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ABSTRACT

A traveling wave approach is presented for the
vibration control of networks of slender flexible
structural components. The performance of the
resulting controller is evaluated and compared
with a "classical" modal controller by use of a
simple model of a prestressed string. Both con-
trollers are therefore tested in numerical simu-
lations. The traveling wave approach is demon-
strated to have significant advantages, In par-
ticular, it is insensitive to a change in the
system's boundary conditions.

Keywords: active vibration damping, traveling wave
approach, modal controller, robustness.

1. INTRODUCTION

Active vibration damping is being seriously consi-
dered for large flexible space structures, and to
some extent also in the more traditional branches
of engineering. It has been studied intensively
during the last decade almost exclusively with
regard to potential applications in aeronautics
and astronautics.

In the traditional approach the structure is dis-
cretized, via finite elements or some other tech-
nique, and the problem of controlling a distri-
buted parameter system is thus substituted by a
new problem described by a system of ordinary dif-
ferential equations. The powerful techniques deve-
loped for discrete control problems are then
applied, methods such as pole placement or optimal
control being used.

Recently, a new approach has been proposed
(Ref.1,2). In this new technique the structure is
not discretized but split up into structural ele-
ments, such as beams, cables, etc., each of these
elements being a simple continuous system. The
boundary and transition conditions are then
dropped in the first stage of the control design.

The motion in the structural elements is described
by traveling waves and the controls are designed
with intent to absorb as much of the energy of
these traveling waves as possible. Instead of sol-
ving a control problem for a large system of ordi-
nary differential equations, the local control of
an unbounded medium described by partial differen-
tial equations is thus examined and a number of
local and uncorrelated control problems has to be
solved. It turns out that the solution of these
local problems is relatively simple, at least for
bars, cables (Ref.3) and beams, although it re-
quires a new measurement technique to divide the
motion of the elements into contributions coming
from waves traveling into different directions.
This technique is closely related to intensity
measurements used in acoustics, but has not yet
been implemented for the application in vibration
control (Ref.4). A further analysis shows that
controls designed in this manner for the unbounded
medium will also work for a finite medium with
arbitrary boundary conditions.

The present paper describes the main results
obtained during the last year at the Institut fir
Mechanik in Darmstadt concerning the control of
bars and strings. In a model problem of a fixed-
fixed string with 2 control forces it is shown how
the active damping device can be designed using
traveling waves. The performance of this new
vibration control is then compared to a vibration
control designed via a '"classical" modal analysis
technique. The analysis and the numerical simula-
tions show that the new approach presents conside-
rable advantages in several aspects. This is
illustrated by changing the boundary conditions
for the model problem. While the modal controller
designed for the fixed-fixed string fails, the
proposed controller is robust against these chan-
ges.

2. STRING MODEL

In this paper, a prestressed string is used to
evaluate the performance of different controller
designs. The transverse vibrations of the string
are described by the wave equation

Wix,t) - w (x,t) = qixt). . (1)
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where x denotes the space coordinate, t the time
and w(x,t) the string's transverse displacement.
The wave speed has been normalized to one by an
appropriate choice of the time scale. As depicted
in Fig. 1, the string is fixed at x = 0 and elas-
tically supported at x = w by a spring of stiff-
ness (1-p)/p . The constant p can be chosen arbi-
trarily from the interval [0,1], p = 0 correspon-
ding to a fixed and and p = 1 to a free end. These
boundary conditions can be written as

w(0,t) =0 , (2)

(1-p) w(mt) + pw'(mt) =0 . (3)

For vibration control two force actuators are
attached to the string at x = a, and x = a, res-
pectively, 0 < a,< a, < n. The time histories of
the control forces are denoted by u,(t) and u,(t).
The external load q(x,t) in (1) is then given by

2
qi{x,t) = 2 8(x-a,) u,(t) , (4)
e=1

where 8(.) stands for the DIRAC function. Additio-
nally, two sensors are located at x = s, and
X = s, respectively, 0 < s,{ s, < m, measuring the
transverse displacements

"k{t} = w{ﬁk.tl k=12 , (5)

at these locations. If the sensors are located
near to each other, the measurements determine

w(x,t) and w'(X,t) for x = (s, + s,)/2, through
simple formulae, as we shall see in 3.1.2.

NN

Figure 1. String model

3. CONTROLLER DESIGN

3.1 Traveling wave approach

3.1.1 Determination of the control laws. It is
well-known that every solution of the wave equa-
tion (1) with zero excitation term q(.,.) can be
written in the form

wix,t) = f(x-t) + g(x+t) , (6)

with appropriate functions f(.) and g (.) (d'ALEM-
BERT's formula), representing waves traveling to
the right and left respectively. For an infinite
string it can furthermore be shown that a concen-
trated force u(t) applied at x = a generates the
waves:

t+(x-a)
7 g u(r)dr , x <a ,
wix,t) = t=(x-a) (7)
é— ({ u(r)dr , x >a .

In (7) the integrals are replaced by zero if the
upper bound is smaller than the lower bound. With
(6) and (7) we are now able to express any solu-
tion of (1), (4) in the form

[ £(x=t) + &(xtt) ; a8, < x <a; ,

r(x-t) + g(X+(t4x-x)) +

1 t+(x-a,)
SHEE) = + > g u,(r) dr , X B, o (8)
L(x+t) + f(X-(t-x4X)) +
1 t-(x-a,)
+Eg u,(r) dr , X Dds s

X is selected from (a,,a,) and corresponds to the
location of the measurement unit. The functions
r(.) and 1(.) stand for the waves traveling from
the boundaries towards the section between the two
actuators.

For the determination of the control forces we
calculate the energy carried away from the section
[a,,a,] per unit of time. In dimensionless nota-
tion it is given by:

P(t) = w (af,t)w(aj,t) - w (a3, t)w(al,t)

"

(2" (F+(ta,%) + 3 u,(t)]?
- [r'(a,-t)]% - [1'(as#t)]? (9)

+ [ (X-(t-a#x)) - ;—u,(tl]‘

This expression is now minimized by choosing the
controls such that the two terms with positive
sign vanish identically. We thus obtain the con-
trol laws

u,(t) = -2 g’ (X+(t+a,x))
e o (10)
uylt) 1= 2 f (x-(t-a,+x))
3.1.2 The measurement problem. The control laws

(10) require the knowledge of the traveling waves
f(.) and g(.) at the location x = x and at the

times t - t;&-al) and t - {a.,-;l, respectively.
Suppose that we have measurements

m,(t) wis,,t) ,

(11)
m,(t) = w(s,,t)

in the vicinity of X = (s,+s,)/2 . We can then
approximate the velocity and the slope of the

string at X by
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iR m,(t) + m,(t)
L] _2““—"‘_'_—
(12)
9 (% b)) Ralt) = W, (0),
’ 8,8,

Better approximations can be derived by use of
higher order derivatives of m,(.) and m,(.). They
are discussed in Ref.4 . From d'ALEMBERT's formula
(6) we further obtain

g'(F) = L E L +wE o),
(13)
£'3-t) = L 'Kt - 6(E )

which together with (12) gives u,(t) and u,(t) in
terms of the measurement:

- _ |mg—m, “.‘3"'“‘1:-_
u;‘t) = I}_—sa-s‘; + ——2-—: |t+{s'-;)
(14)
ug(t) = [Razly _ mytm,] | )
: H2~% 1 lt-(a,%)

Note that due to a,-Xx < 0 , a,-X > 0 , the control
law has a delay character. No boundary conditions
have been used for determining (14).

3.2 "Classical" modal approach

The "classical" controller design starts with
determination of eigenfunctions for the system
under consideration. In our model problem we

choose p = 0 as the reference system so that the
eigenfunctions are

4 (x) = (17d27) sin kx , kel . (15)

The solution of (1) is then expanded in the form

Wi t) =3 3 (6) 4 () (16)

and after projecting (1) on the eigenfunctions,the
infinite system of ordinary differential equa-
tions

e 2 2

zk{t} + k zk{t} = eglﬂk(&(} utlt) , kel , (17)
is obtained.

Similarly, the measurements can be written as
m (t) = kEI 8. (s,) g (), i=12 . (18)

Truncating the infinite sum in (16) at some finite
N and writing the differential equations as a
first order system gives

y(t) = A y(t) + Bu(t) (19)

with

(1= [2,(t),00,2y(t),2,(8)/1, 0,5 () /N Te BN,

0 4
A= e RN
-4 0

(20)
diag (1,2,..,N) ¢ B

s
i

- 0 e(a)/1 .. ¢ (a /N L

B := e!2Nx2'

0..0 ﬁl{az)ll ‘e #N{azllN

This system is called "design system" for the pre-
sent control problem. Optimal linear state feed-
back

u(t) = -Fy(t) , Fer>AN | (21)

will be used in the present example. The constant
gain matrix F is obtained from the solution of the
well-known algebraic matrix RICCATI equation
(Ref.5). In the quadratic integral criterion the

matrix

2Nx2N

R, = diag(0,..,0,7,..,7) e R (22)

is used as weighting matrix for the state variable
¥. The corresponding matrix for the controls is
set equal to

R, -1 el |, (23)

The number of sensors typically being smaller than
the number N of modes occcuring in (19), the mea-
surements m,(.) and m,(.) must be fed to an obser-

ver for obtaining an estimate ;(t) of the state
vector. Here a linear optimal observer (KALMAN-
BUCY filter)

¥ (t) = Ay(t) + Bu(t) + K [m(t) - Cy(t)] (24)

is used, m(.) and C being defined by

o T 2
m(t):= [m (t), my(t)]" e R,
(25)
¢.(s,) .. ¢(s,) 0..0
goas AT E N'71 e RN
#(s)) .. f(s,) 0..0
The optimal observer gain matrix K e ‘szz is

obtained from the solution of the corresponding
algebraic observer RICCATI equation (Ref.5). The
covariance matrices occuring in this equation are
chosen to be

¥, = (0;450,2,04,2) @ RO (26)

for the noise term in the equation of motion (19)
and to be

V, =T er2 (27)
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for the noise term in the corresponding measure-
ment equation. The observer equation has to be
integrated numerically during the operation of the

controller and the state wvariable ;(t.} is then

used as an approximation to the system's state
y(t). The feedback law (21) is thus replaced by

u(t) = -F y(t) . (28)

It should be pointed out that in this short review
only the basic principles of the "classical" modal
approach can be listed, completeness not being
sought.

4, NUMERICAL SIMULATIONS
4.1 Approximations

The performance of the two types of control is now
compared via numerical simulations. The evaluation
model used consists of eqs. (1)-(3), discretized
by finite differences.

4.1.1 Difference scheme. The wave equation (1) is
discretized using the simplest explicit difference
scheme

'l\"j !n+l__2wj ’"+w‘j yn-1 wj"'l !n_mj ,l'l."_"j'-l N

(At.) E3 (A(} 2 =0 » (29)
where the abbrevation
WP = W(j 4x,n 4t) (30)

holds. The boundary conditions and the transition
conditions at the actuator locations are approxi-
mated by skew differences having the same accura-
cies as those in (29). In all simulations

4 = n/100 , 4t = /2 (31)

are fixed.
4.1.2 Measurements. Determination of controls by
the traveling wave approach according to (14) re-

quires the knowledge of m,(.) and m,(.). In the
simulations they are approximated by use of diffe-
rences

mi{t+4ﬂ;) - mi{t-dt)

m (%) 2= 2 4t '

i=1,2 , (32)

which are of second order accuracy with respect to
4t

4.1.3 The observer. Integration of the observer
equation (24) is performed with the scheme

F(trat) = () + 4 [(A-ED)(T+ 55 (A-ED))] ¥(t)
(33)
+ 4t [Bu(t) + Em(t)]

where i{.) denotes the approximation to ¥(.).

4.2 Systems under consideration

A first comparison is done for our reference sys-
tem (p = 0), i.e. for the string with both ends
clamped. For the traveling wave approach actuators
are located at

a; = .9 w, By = JBiwm 5 (34)
and sensors at
gy= .67 m ; By= B0aw (35)

For the "classical" modal approach actuators and
sensors are placed at

a,=8,=.187, a,=8,= .97 . (36)

The number of modes included in the modal aproach
is set equal to

N=8 . (37)
In both cases initial data are chosen as

w(x,0) = sin(3w (x/m)?) ,
(38)

w(x,0) =0 .

The string's motion with acting controls is depic-
ted in Fig. 2a and 3a. Corresponding time histo-
ries of the total energy contained in the system
are plotted in Fig. 2b and 3b.

The same control laws determined for the nominal
"design system" are now used for the system with
p = .5. In this case, due to the elastic support
the eigenfunctions are different from the nominal
ones. These simulations do therefore represent a
test for robustness of the control law with res-
pect to changes in the boundary conditions. All
actuator and sensor locations and initial data
correspond to the first case. The results of this
simulation are given in Fig. 4a,b and Fig. 5a,b.

4.3 Comparison of results

We begin the discussion of results examining the
performance of the newly proposed controller,
Figures 2 and 4 clearly show that the controller
designed via the travelling wave approach works
well in both examples. In the first case (p= 0)
all waves are completely anihilated after a finite
time t,. This time is exactly twice the time
required by a wave to travel from the measurement

location X to the boundary farthest away from X,
i.e. to the left boundary. In the second case
(p = .5) a qualitatively similar behavior can be
observed. However, due to the spring at the right
boundary, a small amount of energy is still con-
tained in the string between the actuator at
x = a, and the right boundary for times greater
than t,. Calculating the motion of the string
under action of the controls (10) for boundary
conditions (3) with p = .5 we obtain

wix,t) = (£441,) exp {- ﬁ{m-:m,n} ,  (39)

where x € (a,,n] and x+t > mt, , t, being the
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time required by a wave to travel from x to the
right boundary. Furthermore the definitions

£, iz flx-0) ,
(40)
1, :=1(mw+ t,)

hold. Therefore, the amount of energy contained in
the string for t > t, decays exponentially.

It must be pointed out that all the simulations
were carried out by replacing the "exact" control
law (10) by the approximation (14). Nevertheless,
the controller worked very efficiently and looks
promising for practical implementations in future.

Finally, it should be remarked that the controller
using only two actuators shows a certain band-
limitation. It can only control harmonic waves
with wavelength A satisfying

F>8: -2, . (41)

From this point of view it seems advisable to
choose a small spacing between the actuators. From
the mathematical point of view the difficulty can
be circumvented by adding a third actuator at
X = 8y, @8,{B,¢8,, in such a manner that
(a,-a,)/(a,-a,) is an irrational number.

Next, we discuss performance of the "classical"
modal controller. As shown in Fig. 3 the modal
controller works in a satisfying manner for the
nominal system (p = 0). During the simulations it
was also tried to obtain a faster decay of the
total energy by "increasing" the weighting matrix
R, in the design criterion. In these cases, how-
ever, the controller applied to the evaluation
model became unstable, probably due to spill-over
effects in the observation and the control prob-
lem. In the second case (p = .5, Fig.5) the con-
troller is unstable. This behavior is due to the
fact that in our modal model the functions dk(.}

given by (15) no longer represent the eigenmodes
of the evaluation model. Modal controllers always
require exact knowledge of these eigenfunctions!

To conclude our discussion we shortly compare the
computational requirements for both controller
designs. For the traveling wave approach evalua-
tion of (14) together with (32) is required at
each instant. Additionally, an intermediate sto-
rage must be used to take care of the time shifts
as given in the arguments in (14). All these ope-
rations can be implemented in a very efficient way
on a digital computer. For the modal controller
much more efforts are to be made. In the design
stage large eigenvalue problems are solved for
determining the feedback and the KAIMAN matrix.
(Our design model with eight modes already
requires solution of two 32x32 eigenvalue prob-
lems.) In the operational stage of the modal con-
troller integration of the observer equation and
an additional matrix multiplication for determi-
nation of the controls according to (28) are
necessary at each instant.

51

Summarizing, it can be said that the design of
active vibration damping devices via the traveling
wave approach seems to have certain advantages
which justify its further study and related prac-
tical experiments. In Darmstadt this method is
presently being developed for dispersive waves
(bending vibrations in beams).

The authors thank the "Stiftung Volkswagenwerk"
for its support of their work.
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