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ABSTRACT

The use of electric propulsion at very low thrust levels for
rendezvous missions to asteroids and comets requires special
techniques, both for the generation of the nominal
trajectories and for mavigation in the vicinity of such
trajectories. Furthermore, the orbit determination and
manceuvres in the vicinity of primitive bodies gives rise to
additional difficulties, e.g. sensors and mass uncertainty.
This paper is concerned with mavigation (orbit determination
and guidance) on (a) the heliocentric transfer trajectories,
(b) approach for rendezvous with a comet, (c) estimation of
the gravitation constant in a coast arc near the comet and,
(d) manceuvres within the irregular gravitational field of a
comet.
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1. INIRODICTION

The propulsion requirements of advanced space mission to
primitive bodies such as asteroids or comets are such that
low thrust electric propulsion is an attractive option.
Thrusting occurs for extended periods of the missions giving
rise to important differences in computing nominal
trajectories and realising nmavigation in the operatiomal
situation, i.e. determination of the orbit and implementing
guidance corrections. ESOC placed a first study contract
with Hatfield Polytechnic (1982-84) to compute optimised
transfer orbits; this paper summarises a second study by
British Aerospace on navigation (Ref 1), also funded by
ESOC.

The first study generated optimised transfer orbits to
rendezvous with an asteroid but they can apply with minor
changes to comet rendezvous. The 'Comet—Rendezvous — Sample
— Return - Mission' (CNSR) was in fact defined as the
baseline for this study of mavigation, although it is
restricted to the following phases: (a) cruise or transfer
to the vicinity of the comet, (b) approach, and (c)
manceuvres near the comet. It does mot include landing on
the mucleus, return (similar to the outward cruise phase),
and recovery of a capsule on Earth, possibly involving
aerocapture.

The cruise phase is assumed to be ground-based, using orbit
determination by radiometric measurements and commands to

modify the thrust vector of the spacecraft. The continuous
nature of thrusting creates an essential difference compared
to ballistic trajectories interrupted by virtually impulsive

corrective manoeuvres. The use of additional spacecraft
measurements is assumed from within one million km of the
comet .

In order to provide overlap with the ground-based system,
approach navigation starts at about twenty thousand lm,

entirely on spacecraft measurements as inputs to an
autonomus navigation system. Changeover to the latter is
inevitable shortly before rendezvous due to the
commmication and ground processing times. The
gravitational field of the comet is still neglibible in this
phase so the kinematics of relative motion are fairly
simple, but note that relative speeds are a few m/s compared
to the 68 km/s of Giotto's encounter with Halley. The
introduction of range measurement appears to be an important
parameter due to uncertainties in the ephemeris of the
comet .

A coast phase is postulated to permit autonomous
determination of the gravitation factor of the comet e.g.
between 200 and 100 km. After this, approximate orbit
determination and manoewvring strategies have been tested
but the corrections could be accomplished equally well by
conventional small thrusters. The nucleus has been modelled
~s a conglomerate mass and a representation has been
attempted of the corruption of measurements associated with
an irregularly shaped mucleus.

2. CRUISE PHASE MAVIGATION

2.1 ORBIT DETERMINATION

2.1.1 State Variables and Measurements

The basic set of state variables comprises the six
rectangular heliocentric coordinates of position and
velocity together with the mass of the spacecraft. The
following variables were optionally treated as unestimated
bias terms or as estimated additional state variables.

a) correction factor to nominal thruster acceleration

b) two angular coordinate errors in pointing the thrust
vector.

Variable (a) could be held constant or made to vary as a
random process with a given exponential autocorrelation time
constant. In addition an error factor in the gravitational
parameter of the Sun could be simulated, also representing
uncertainty in the force due to solar pressure on the
spacecraft. In sumary, there were 7 to 10 state equations
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which were normally subject to a substantial stochastic
disturbance by means of the random fluctuations in thruster
acceleration.

The ground-based measurements were taken to be two—way
radiometric measurements of range and range-rate from the
ESA tracking stations in Spain and W. Australia, but
(corresponding to one spacecraft transponder) only one
station at a time could be employed. Typical errors
simulated were in range 9 m (random mms), 5 m (bias) and in
range-rate 1 mm/s (random mms). Possible systematic errors
in station latitude and longitude were taken to be 5 m and
2.5 m respectively, all the above mmbers being agreed with
ESOC.

2.1.2 Estimation Techniques

In order to put our experience into context, let us note
three principal approaches to the computer-orientated
determination of spacecraft orbits as follows:

(a) Least—squares fitting using a batch of data to estimate
the state X (t,) at the beginning of an interval. This
epoch state can be propogated forward (to correspond to
the start of the next batch) by mmerical integration of
the trajectory.

(b) Sequential epoch state estimation of X (t,) by treating
data sequentially throughout an interval. The state can
again be propogated forward by integration of
deterministic state equations and the error—covariance
matrix is stepped forward using either the Kalman or
Square—Root type of estimator.

(¢) Sequential estimation of x(t;), x(tp) ... x(t,) as
measurements become available at times, ty, t ... t,,
using the Kalman or Square—Root estimator.

Despite Bierman's publications [Ref 2] it is understood that
JPL have relied heavily on batch processing, i.e. method
(a). It is suitable for handling large amounts of
radiometric data with poor first estimates and there is no
problem of stability. ESOC have used all three methods for
orbit determination on the GIOTTO mission. We have used
method (c) because X (t,) would appear to vary due to
stochastic variations on the thrust magnitude; it is the
only method appropriate to the estimation of dynamical
states subject to significant stochastic disturbances such
as might arise on a low thrust trajectory.

The computer programs included the option of using Kalman
convential covariance filtering (KAL) or the Square—Root
covariance algorithm (Ref 3) denoted SQKAL. They were
checked out at an early stage to confirm (at least for one
or two iterations) that they give exactly the same estimates
and covariance matrices, and that the one-at-a-time
treatment of measurements is equivalent to the more common
processing of wvector measurements in the conventional Kalman
Filter. Despite the use of double precision, small
mumerical differences develop between KAL and SQKAL and all
results quoted below are with SQKAL because of its greater
accuracy. Round-off errors can (and did eventually) lead
to covariance matrices with KAL which are not positive
definite: this is impossible with the square-root
decomposition. The original Householder routine used in
SQKAL was 'home-made' but its accuracy was found to be
inadequate because pivoting had not been included; it was
replaced by a routine from the MAG library (Oxford, U.K.).

Filter divergence was experienced in early tests when the
initial states were assumed known to an accuracy of not
better than 15000 km in position and 100 m/s in velocity.
The divergence arose due to nonlinear measurement functions
and the difficulty of estimating components perpendicular tc
the line-of-sight (10S) from Earth to spacecraft.
Nevertheless, these difficulties of divergence disappeared

when good first estimates (agreed with ESOC) were adopted.
Such first estimates can always be generated by preliminary
batch fitting. In the absence of bias terms, the
convergence of simulated errors was then consistent with the
computed theoretical variances. Friedland's bias or
Bierman's 'consider' matrices were not computed because bias
terms were not estimated as such, even though the simulated
measurements were affected by the bias terms mentioned
above.

2.1.3 TIllustrative Results

The baseline low thrust trajectory was supplied by ESOC and
refined by N.0.C., Hatfield Polytechnic. It is a 1464 day
(4.0 years) trajectory to the comet 'Bus' with a coast arc
from 562 to 882 days, i.e. a middle 22 per cent of the total
outward journey.

The first exercise was to confimm that the simulated orbit
determination in the absence of thrusting on the coast arc
gave realistic results, i.e. consistent with ESA and MASA
experience. The results of Table 1 suffice to illustrate
this point, although the root-sumsquares (RSS) figures
quoted are approximate because they are randomized over only
3 simultations. The subinterval of 0.1 day between
estimation updates is short enough for these purposes since
further reduction gives only a small improvement; it is
related to the mmber of points needed to infer indirectly
the declination and right ascension from the daily
sinusoidal variation of the ground Doppler tracking signal
(Ref 4).

(682-702 days, 1 AU from Earth)

BIAS TERMS RSS POSLTION RSS VELOCITY
km m/s
None LT 0.064
Sm lat and 2.5 long site error 130 0.064
TABLE 1: SIMULATED ORBIT DETERMINATION OR THE COAST ARC

Corresponding representative mumbers supplied by ESOC were
50-150 km and 0.1 m/s and therefore this agreement was
satisfactory.

Orbit determination was simulated early in the first
thrusting interval (denoted E) from O to 20 days (0.93 to
4,66 million km from Earth) and, in the second thrusting
interval from 1422 to 1442 days (42.3 to 22.3 days before
rendezvous denoted L), when the spacecraft is 3.9 AU from
Earth and 346 to 94 thousand km from the comet. In case E
the spacecraft velocity vector relative to Earth is
approximately along the 10S to Earth, but in case L it is
almost perpendicular, i.e. the worst case for detecting
directly variations of thrusters acceleration by means of
the Doppler measurement.

A realistic slow random variation of thruster performance
was taken to be a one sigma (r.m.s.) fluctuation with an
exponential autocorrelation time constant of 100 days; this
is supposed to represent the slow drift in the power
regulating system. Even though feedback can ensure that the
net thrust vector of the spacecraft points through the
centre of mass, uncertainty in the latter may result in a
significant thrust vector pointing error.

It was simulated as a constant in two angles and set
illustratively at one degree. The results of mmerous
simulations can be sumarised as follows.

(a) Typical errors (as above) in magnitude and
direction of the thrust vector give rise to unacceptably
large errors in the orbit detemintion.

(b) Such errors can be reduced to acceptable values by
treating the three errors as additional state variables
and including them in the estimation process; see TableZ
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(Case E = near Earth, Case L = near comet, see text)

CASE BIAS TERMS RS5 VELOCITY

RSS POSITION
km n's

E Sm lat and 5.8 0.008
2.5n long site
L errors 597 0. 64

TABLE 2: SIMULATED ORBIT DETERMINATION WHILE THRUSTING

These estimation errors are acceptable, bearing in mind that
case L is without any spacecraft-to-comet camera data which
would be available at that stage of the mission. It is
recalled that a 1975 JPL study (Ref 5) proposed the use of
ballistic arcs to permit sufficiently accurate orbit
determination but they assumed only very coarse regulation
of motor power.

2.2 GUIDANCE

2.2.1 tions

Four approaches have been considered as follows.

(a) Repeated re—optimisations in flight using already
developed ESOC/Hatfield computer programs (variable
rendezvous time).

(b) Optimal perturbation guidance by varying pointing,
thruster omroff and rendezvous times.

(c) End-point guidance by varying pointing, thruster omoff
and rendezvous times.

(d) End-point guidance by varying pointing and throttling
the motor, with fixed rendezvous time.

Option (a) is clearly feasible provided the chosen
operational trajectory (allowing for other constraints and
trade—offs) is an optimal trajetory, i.e. computed to
deliver maximum spacecraft mass at a rendezvous with the
comet. With the help of N.0.C. Hatfield Polytechnic, we
have merely confirmed that re—optimizations as frequent as
every 10 days would be necessary due to the stochastic
nature of the thrust vector.

The algorithmic formulation of each of the approaches (b),
(c) and (d) start with a computed optimum trajectory. In
case (b) it was the baseline trajectory supplied by
ESOC/Hatfield to comet 'Bus' already mentioned, i.e. optimm
rendezvous with respect to final mass. In cases (c) and (d)
the 'optimum' is defined as a trajectory which minimizes
squared deviation of final position and velocity of the
spacecraft with respect to the comet. Therefore any
rendezvous trajectory can be employed and guidance seeks
merely to minimize terminal deviations at a given time,
hence the term 'end-point guidance'. It is noted now that a
rapidly convergent algorithm for re-computing an optimum
solution (due to perturbations) in the vicinity of an
optimal trajectory is by the method of Differential Dynamic
Programming or equivalently the 'Sweep Method' (Refs 6, 7).
1f delta denotes differences from a nominal starting
trajectory then an iterative correction is of the form

Aw(k) = - C (k) [H (k) +Bk)Ax (k)] ()

for each discrete interval indexed as k. The state vector
is x and u is the control vector; the other terms are
matrices computed on the nominal trajectory.

If the nominal trajectory is an optimum (e.g. with respect
to mass or end—point deviations) then the vector Hu(k) in
eqn (1) is zero and the result simplifies to

Auw(le)=-D(k)Bxik) ()
where the matrix D(k) can be pre—computed (once—and-

for-all) on the nominal optimum trajectory. This is the
basis of perturbation guidance derived from modern control

theory. It is a stable fedback law with the well known
benefits of feedback, viz insensitivity to model errors,
disturbances, etc.

No results on optimal perturbation guidance (case b) are
presented here because of the following difficulties. An
optimum trajectory was provided in terms of the state and
control variables but no values were available for the 6
Lagrangian multipliers which adjoin the terminal constraints
of rendezvous. As a result, eqn (1) gives rise to large
iterative corrections along with adjustment of the
mutipliers. The changes in pointing angles became so large
(because they are very weak control variables) that the
expansions on which the algorithm is based became invalid.
It is mentioned that JPL (Ref 8) have used the method
successfully in earlier studies but with the important
difference that their optimal solution for rendezvous was
restricted to a subset in which coast arcs or reduced
thrusting was precluded.

In addition to the above difficulties, neither of options
(a) mor (b) is considered attractive because it is expected
that an operational choice of nominal trajectory will not be
an optimm due to compromises on mission duration, viewing
angles, communication distances, etc. Approaches (c) and
(d) can apply to any trajectory and they are further
discussed below.

2.2.2 Guidance by Pointing and Timing

This is option (c) in which the guidance criterion is to
nﬂ.n.i?miz:e end-point deviations between spacecraft and comet
(in ‘position and velocity) by adjusting two pointing angles,
the start of coasting tj, the end of coasting ty, and the
time of rendezvous tg.

Adjustments of the 3 parameters (tj, tp, tg) are very
effective in correcting the 6 terminal conditions but of
course these are insufficient degrees of freedom.
Corrections to the pointing angles of the thrust vector
throughout the whole of the nomcoast parts of the
trajectory must provide the added degrees of control but
unfortunately a change in pointing angle is a weak control
variable. The computation of eqn (2) included weighting on
Ay (k) squared at each interval k, in order to inhibit
large changes which would invalidate the method. The result
was that typical initial dispersions (28 m/s at 930,000 km
from Earth) were corrected to final accuracies of 27000 km
and angular changes of up to 60 degrees occurred. The final
relative velocity was also unacceptably large at 17 m/s,
although the additional propellant required was negligible.
This method was consequently rejected on the grounds of
inadequate controllability.

2.2.3 Guidance by Pointing and Throttling

This is option (d) in which the timing of the coast arc and
the duration of the missions is unchanged, but it is
postulated that the nominal trajectory is such that only
small percentage increases or decreases in thuster magnitude
are possible by throttling the motor, i.e. on top of the
secular change arising from dwindling solar power as a
function of distance from the Sun. Small angular
corrections to the thrust vector are also permitted.

In this case the controllability (largely due to throttling)
was excellent. Some results are presented in Table 3 where
the propellant changes are percentages of the total consumed
for this mission, viz. 1110 kg for a total initial
spacecraft mass of 4388 kg.

Only the first is a nonrandom simulation; the others depend
on priming of a random mmber generator. However the fourth
and fifth rows differ from the second and third rows
(respectively) only in that orbit determination errors have
also been simulated (see Table 2). It confirms that the
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MAXIMUM CHANGES EXTRA
CASE ANGLE, DEG | MAGNITUDE 3 PROPELLANT ¥
Large initial speed errvor 11 3.7 -0.39
of =160 m/s.
Randem (2X%) thruster variationg 8 3.0 -0.057

plus 1 deg const pointing
error, but estimated perfectly. 11 7.1 0.28

As above but including orbit 9 3.2 -0.059
(state) esimation errors.

TABLE 3: END-POINT GUIDANCE BY POINTING AND THROTTLING

accuracy of that estimation is more than adequate. Final
errors have not been quoted because (within limits) they are
not relevant due to the subsequent use of camera sightings
and the comet—centred approach navigation. They were in
fact of the same order as typical a priori uncertainties in
the position and velocity of a comet, viz. at the one sigma
level about 1600 km and 0.35 m/s.

3. APPROACH MNAVIGATION

3.1 RELATIVE MOTION IN THE APPROACH PHASE

The approach phase is taken to start at about one million km
for the comet with say 70 days to rendezvous. Camera
sightings of the comet against a star background can be
assumed; they would augment the ground-based orbit
determination, especially to reduce errors with respect to
the comet. A modified guidance law is proposed which is
suitable for omboard implementation and is indexed by
distance from the comet.

It is helpful to bear in mind the relative importance of
different accelerations, hence Table 4. Where relevant the
distance from the sun has been taken as 2 AU and the range of
mmbers for the field of the comet correspond to a radius of
1-10 km and a specific gravity of umity.

DISTANCE FROM COMET, KM

SOURCE 102 103 104 103
Thrusting 1074 1074 1074 10-%
Solar pressure 2x10°7 2x10°7 2x10°7 2x10-7
Heliocentric diff. field 6x10710 | ex1079 6x10-8 6x1077
Fleld of comet. Ix10-5 ax10-7 3x10-9 ax1o-11

Ix10-8 3x10710 | 3x10712 | 3x10714

TABLE 4: ACCELERATIONS IN THE APPROACH PHASE (m/s?)

It will be observed that thrusting is the dominant source of
acceleration until within about 100 km of the comet. Note
that relative motion between spacecraft and comet is
affected by the differential (not total) gravitational field
of the Sun. The approach phase is defined to end at about
200 km, hence the approximation that the field of the comet
can be neglected, and even the Sun is only a perturbation to
the relative motion. Approach trajectories are consequently
almost straight lines and they were computed in these
studies from differential equations arising from a
first-order expansion about the comet. Thrusting for the
last one million km on the nominal baseline trajectory is
less than 8 deg. from the spacecraft-to—camet vector, i.e.
virtually retro-thrusting along the negative relative
velocity vector. The angle between the nominal thrust
vector and the line—of-sight to Earth varies from 88 to 9%
degrees.

3.2 STATE ESTIMATION

3.2.1 Augrented Ground-Based Orbit
Determination

In the early approach phase, camera data of the comet against
a star background would be employed to supplement
radiometric measurements. At one million km a typical
mucleus subtends an angle the order of 10 microradians but
it would appear larger than this if it were approached near
perihelion due to out—gassing. The Halley multicolour
camera had a resolution of 22 microradians (Ref 8) although
it was not designed for navigation on the Giotto mission.
The camera for the MASA Galileo mission has a 0.5x0.5 deg.
field of view with a CCD imaging system which can detect
stars as faint as magnitude 9 and will be employed for
navigation. Such data can therefore be assumed and its
importance is that refinement is permitted of the orbit of
the comet itself. Quoting the example again of the Giotto
mission, such a priori errors might be 1600 km and 0.35 m/s.

The 6 coordinates of position and velocity of the comet must
be added to the orbit/state estimation computations carried
out on the ground. In our case this would have increased
the mmber of state variables from 10 to 16 but this was not
implemented in these computational studies. The trajectory
relative to the comet is approximately a straight line in
the approach phase so the effect of camera data should be
principally to reduce the components of comet—ephemeris
errors perpendicular to this approach velocity vector, or
line-of-sight from spacecraft to comet. Using the above
example of ephemeris errors, this would still leave one
sigma components of errors along the velocity vector of 1500
km and 0.1 m/s although this may be pessimistic.

3.2.2 Onboard Autonomous State Estimation

Within 10000 km of the comet mucleus, the visibility of stars
is regarded as doubtful because the spacecraft enters the
coma of the comet, although this will depend on the activity
of the comet as a function of distance from the Sun. At
such a distance it is therefore proposed that the inertial
angular rate of the line—of-sight (L0S) vector from
spacecraft to comet should be measured e.g. three mutually
perpendicular gyros mounted on a steerable platform carrying
an imaging system which points at the mxcleus. The three
measured angular rates constitute a vector, the magnitude of
which is denoted € and its direction is the normal to the
orbit plane of motion with respect to the comet.

The latter vector is with respect to spacecraft axes and it
must be possible to relate these to inertial axes by having
two reference directions available in the spacecraft. It is
assumed (a) that the Sun is always visible as the first
reference direction and (b) stars or the Earth provide a
second reference direction in the spacecraft. In order to
maintain commmications it is postulated that the encounter
would be chosen so that the Earth and Sun are not very close
to coincidence, hence the Earth as a second directional
reference if stars are mot visible. Therefore the
relationship between spacecraft and inertial axes would be
known in the spacecraft.

Distance from the spaceraft to the surface of the muwcleus is
expected to be available either by a laser system up to
about 1000 km or by radar up to 5000 km. The accuracy of
both would be around 0.1 per cent but, more importantly, the
distance to the 'centre' of the nucleus would be uncertain
due to the unknown shape and size of the nucleus early in
the mission. The distance at which radar range becomes
available is significant because (as mentioned in Section
3.2.1) there may be large uncertainties in the distance
along the 10S. If such a large error is detected too late
by radar then there might be insufficient throttling
capability in the low thrust motor to prevent under or



LOW-THRUST NAVIGATION FOR A COMET-NUCLEUS SAMPLE RETURN MISSION 85

overshoot. In order to avoid the latter, simple
considerations show that range should be available at a
distance given by

L0S position error—=-throttling ratio (3)

This may be too large, in which case autonomous procedures
for under and overshoot must be included; they are not
difficult (Appendix 7.19, Ref 1).

In approaching from say 2000 to 200 km the angle subtended
by the nucleus would increase between the orders of
magnitude 0.2 to 2 degrees. The imaging system must point
at the "centre' of an irregularly shaped body (complicated
by gas emissions) of such angular sizes. The 'centre' is
obviously i1l defined and some allowance must be made in
simulations for the corruption of angular rate and range
measurements. A crude model of such effects was therefore
included (Section 4.3.1, Ref 1); it was a periodic function
of (@ W), where Wy is the spin rate of the nucleus, and it
allowed for angular effects as a function of distance from a
nucleus of a given mean radius. The resulting errors in
angular rates also give rise to errors in the calculated
normal to the orbit plane although, with illustrative
parameters, such errors have been estimated (Appendix 7.6.1,
Ref 1) to be only a few degrees at distances of 200 to 2000
km from the nucleus.

For a nominal acceleration (70 per cent of the maximm of
4.2 x 1072 m/e?) and a typical initial miss-distance of 1000
km, we obtain as follows for the angular rate of the LOS
vector:

10* km, (8.0 days to go) 0.060 deg/hour
105 km, (25.3 days to go) 0.0019 deg/hour

A typical threshold for a high quality gyro (such as the
Ferranti 125) is 0.002 deg/hour from which it is estimated
that the use of angular rates could not usefully start
before about 20000 km (11.3 days to go). Range is an
important measurement but it is not expected to be available
until within 1000 to 5000 km of the mucleus.

Given the approximately straight line nature of the approach
trajectory the implane motion can be characterized by three
state equations for a nomunique choice of state variables
as follows. If v is speed, h angular momentum and r
distance from nucleus to spacecraft, then

v=Fe 4>
h=hf = (V) (V= R/ e*) *)
g = e W) (+)

vhere (fg, fy,) are thruster accelerations along and
perpendicular to the velocity vector in the orbit plane.

The measurements are
G=8 =h/et | yusr %

An extended Kalman Filter based on these state and
measurement equations was implemented, although the
simuilated measurements incorporated moise and the
corruptions arising typically from sighting on an
irregularly shaped mucleus.

Table 5 shows the results from one example starting at 2000
km, including the measurement of range from that distance.

TIME 3 ESTIMATION ERROR | ESTIMATION ERROR
days km in V, n/s in h, km?/s
0.2 1486 =1.1 0.010
1.0 798 0.37 0.095
2.0 317 0.19 0.074
2.4 233 0.17 0.053
2.6 212 0.17 0.048

TABLE 5: EXAMPLE OF APPROACH STATE ESTIMATION

The last row of Table 5 corresponds to estimation errors
just before the coast arc near the micleus, which in this
case is a parabola with a perigee nominally at 100 km. In
the case of a parabola it can be shown (Section 4.3.2, Ref
1) that errors in (v, h, r) and gravitational factor at
the start of this coast can be related to errors in the
radius r) of perigee by

m;[r,-inh/h—av/\a -iavfc --.;,‘-jy‘//u (8)

The nominal values of v and h at 212 km are 1.25 m/s and 0.18
kmz;“s, hence the last errors of Table 5 correspond to a
perigee error of 40 per cent. This is of course probably
less than the dispersion due to uncertainty in the
gravitational factor of the mucleus.

3.2.3 Autonomous Approach Guidance

Let ¥(r), h(r) define a nominal desired approach trajectory
as a function of distance r from the mucleus, and assuming a
nominal value fr_ of constant retro tangential thrusting e.g.
70 per cent of the maximm. From equations (4, 5, 6) with
f, equal to zero, it is possible to derive an amalytical
solution (Appendix 7.4, Ref 1) for v(r), h(r) and this can
easily be implemented on board. By taking a first-order
expansion of equations (4, 5, 6) about this nominal
trajectory we can also derive a feedback guidance law
(Appendix 7.20, Ref 1) to ensure that, if the states are
estimated perfectly, then the deviationsAv andAh converge
exponentially to zero, i.e.

AV ==Av/T, (1)
ah=-ah/7, (i0)

That feedback law is as follows, with over bar symbols
omitted for brevity.

afe= = (mi=vpSe)av-(hp'fe /o ()

8fa= _[(”’J ( PIT—YF)* I“F‘f‘ [1+ ) v [tv
+[("/")(P/7f “F‘ft—/"z) +( rde(l*;“h‘f#)Jar. (12)
p= (v*- hl/"')'YL (13)

It is important to note that this feedback law, which would
be implemented onboard, is a function of distance to the
target and not time. The suitability and convenience of
this feedback law has been confirmed for both onboard
autonomous guidance from 20000 km or for the last phase of
the ground-based navigation from one million km.

An example of simulated approach navigation is taken as that
already used for the state estimation from 2000 km in Table
5. In order to implement guidance the terms Ay and

Ah  of equations (11) and (12) are formed as

~ - ~
ay=v — v (F) (14)
Ah=h = h(® (15)
A~ ~
where v, h and r come from the state estimator. Table 6

shows the total errors in v and h arising from state
estimation and guidance.
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TIME {4 NAVIGATION ERROR | NAVIGATION ERROR
days k= in V, mfs in h, km?/s
0.2 1486 1.26 =1.49
1.0 798 0.65 =0.034
2.0 al7 0.27 0.10
2.4 233 0.23 0.077
2.6 212 0.22 0.069

TABLE 6: AUTONOMOUS APFROACH NAVIGATION

The last row of Table 6 corresponds to the end of the
retro-thrusting approach phase just before the start of a
coast. By using equation (8) we can again relate these
errors to dispersion in the coast orbit around the nucleus.
The final navigation errors are only a little greater than
the estimation errors of Table 5 and they correspond to a 59
per cent change in the perigee of the coast parabola. It is
however again asserted that, by reference to equaton (8),
the dispersion due to uncertainties in the gravitational
factor of the nucleus would probably be muxch greater.

A feedback law for out—of plane guidance is also possible

(Appendix 7.5, Ref 1) to provide limited correction of the
orbit plane during the approach phase.

4. MANDEWRES IN THE VICINITY OF THE COMET

4.1 MANDELVRES AND ORBITS ABOUT THE MUCLEUS

For manoeuvres and orbiting within a radius less than 200 km
the continued use of solar electric low-thrust propulsion is
considered extremely unlikely for the following reasons:

(a) damage to the arrays from cometary debris over a long
period and uncertain solar intensity.

(b) large slew manoeuvres might be needed to point the
low-thrust vector.

(c) a requirement for huge batteries or a separate RIG power
source when the sun is eclipsed.

(d) any manoeuvres are tiny and would require only a very
small amount of chemical propellant, e.g. 0.23 per cent
of spacecraft mass for several typical increments of
velocity.

Orbital adjustment and maintenance by means of small
conventional thrusters is therefore considered more
realistic. However the thrusting strategies developed could
be realised either by continuous thrusting with electric
propulsion or by impulsive thrusting using chemical
propellant.

It is helpful to appreciate the strength and uncertainty in
the gravitational field of the mucleus. For a mean specific
gravity e and radius r, the gravitational factor

is (with c = 2.794x1077)

3 -

M= CETe lw’ | 5= (iu)
The acceleration in a circular orbit of N radii is

a@= g "’c/N" Ty

and the perturbing acceleration due to the Sun is
approximately
Aa=_es N /R_:, (15)

where R is distance to the Sun (with gravitational factor
Ms). Thus a dimensionless ratio, to which solar
perturbations are proportional, is

Au/q = Mg I\\S/CE R> (H)

Some ilustrative values for this ratio and periods are given
in Table 7. By way of comparison, the ratio (193 is 7.5 x
107 for a geostationary satellite and 5.6 x 1077 for the
Moon about the Earth. In other words, despite the weak
gravitational field of a comet, relatively stable orbits
about the nucleus are meaningful.

T, km N T ka Aala Period, hours
10 2 20 1.4x107% 9.33
10 4 40 1.1x10°6 26.4
10 10 100 1.8x1075 104

1 2 2 1.4x1077 9.33
1 & 4 1.1x10°6 26.4
1 100 100 1.8x1072 3300

TABLE 7: CIRCULAR ORBITS ABOUT THE NUCLEUS OF A COMET

Although the theory of orbits perturbed by non—spherical
bodies is well developed, the useful results refer to cases
vhere the departures from a spherically symmetrical inverse
square — law field are small. The nuclei of comets are
expected to be very irregularly shaped and therefore they
have been represented in these computer studies as a
collection of N point masses distributed approximately
within a given nuclear radius r,. The assemblage can be
distributed at will, but it is arranged within the program
that the gravitational factor is given by eqn (16),

(9 and r_ being inputs.
The following distribution of mass was used to illustrate
departure from a point mass; the angles being R.A. and Dec.
in comet - centred ecliptic axes

1) 16.7% at ry, (0, -90) deg.
2) 33.3% at rg, (120, 0) deg. (20)

3) 50.0at ry, (240, %0) deg.

Period of rotation about Z axis = 20 hours, muclear radius
4 lan.

By way of an example the following changes occurred in the
orbital elements when the orbit was computed over 100 hours,
the period being nominally 24 hours. The two cases are

for positive and negative spin.

Semi-ma jor axis: (15.0-18.3), (14.0-15.4)

eccentricity (0.10-0.32), (0.10-0.22)
inclination (42.4-45.2), (41.1-45.2)
line of nodes 0.41, 0.53 deg/hr

4.2 DETERMINATION OF THE GRAVITATIONAL FACTOR

Due to the large uncertainties in the gravitational factor
of the nucleus, significant dispersions will occur in
coasting or thrusting trajectories within about 200 km of
the nucleus. A coast phase starting at about this distance
is therefore proposed to permit a rapid autonomous (onboard)
first estimate. The assumed measurements are angular

rate, already described for the approach navigation, and
distance to the nucleus by a spacecraft-borne radar, some
such measurement being essential at

this stage. However these measurements would be seriously
corrupted by the irregular shape of the nucleus and
consequently the crude model already mentioned in Section
3.2.2 was included in simulations to represent such effects.

After one or two abortive tests with Kalman and simpler
sequential estimators it was apparent that a very stable
process was needed because of the corrupted measurements. A
simple linear least-squares fit on a batch of data was
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therefore adapted, based on the energy equation in the field
of the comet, viz.

v%=censtant +/U./r' (ZI)

The left-hand side of (21) was approximated from the
measurements (€, ;M) by

i[9 e lnrny/a 646,074 @2
gu=2(r- )l ) (6080 @

The estimation of gravitational factor was tested for a
coast phase of 200 km to 100 km, with the nuclear specific
gravity equal to unity but for three muclear radii of 1, 4
and 10 km (Section 4.3.2, Ref 1). Even with solar
perturbations and the conglomerate nuclear model (20), the
gravitational factor was determined within 2 per cent for
the 4 km cases. The estimates were mot so good for 1 and
10 km radius. The errors were -21 and 36 per cent
respectively, and it was ascertained that (a) the former
arose because the field of the 1 km nucleus is relatively
weak at 100-200 km and , (b) the latter arose from the
seriously corrupted measurements at only 10-20 radii
distance from the 10 km mucleus, i.e. of an irregular shape.
These estimates could be improved by continuing nearer the
nucleus in case (a) and prolonging the coast interval to
take more measurements in case (b), if necessary by making a
correction to avoid impact.

4.3 AUTONIMOUS ORBIT DETERMINATION NEAR THE
MILEUS

Determination of a necessary subset of the orbital elements
marﬂ\emleeusdeperﬂsmthenzastmntsé and T

as for the approach and coast phases. The chosen elements
in conventional motation were (p,e,©), the latter being the
angle from perigee. An extended Kalman Filter was tried
but, even without the corrupting measurement errors, the
convergence could be assured only with very good first
estimates. A simpler more robust recursive estimator was
therefore formulated. It is based on the following standard
equations, assuming trmtﬂ, is known.

r).: (rﬂE‘)z&“ (24)
r=pl(lieces €) (25)
cz =l r'/c{E" = (Ef“/P)st‘ilE‘ (2¢)

The derivation of the estimator is detailed in the original
study (Section 4.3.3, Ref 1); it is sufficient to say here
that it converged well on an eccentric orbit (e.g. e = 0.3,
a = 10 radii), despite the corrupted measurements. It was
however unreliable for less eccentric orbits e.g. e equal to
0.1. Big changes in the estimated value of € occurred if
the estimated e became small; of courseis not defined as e
tends to zero.

Estimation of a minimum set of in-plane orbital elements
must therefore exclude € for nearly circular orbits. By
the way, the use of nonlinear least-squared batch fitting
was not considered at this stage, because the determination
was intended to provide continual sequential updating of the
orbit as an input to an algorithm for orbital maintenance.

4.4 ORBIT ADJUSTMENT AND MAINTENANCE

The manoeuvres required to make transitions between orbits
and to circularize them are conventional and need not be

detailed here. Orbits close to an irregularly shaped nucleus

may however need frequent corrections to maintain the
elements within limits as illustrated in Section 4.1, hence
the use of the following feedback law to regulate semi-major
axisdand eccentricity .

Assume that the orbit is an ellipse with eccentricity less
than 0.7; transition to or from hyperbolic orbits would be
handled by discrete manoeuvres. Thrusting acceleration only
in the orbit plane perpendicular to the radius vector is
proposed (denoted fg ), and continuous thrusting is to be

approximated by impulsive thrusting at regular intervals.
In conventional notation it can be shown that

da/qt = (2a%/h)((+ecos e)f @D

de/dt = (p/ h)[ces @+ (e+cos B)
Jelteccese)] fe  (28)
It is shown (Section 4.4.2, Ref. 1) that the guidance law

Fo=wWetw, ces® (29)

where i
We=( h/P)[(Plzc“)(["el/g)AQ/Tg
~hede/T ]/ (1-3es) (20)
Wi = (h/p)[ae/ T~ (pef4a’) aa/Ts]
/(1-38/%) (21)

will provide the approximate exponential convergence
desired, and

Aa=a -a
(@ ,&)veing the desired values. Thus

(da/dt)ey = (d-a)/Ts (33)
(de/dt)ay = (E-€)/T, (34)

where 'av' denotes averaging per orbit. The implementation
of this algorithm requires estimated values for (a, e) to be
inserted in (32), in order to generate the thrusting law
(29). A corresponding feedback law for the two out-of-plane
elements has also been derived (Appendix 7.7, Ref. 1).

Ae=€~-¢e (32)

The stability and convergence of the above algorithm was
confirmed first by a simulation using perfect estimates of a
and e. Gradual convergence to desired values was obtained
for an eccentric orbit (e = 0.3), but with a nearly circular
orbit (e = 0.1), only the major axis was controllable.

In the presence of estimation errors arising from typical
corrupted measurement due to an irregularly shaped mucleus,
simultaneous ad justment of neither major axis nor
eccentricity was achieved, even in the case of the eccentric
orbit for which the estimation appeared to be satisfactory.

More work is needed on the orbit determination and control
around the nucleus but it is suggested that,

(a) a nonlinear batch fit to equations 24-26 should be
employed to estimate (p, e,€) and,

(b) infrequent conventional impulse-type corrections are
applied only when necessary, thus providing relatively

long intervals to estimate mean values of the in—plane
elements (p, e, &) between corrections.

5. CONCLUSIONS
5.1 CRUISE PHASE MAVIGATION

5.1.1 Ground Based Orbit Determination

- Provided good first estimates are available (if necessary
from batch-fitting) satisfactory convergence has been
demonstrated using tracking from only one station at a
time, in the N and S hemispheres.

87



88

Orbit determination on the coast arc (at about 1 AU from
the Earth) has been demonstrated to be compatible with
ESOC/GIOTTO experience, e.g. 130 km in position and 0.06
m/s in velocity.

Orbit determination in the thrusting phases is seriously
degraded if uncertainties in the magnitude and direction
of the thrust vector are not measured or estimated (as
part of the orbit determination).

Constant or slowly varying uncertainties in the thrust
vector have been successfully included and estimated in
the state vector as part of the orbit determination, both
near the Earth and when approaching the Camet with the
thrust vector nearly perpendicular to the line—of-sight.

Despite the above, it is recommended that the new type of
solid state accelerometer (to be tested as part of the
ESA Technology Demonstration Programme) should be mounted
along the spacecraft axes if it can yield an accuracy

of 10-8 g.

5.1.2 Guidance

- Effective guidance about a mominal (but not necessarily
optimal) trajectory by means of a feedback algorithm has
been demonstrated in which rendezvous occurs at the
nominal mission time. Adjustment of the coast arc and
final time is mot sufficient; instead small positive and
negative changes of thrust magnitude (throttling) are
employed, together with adjustments to the pointing
angles.

- This guidance law can handle errors of orbit

determination and coarse initial speed offsets using
(separately) propellant less than 0.4 per cent of the
initial mass of the spacecraft. In view of its
operational simplicity it is therefore recommended.

- A provisional specification for pointing the thrust

vector with respect to spacecraft axes (in the presence
of a shifting centre of mass) would be about 1 degree.
Similar constant or slowly varying errors in pointing the
spacecraft could be tolerated because the total pointing
error of the thrust vector can be calibrated as part of
the orbit determination.

It is suggested that power for the motor is regulated to
about *1 per cent. Allowing for uncertainties in thrust
per unit power and spacecraft mass, this would then imply
several per cent uncertainty in thruster acceleration.
Provided that this error is slowly varying (e.g. 1 per
cent per month) then im—flight calibration

is possible.

5.2 NAVIGATION APPROACHING AND NEAR THE COMET

5.2.1 Approach from a Million Kilometres

- Ground-based orbit determination (augmented by spacecraft
camera data) can usefully continue and overlap with an
autonomous system until within a few thousand km of the
comet. However the major source of error (important for
a rendezvous) is then likely to be the positiomal
uncertainty of the comet resolved along the approach
velocity vector e.g. 1000 km. Much earlier use of camera
data should be helpful but the combined spacecraft

plus comet state vector estimation has not been

included in this study.

Simplified and satisfactory estimation (from 20000 km) of
three approach state variables has been simulated for an
autonomous system based on angular rate of the
line—of-sight vector and range by radar.

M NOTON &AL

The availability of radar range from at least 2000 km is
virtually essential for comet rendezvous. There is a
trade-of f between radar range and the use of autonomous
procedures for handling under and overshoot.

A feedback law for approach guidance has been
demonstrated; it is indexed by distance—to—go and can be
used in the latter part of the ground-based phase as well
as the autonomous phase. The specification on pointing
the thrust vector would not be demanding because of the
feedback loop; in any case errors of several degrees may
arise in determining the normal to the orbital plane.

5.2.2 Near the Nucleus of the Camet

8.

Despite the weak gravitational field of a comet, the
orbits about a nucleus should be perfectly stable up to
at least 50 muclear radii. The evolution of orbital
parameters for close orbits about such irregular shapes
will however depend on the nuclear spin period and
orientation of the axis.

A crude representation of the uncertainty in locating the
'centre' of a nucleus in an imaging and ranging system
has been included in the simulations, but it underlines
the need for a closer evaluation of these practical
aspects. The corruption of such meansurements near

the nucleus is likely to be serious.

A robust procedure (using the above corrupted data) for
an early autonomous determination of the gravitational
factor has been simulated. It is intended for a coast
phase between about 200 and 100 km in order to permit
early correction for the large a priori uncertainty in
this parameter. This first estimate may be no more
accurate than 20 per cent but subsequent refinement

can occur, if necessary by ground-based Doppler
measurements.

Recursive estimation (not a Kalman Filter) of major axis,
eccentricity and angle—fromperigee has been tested using
corrupted measurements of angular rate and range, but
least—-squares batch fitting is suggested as a more stable
robust procedure.

Manoeuvres near the nucleus would probably not employ a
low thrust system, since tiny amounts of cold gas or
mono—propellants would suffice. A feedback law for the
gradual adjustment of major axis and eccentricity near
the mucleus has been formulated but it was not found to
be satisfactory except for well determined eccentric
orbits. It is suggested that manoceuvres are restricted
to infrequent conventional impluse—type corrections.
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