes in the row and column spaces of
the individual control and observation matrices,
respectively. A simple test for the determination
of the effects of these changes is presented. The
use of the test is evaluated on the control of the
CSDL I spacecraft using three sub-controllers.

Keywords: Control, Large Space Structures,
Spacecraft Dynamics

1. INTRODUCTION

The problem of controlling large space structures
has received close attention in the past several
years. Several techniques have been proposed to
deal with the various technical problems asso-
ciated with controlling these structures. Two
problems in particular have been central to the
control of large space structures. The first is
the infinite dimensional nature of the system
dynamical model. A realistic controller will be
designed for a lower order approximation to the
system. The effects of the controller on the
modes not considered in the control model must be
accounted for. These effects are commonly
referred to as spillover. Higher order dynamical
models offer a partial solution but at the expense
of ease of implementation. In particular, a large
order control model using full state feedback and
a full state observer may not be able to be imple-
mented in real time.

The second problem is the accuracy of the dynami-
cal model. Typically, a structural model will be
obtained using a finite element approximation.
This model may contain several hundred modes for a

Proceedings of the Second International Symp
(ESA SP-255, Dec. 1986)

reasonably complex structure. Even with these
large order approximations errors in predicted
mode shapes and frequencies are common for higher
modes. Higher order finite element models may
remove some of the errors but much of the error is
due to the idealization of the structural elements
and to nonlinearities in joints. These sources of
error will be present in any model. Any control
scheme for such systems must therefore be able to
work on a system with uncertain dynamics.

A technique for controlling a large number of
modes using a number of decoupled controllers has
been developed by the first author and several
others (Ref. 1 and 2). The technique partitions
the modes of the structure into subsets. Each
subset has a separate control system designed for
just that set of modes. This allows for the
active control of a large number of modes without
having any one sub-controller be too large. The
various sub-controllers will of course interact
and very likely destabilize one another, This
interaction is prohibited by constraining the sen-
sor outputs and the actuator inputs such that the
stability of the entire system is that of the
individual controllers. The effect of inaccuracy
in the structural model is to re-introduce
coupling among the individual controllers.

This paper develops a technique to evaluate the
effect of perturbed structural models on the per-
formance of a decoupled control system. The tech—
nique is an open loop evaluation which only
requires knowledge of the mode shapes of the ori-
ginal and perturbed systems. The amount of
coupling re—introduced by perturbations is related
to changes in the row and column spaces of the
control and output matrices, respectively, The
technique is demonstrated on the CSDL I spacecraft
model. Twenty-five perturbed models were defined,
each of which contained random changes in the
stiffness of bar elements which make up the truss
like structure. These stiffness changes were bet-
ween ten and twenty percent of the nominal values.
Several control designs consisting of three sub—
controllers using state feedback and incorporating
full state observers were accomplished for the
nominal model. Each was then evaluated using the
open loop criteria for each perturbed case and the
results compared to the results of an eigenvalue
analysis for that case.
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2. PROBLEM FORMULATION

The matrix second order differential equations
for the motion of an n degree of freedom linear
system are given by

Mj + Kg = Du (1

where M and K are the mass and stiffness matrices.
The forcing function has been expressed as the
product of a matrix D and a vector u. For the
current study this forcing function is due to ng
point force actuators. The elements of the vector
u will represent the magnitude of the actuator
forces and the matrix D will describe the location
and orientation of the actuators. The system of
equations (1) may be put in first order model form

;=Ax+Bu, (2)

where the 2n state vector x is composed of the n
modal displacements and the n modal rates, in that
order. The matrices A and B are of form

’[[ 2) o] S [; =

The matrix [ q] is a diagonal matrix of modal fre-
quencies squared and the matrix ¢ is the modal
matrix for the system (1).

%B

H O

The output of the system (2) will be assumed to be
measured with a combination of position and velo-
city sensors. The output y may therefore be
expressed as

y=Cx = [Cp¢:Cv¢]x (4)
where the matrices

and orientation of
sors, respectively.

and Cy define the location
position and velocity sen—

3. DECOUPLED CONTROL

The state vector x is of order 2n and represents
the entire spacecraft structural model plus the
spacecrafts rigid body motion. The controller is
typically based on a much smaller number of modes.
If we assume that multiple controllers are pre-
sent, each controlling nj modes, the state vector
x is conveniently represented by:

T

T
xo (s K50 cos T A7) = WS 19

where the x; represent vectors of dimension nj of
states controlled by the ith controller and x, is
an np -vector of residual states.

The controlled state, X; is that portion of the
state which must be controlled in order to insure
satisfactory system performance. The deter-
mination as to which modes must be actively
controlled and to which of the N controllers it is
assigned is at the discretion of the control
designer.

Using the representation of equation (5), we may
now express our state equations in the following
form:

;(i =Ajxj +Bju i=1, ... , N (6a)

r = BArxp + Bpu (6b)

In addition, the output equation has the form:

N
y = 121 Cyx; + Cx. (N

where in the above equations,

L T LG
Ay = [-w§] |[-2£m 1l * S5 od " (8a)
j=1,2 eee N, r
- [ij¢: Cvjﬂ.r J=1, 2 eee + Ny ¢ (8b)

The non-zero partitions of the matrices B have
dimensions n4 x nz and the partitions of ghe :
are of diems;on ng x nj where ny and ng are the
numbers of actuators and number of sensors. In
the By matrices modal damping has been added.

Control for N individual system of the form:

iisaix1+31u
i= 1' sss g N (9]

y=Cx

is now considered. It is important to note that
the control u is the same control for each of the
N systems and hence couples them. In addition,
the output y includes not just the modes of the
ith system but all of the original system modes.
Hence, using these outputs directly will couple
the N sub—controllers. The coupling due to u is
referred to as controller spillover and that due
to y as observation spillover. Our interest is in
designing the N sub-controllers such that the
system stability is not affected by the spillover
effects. To this end, we consider the conditions
first for the removal of all spillover and then
only those necessary to preserve stability.

The spillover terms may be eliminated from the
controlled states in the following manner. Define
new control variables v; and new outputs wj by the
following relationships:

N
u = i=z‘l T,; (10)

w, = I'iy (11)



STRUCTURAL PERTURBATIONS 41

The matrices Tj and Ij will be chosen to eliminate
spillover effects., Substituting for u in (6a) and
using y from (7) in (11) we obtain:

X, =A,x, +B

N
g “Bky (1 T

54 j) (12a)

i

N
w =T, (jz1 ijj} (12b)

If all spillover is to be removed, we require
that:

BiTj =0
i=1'l¢.lN=j‘1rnit'N {13)
I'iCj-o

In this case, we have N decoupled relationships of
the form:

- *
X{ = Ajxj + Bj v{ (14)

with decoupled outputs:

*

wi =Cy x4 (15)

where B;* = BjTj and Ci* = IjCij. Relationships
(14) and (15) may be used to design N sub-
controllers which when run simultaneously will not
interact. Less restrictive conditions were deve-
loped in reference (1) which allowed for coupled
but stable operation on N sub-controllers. These
conditions are given by:

B]_Tj =0
i= ‘r cee g N-1
j=it1, ... . N (16)

ricy =0

In reference (1) full state feedback control using
full state observers was implemented observing the
conditions in (16). The results of that study
showed that the stability of the controlled state
was the same as that of the sub-controllers.
It should be noted that in all of the foregoing,
the residual modes have been ignored. Spillover
between modes in the controlled state x, and the
residual states x, still exists but for a suf-
ficiently large x. should not be of significance.

3.1 Sensor and Actuator Requirements

Before moving to an example, a few words con-
cerning the requirements for sensors and
actuations are in order. First, consider the con—-
ditions given by expressions (16). In order to
satisfy these expressions, the columns of Ty must
be orthogonal to the rows of By thru By-q. That

is, the colums of Ty must be in the span of the
null space of the matrix Byy, where:

1
B = |—= (17)
Pr-1
Assuming that B is of full rank, the null space
of By has dimeﬁgionz
N-1
By =il = 1{=1 n;) (18)

Hence, for the matrix Ty to exist, the number of
actuators n, must be greater than the total number
of modes controlled by the first N-1 controllers.
That is:

N-1

n, > ¥ ny (19)
i=1

From expressions (10), we note that the dimensions
of the control vy for the nth controller is of
dimension Pry. That is, the dimensions of wy
equals the dimension of the null space of Bry.
Without the transformation Ty, the control u is of
course of dimension ny. This loss in control
dimension is the price paid for the decoupling.

It is easily shown that the other conditions
involving Tq thru Ty-1 can be met if inequality
(19) is satisfied. Similarly, determining the Tj
which satisfy expressions (16) requires that the
number of sensors be such that:

b
n. > n (20)
a i=2 J:

In a manner analogous to the control terms the
dimensions of the outputs of the individual system
wi are in general less than the dimension of y.
This is due to the dimensions of the matrices Ij.

3.2 Controller Design

We will use a three sub-controller control design.
Each of the sub-controllers will be designed using
full state feedback and a full state estimator.
The sub-controllers will be decoupled from one
another using the techniques of the previous two
sections. Both the controllers and observers were
designed using linear quadratic regulator theory.
In all cases considered the state weighting matri-
ces were used which were identity matrices
multiplied by a constant value of twenty. The
control weightings used were identity matrices.
These same weightings were used for the observer
designs.
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4, THE MODEL

The CSDL I model shown in Figure 1 was used in
this study. The model consists of a six bar truss
element supported by three pair of rods. The bars
forming the truss element and supports are assumed
to be massless and capable of deformation only in
the axial direction. The ten nodal locations are
given in Table I. Concentrated masses are located
at nodes one through four. The masses at these
nodes were each two units. The areas of the
respective rods are shown in Table II. Youngs
modulus was assumed to be unity for the units
used.

!

3
—_—
7

The support legs of the truss element are assumed
to contain colocated position sensors and force
actuators. The twelve modal frequencies and asso—
ciated mode shapes were determined using a finite
element analysis. These were used along with the
sensor and actuator locations and directions to
form a state space control model in the form given
by equations (2) through (4). Each mode of the
structure was assumed to have modal damping with

£ = .005.

Figure 1. CSDL I Structural Model

NobE X ¥ z
1 0.0 0.0 10.165
2 =5.0 -2.887 2.0
3 5.0 -2.887 2,0
4 0.0 5.7735 2.0
5 -6.0 -1.1547 0.0
6 -4.0 -4.6188 0.0
7 4.0 -4.6188 0.0
8 6.0 -1.1547 0.0
9 2.0 5.7735 0.0

10 =2.0 5.7735 0.0

TABLE II - ELEMENT CONNECTIVITIES AND AREAS
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4.1 Structural Perturbations

Perturbations from this nominal model were obtained
by randomly changing the areas of the six rods
which make up the truss element. These rod areas
were changed by a random amount between ten and
twenty percent. Twenty-five such perturbed models
were used. A finite element analysis of each per-
turbed model was accomplished and mode shapes and
model frequencies determined. This information
was then used to define the perturbed state,
control and output matrices.

5. PERTURBATION EFFECTS ON DECOUPLING

The effects of structural perturbations on the
decoupled control scheme are of two types. First
the structural perturbations affect the individual
sub-controllers. These changes to the matrices of
equations (14) and (15) will cause root shifting
and may cause instability in the individual
controller/observer pairs. For the present analy-
sis we will not address this problem. Our concern
is with the second effect of the pertubations the
re-introduction of coupling among the sub-
controllers. The extent to which coupling is re-
introduced can be quantified by considering
changes in the control and output matrices for the
individual controllers.

We recall from equations (16) that the sub-
controllers are decoupled when these equations are
satisfied. The transformation matrices T4 and Ij
are determined using the nominal values for the
individual control and output matrices. The
columns of the Ty have the property that they are
orthogonal to the rows of the appropriate Bj.
Similarly, rows of the Ij are orthogonal to the
columns of the appropriate C4j. Therefore changes
in the Bj's and C4y's due to Structural pertur-
bations only re—introduce coupling to the extent
that they change the row space of appropriate Bj's
and the column space of the appropriate Cy's.
That is, if for a perturbed case these spaces are
unchanged then no coupling is introduced.

5.1 Coupling Indicators

Let a representative perturbed output matrix be
given by Cp and its associated rows by Cpj+ The
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extent to which these columns are contained within
the column space of the unperturbed control matrix
C, can be determined by considering the projection

f cpj onto the colum space of C. Denoting this
projection by cpir we note

épi = c(cT ¢)~1cT cpy (21)

The extent to which cpj has a component out of the
column space of C can therefore be determined by
calculating the angle between Cpj and Cpi.

AT
pi_“pi (22)
ucpfl |Icpill

If the angle o is small the amount of coupling
re-introduced by that row of is small. If all
the angles o are small then perturbations in
C should not lead to significant coupling among
the sub-controllers.

cos o =

In a directly analogous manner the change in the
row space of the control matrix B due to pertur-
bations may be expressed in terms of the angles
Bj, where

AT b
B = fl'i "F’IT i (23)
bl b
and
I N, R
by =B (88°) Bb; (24)

The angle B; denotes the angle between a vector
representing a row of the perturbed control
matrix, a.nd the projection of that row into the

f the unperturbed control matrix
Again! i% the angles By are all zero IO? if
coupling

BT = [0]. If the angles B; are small
introduced by the perturbations in B should be
small.

The determinination of the angles B; and o
requires only a knowledge of the nominal and per-
turbed structural models. The computations
required are quite simple and require no knowledge
of the control design for the individual sub—
controllers.

The decoupled control scheme requires that each
modes be assigned to a specific sub-controller.
These modal groupings have an effect on the
calculation of the row and column space changes
since they determine which modes are represented
in a particular Bj and Cj pair. The calculation
of the aj's and Bi's for various modal groupings
is a valuable aid in determining which modal
groupings lead to the least sensitivity to model
perturbations.

6. EXAMPLE
The control of the CSDL I model using three

decoupled controllers is considered. In all cases
considered eight modes are actively controlled and

four modes are treated as residual modes. Full
state feedback using full state observers is

used for each individual sub-controller. The
effects of coupling due to strutural perturbations
are examined by evaluating the nominal controllers
and observers on twenty-five perturbed systems.

The focus of the current work is to evaluate the
coupling among the various sub-controllers which
is re-introduced by the perturbations. The eigen—
values of the entire system however are changed by
the pertubations not only due to this effect but
also due to the coupling between the individual
observer pairs and due to coupling with the resi-
dual modes. The coupling between the observer
and controller in each sub-controller is noted but
in the current work nothing is done in the control
design of the individual sub-controllers to mini-
mize the effects of perturbations. It should be
noted however that the decoupling scheme can be
used in conjunction with any gain selection
method desired as it only requires designing the
controller and observer for each sub—controller
using the inputs defined by the various transfor-
mations. Changes in eigenvalues due to residual
modes effects are also noted. However, since
knowledge of the residual mode is not used in the
control scheme the errors due perturbations are no
more serious than those due to residuals in the
nominal model. If the residual mode effects are
large it is an indication that they probably
should be accounted for in the control design.

For example, this could lead to more modes being
actively controlled or to reduced control being
applied to those modes coupling heavily with the

residuals.
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Figure 2. Modal Damping Changes due to
Perturbations

A three controller system with modes 1,2 and 3
contained in sub-controller one, modes 4 and 5 in
the second sub-controller and modes 6,7,8 in the
third is considered first. For this controller
modes 9 through 12 are residual. Figure 2 shows
the damping ratio of the observer roots associated
with modes three and four versus the angle that
the row in the perturbed By associated with mode
three projections out of the row space of the
nominal By. The figure shows strong correlation
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between the angle and loss in damping of modes
three and four. The strong correlation between
this angle and damping loss in mode four is due to
the fact that the row in the perturbed By asso-
ciated with mode four projects out of the nominal
row space of By by essentially an identical
amount. This damping loss is not entirely due to
the intercontroller coupling but this is the pri-
mary effect. This can be seen by considering a
typical perturbed case.

TABLE III

Comparative Modal Damping

Perturbed
Without
Perturbed Perturbed Inter-
With Without Controller
Mode Nominal Residuals Residuals Coupling
1c .24 25 .26 «25
1o .005 -.0079 -.0070 -.0086
2c .26 .26 .25 .32
20 . .15 .18 .16
3c .27 .32 33 .33
3o .22 .006 .0078 .25
4c .41 .48 2 32
40 .31 .16 .14 232
5¢ .38 .42 .41 .40
50 .38 .41 .40 .34
6c .38 .38 .38 .38
60 .38 .38 .38 .38
Tec .005 .0044 .0044 .005
To .34 .34 .34 .34
8c .005 .0055 .0055 .005
8o =32 e 232 32
9 .0041 .0043 — —
10 .0045 .0043 — —
11 .0041 .0047 —_ —
12 .005 .005 _ —_—

Table III compares the modal damping of the entire
system perturbed including residuals with that
excluding the effects of residuals and that
excluding the effects of both residuals and inter-
controller coupling to the nominal control design.
By comparing the columns in Table III we can
determine the effect of the various types of
coupling. The table shows the observer roots of
mode 3, the control and observer roots of mode 4
and the observer root of mode 1 are the most
affected by the perturbations. Observer mode 1 is
in fact unstable. From consideration of the last
column of Table III we note that this instability
has been caused. by coupling between the observer
and controller roots of sub-controller one. In
the nominal case mode 1 has only the light passive
damping. The perturbations cause the nominally
uncouplied observer/controller modes to couple and
this drives observer root one unstable. By com—
paring the last column with the next to the last
columns shows the effects of the coupling between
the three sub-controllers. The damping of modes
30 and 40 are of particular interest. Both of
these have lost a large part of their damping due
to the inter-controller coupling. This effect has
been shown for all twenty-five perturbed cases in
Figure 2. While Table III shows results for only
one perturbed case it is representative of the
behavior for other cases.

Another three sub-controller case is considered
with new modal groupings. For this case modes
3,4, and 5 are in sub-controller one, modes 1 and
2 in the second sub-controller. The residual
modes and those in sub—controller three remain

. These modal groupings showed much less
effect due to inter-controller coupling. In no
case was the change in damping due to inter-
controller coupling more than 11%. This was also
reflected in the projection angles out of the
nominal row and columns spaces of the Bj and Cj
for this controller. Table IV shows the average
angles and their standard deviations for the
controller for the twenty-five perturbed cases.

TABLE IV
Average Projection Angles

Matrix Mode Avg. Angle Std. Deviation

B1 3 3.78° .66°
B1 4 2.55° 53"
B1 5 1.27° .28°
c2,B2 1 .85° 17
Cc2,B2 2 .88° .26°
23 6 0° 0°
c3 7 1137 .21°
c3 8 1.24° :33°

The angles in Table IV indicate that the inter-
controller coupling introduced by the pertur-
bations should be small. The eigenvalue analysis
supports this result. As an example Table IV
shows the eigenvalues of the nominal model com—
pared to the entire perturbed model, to be per-
turbed model without residuals and to the
eigenvalues of the perturbed model without resi-
duals and inter-control coupling.

TABLE V

Comparative Modal Damping

Perturbed

Without

Perturbed Perturbed Inter-
With Without Controller
Mode Nominal Residuals Residuals Coupling
1c .22 .26 .26 .26
1o «13 .10 .11 o1l
2c .28 .28 .28 29
20 .18 .15 .17 .16
3c .31 .36 .36 .36
30 .044 -.0065 -.005 -.0055

4c «35 .41 .43 .44

40 .005 -.032 -.032 -.033
5¢ = ) .28 .30 .30
50 .41 .40 .38 .38
6c .38 .38 .38 .38
60 .38 .38 .38 .38

Te .005 .005 .005 .005
To .34 .34 .34 .34

8c .005 .005 .005 .005
8o 32 .32 .32 .32
9 .0054 .003 —_ ——
10 .0052 .0052 — -—
1 .0038 .0052 —_ -
12 .0051 .005 - —



STRUCTURAL PERTURBATIONS 45

Comparison of the last two columns of Table V
shows that very little change in modal damping due
to the inter—controller coupling. This result
agrees well with the small projection angles in
Table IV. Again the coupling in the individual
sub-controller controller/observer pairs causes
instability.

Comparing the cases of Tables III and V shows that
the case in Table V has much less inter-controller
coupling. These two cases differ only in which
modes are assigned to which sub-controller. Modal
assignment then is an important determiner in the
amount of coupling introduced due to pertur-
bations. This result is also shown in comparing
the magnitude of the angles calculated for each
case. The perturbed rod areas for the two cases
are shown in Table VI,

TABLE VI

Perturbed Rod Areas

Case Case
Element Table III Table V
1 1161.1 1109.3
2 113.1 85.8
3 86.9 115.8
4 870.9 1150.9
5 1196.9 820.1
6 1108.2 1160.3

The strong influence of modal grouping on inter-
controller coupling is explained by considering
the frequencies associated with the nominal modes.
Modes 3,4, and 5 are close in frequency as are
those of modes 7 and 8. The eigenvectors asso—
ciated with these groupings under perturbation
tend to rotate as a unit. This is analogous to
the behavior of eigenvectors associated with prin-
cipal axes for a body with equal moments of iner-
tia. For such a body a small perturbation in mass
distribution would cause the corresponding eigen—
vectors to rotate through arbitrarily large angles
to establish the new principal axes. While the
angle rotated through could be large the space
spanned by the two eigenvectors would remain
nearly unchanged. Hence, modes with eigenvectors
which move together (closely spaced frequencies)
should be in the same sub-controller. When this
is not the case, small perturbations may cause
large rotations of individual rows or columns of
the By or Cj. This leads to large angles for
projections out of the appropriate row or column
space and large inter—controller coupling. In the
first case considered mode 3 was in the first sub-
controller and modes 4 and 5 in the second. The
rows associated with modes 3 and 4 in By and B
consistantly gave rise to a large angle out of
space spanned by the rows of the nominal By and Bj
hence gave rise to coupling. For the second modal
grouping modes 3,4 and 5 were all in sub-
controller one. Under perturbation this grouping
gave rise to very small changes in the row space
of By and hence very little inter-controller
coupling occurs.

7. CONCLUSIONS

Several conclusions can be drawn about the nature
of inter-controller coupling introduced by struc—
tural perturbations. First, the coupling can lead
to modal shifts which may be destabilizing.
However, even for the relatively large pertur-
bations considered, in the current study no insta-
bilities were caused by this coupling. Second,
the amount of coupling introduced is greatly
affected by modal assignments to the various sub-
controllers. Proper modal assignment can lead to
a major reduction in the effect of perturbations.
Finally, the open loop angle criteria presented is
a very good indicator of coupling.
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