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OPTIMISATION OF WORST CASE PERIGEE RAISING STRATEGY

M J Smalley & D A Young
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ABSTRACT

A method of optimising the apogee burns to maximise
the worst-case beginning of life mass for a geo-
synchronous satellite is presented. The propellant
budget of a spacecraft has to be designed to take
into account the 99th percentile worst case.
Optimising the worst-case rather than the nominal
transfer strategy results in a reduction in the
propellant mass which would be required for the
manoeuvre.

A computer program, which has been written to
implement the algorithm is briefly described and
the results of two case studies are presented.
One of these case studies employs a single apogee
engine burn with the thrust vector following a
slew about a single spacecraft axis. The second
case study employs a multi-burn apogee engine
manoeuvre with an inertially fixed thrust vector.
Both cases show significant reductions in the
aropellant required for the 99th percentile case.

Keywords: Apogee Engine Firing, rviulti-burn AEF,
Worst Case Requirements.

1. INTRODUCTION

Of current interest in spacecraft mission analysis
is the optimisation of apogee engine firings using
multiple long duration burns so as to minimise

the propel lant requirement for achieving the target
orbit.

Previous methods which have been used perform the
optimisation in a piecewise manner in that each

stage of the mission (launch, apogee engine firings
and the station acquisition) are optimised separately.
This will not necessarily yield the true optimum
strategy for the overall transfer.

In addition to this the propellant has to be budgeted
to take into account dispersions in the performance
of the launch vehicle, spacecraft propulsion and
attitude control subsystems, and the accuracy of

the orbit determination. In order to minimise

the propellant required it is necessary to optimise
the worst case mission subject to these tolerances
rdather than to optimise the nominal case and then
take into account the propellant requirements due

to the dispersions.

This paper presents a technique which optimises for

the worst-case beginning-of-life mass of a
satellite considering all stages of the mission
before BOL as a single problem.

A program has been written modelling this technique
and results from the software are presented in
the paper.

2. THEORY

2.1 Statement of Problem

Optimisation strategies currently exist whereby
the transfer strategy which yields the minimum
propellant requirement to achieve the target orbit
is determined. The spacecraft propellant budget,
however, has to be such that dispersions

have to be considered typically to a probability
level of 99% (2.58¢). Since the variation in the
launch vehicle injection errors and burn execution
errors give rise to non-symmetric errors about the
nominal case, the worst case will therefore be
penalising the mission propellant requirements.
Figure 1a illustrates a one dimensional example
of this.

The figure shows the effect on the propellant
required as a function of the duration of the
Apogee engine burn. If the apogee engine is
permitted to burn too long then the orbit obtained
will be higher than the orbit required and station
acquisition propellant will have to be used to
reduce the orbit, cancelling out the effects of
the apogee engine burn. However, if the apogee
engine is turned off too soon then the orbit
obtained will fall short of the requirement. lence
the station acquisition propellant will again have
to be used to correct the orbit, however, in this
case it is being used to supplement the apogee
engine. Thus the inefficiency is due only to the
difference between the performance of the station
acquisition thrusters and the apogee engine. The
worst case, and hence the propellant requirement,
will be the case where the burn is longest.

Figure 1(b) shows the case where the nominal burn
time is chosen such that the worst case, taking
into account the possible deviation is minimised,
and although yielding a higher nominal propellant
requirement results in a saving in the overall
required propellant.
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2.2  Worst Case Optimisation

It is desired to be able to optimise the worst case
deviation and thereby achieve the best beginning-of-
life mass for the worst case rather than for the
nominal case.

This is achieved by making the function of the
optimisation the worst value which can be found in
the region about the nominal point. This region
is defined by the tolerances on the values of the
optimisation variables due to the dispersions and
errors being considered.

This problem may be considered to be an optimisation
within an optimisation whereby at each function
evaluation the value is maximised in the given
subspace.

The method for this is as follows:-

Consider the optimisation of a function F of n
variables. We require to find a value for the
vector of optimisation variables x such that the
maximum value of the function in a subspace
centred on x is a minimum.

The outer optimisation will be performed using an
unconstrained optimisation algorithm which requires
the first derivatives to be calculated.

The function evaluation method for this algorithm is
as follows:

(x is the optimisation variable vector)

Step F1 Qalcu1ate a starting point y, for_the
internal optimisation by calculating the
gradients of the function at the nominal
point x and extrapolating in the direction
of steepest ascent of the function to
the surface defined by the tolerances.

ie. y =x + ng_ (1)

=0

where a is the normalised gradient
vector

o is the vector of tolerances
for each variable.

Using y, as an initial point for the
internal optimisation find y* such that
F(y*) is maximised and 5} lies on the
n-dimensional ellipsoid defined by the
locus of tolerances centred on x

*_xz
1e§(i‘._- i) -1 (2)
1

T
Step F3 Return the function value F(y*).

Step F2

The gradient may be calculated as follows:
Step G1 Calculate the function value (F(y*))

Step G2 Calculate the analytic derivatives
of the function at the point y*

(These will be the Same as if the derivat-
ive were calculated from changes in the
value F(y*) due to variances in x which
would have to be performed numerically,
involving n internal optimisations).

The function which is to be optimised is the mass
of the spacecraft at BOL rather than the mass of
the spacecraft after AEF. This has the advantage
that the drift orbit does not require to be
specified before the optimisation is performed but
will be chosen by the algorithm so as to minimise
the sum of the mass required for the AEF and the
mass required for the station acquisition,

In addition, the orbital elements of the transfer
orbit will be included as optimisation variables
(those which can be varied) such that the transfer
orbit may be optimised together with the transfer
to the on-station position.

Thus the entire transfer and drift orbit stages
of the mission may be optimised in parallel rather
than serially.

2.2.1 Internal Optimisation. The initial
optimisation, required in Step F2 of the function
evaluation above requires that F(y*) is maximised
subject to the constraint that ﬁ* lies on the
boundary of the region defined by the tolerances.
This introduces the assumption that the worst case
will occur at the extremes of the variations,
which has been shown to be reasonable for the
problem being considered. This simplification
allows the internal optimisation to be performed
using an unconstrained optimisation algorithm where
the optimisation variables are n-1 polar coordinates
which define the ellipsoid of worst case values
centred on the nominal point. This also eliminates
any problems due to the scaling of the optimisation
variables.

2.3 Orbit Evolution

The optimisation algorithm requires the BOL mass
and the derivatives of the BOL mass with respect
to the optimisation variables. To obtain these
an orbit evolution has to be carried out from
injection into transfer orbit through the coast
and thrust arcs up to the start of station
acquisition.
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¢.3.1 Function Evaluation. The orbit is evolved
in the following way. The osculating orbital
elements at injection, along with the length of
the first coast arc are used to calculate the
position of the satellite at the end of the first
coast arc after taking into account the principal
secular and cyclic J2 gravitational perturbations.
The first thrust arc is then evolved by integrating
with a fixed time step through the burn. This
process is then repeated for each subsequent coast
arc and thrust arc until after the final burn
whereupon the station acquisition propellant
requirement is determined to give the final space-
craft mass.

The transfer orbit to be evolved is defined by the
optimisation variables which are

2 the injection apogee radius

the injection inclination

the injection argument of perigee

the injection right ascension of ascending mode
A, Dec or «, B, 840 6 define the burn attitude

the length of the coast arc

the length of the thrust arc

the magnitude of the thrust during the burn
defines the out of plane dispersion in attitude
for single-axis slew burn

the specific impulse of the station acquisition
thrusters.

M Ak IDE —
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The thrust can be inertially fixed or a single-axis
slew.

For an inertially fixed burn it is defined as
cos Dec cos RA

v | cos Dec sin RA (3)
Sin Dec

X

and for a single-axis slew burn it is

c0sé cosa - Siné sina cosg
T | cosé sina + Siné cosa COSB (4)

T
siné sing

where & = S+ .6t
t is time since start of burn.

The thrust control laws are illustrated in
Figure 2.
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Figure 2

To evolve the orbit the equation of state

O I M
st S (%)
is used, where r = (x, y,z)
F=(x ¥, 2)
r=(x2 +y? -i-zz}é

m 1is the instantaneous mass of the spacecraft
p is the gravitational constant

For a coast arc T = D, herice the pésition of the
satellite at the end of the coast arc of given
length can be calculated directly after making
allowance for the perturbations.

However, the thrust arc has to be integrated over
using a Runge-Kiitta routine to update the position
of the satellite during the burn.

After the final apogee engine firing the satellite
has a mass, M. But the final on-station mass,
MF is given by

ki (6)
Me =M - Ny

where HSA is the station acquisition mass.

To obtain the station acquisition propellant
requirement calculate the aV requirement. This
is determined in two parts as a circularisation
or east-west AV, and a plane change or north-south
AV. It assumes a synchronous orbit is required
and that the drift orbit is near-synchronous.

Wys = Vg (2 - 2cose}! (7)

cosp = sin i sin iy, cos (QDBJ-Q) (8)

+ cos i cos 1OBJ

where 1 is current inclination
2 is current RA
iOBJ is objective inclination

908J is objective RA
VS is synchronous velocity

AV = Vg V (9)

where ag is synchronous radius

and Vy = |as + EaaD-raI + las+2AaD —_rpl (1)

where rs is drift orbit apogee radius
rp is drift orbit perigee radius
d.as
and bap = g

with d the required drift rate in degrees
per day to achieve target longitude.

(11)
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The station acquisition propellant is given by
the rocket equation

g.l

¢.3.2. Derivative Evaluation. The optimisation
algorithm requires the derivatives of the objective
function with respect to each of the optimisation
variables.

Differentiating equation (6) in section 2.3.1
with respect to the general optimisation variable,
z, gives

o L (13)
%z 3z g
The 3M terms are all zero except for the derivative

3
of the;End of final burn spacecraft mass with
respect to the thrust arc duration. These terms
are given by the respective flow rates for each
burn from the liquid apogee engine.

derivative can be calculated from the

The aM
_SA expression

37,

e Mgy 3K;

i
3z, 3K, 3z
1:

where K. are the state variables x, y, z, X, ¥, 2

The 3K,
3%

evolution of the spacecraft orbit. Initial values

are calculated for the aKi and they are updated

terms are evaluated in parallel with the

through the burns using ngth order Runge-Kutta
integration technique,

The Runge-Kutta requires the evaluation of d aKi).
dt

These are determined from the state equatjon and

previous iterations. The derivative d [ ax

is equivalent to the previous 3x terﬁqt\\a%

s

. 2z
The expression % (gﬁ) can be obtained from the
state equation tg] %5 differentiating it with

respect to z to give
C3(ban e
- D

@ (30) ()]

1 3aN-T am
+ﬁ(a—{) T 5z (15)

a|ar

The 3M terms are calculated analytically from
5g" the station acquisition equations in
i section 2.3.1.
2.3.3 Launch Vehicle Optimisation. It is

possible to optimise the performance of a launch
vehicle by choosing injection parameters to
maximise the spacecraft injection mass.

The launch vehicle user guide provides information

relating the injection mass to injection orbit
perigee height, apogee height inclination and
argument of perigee. The program has injection
optimisation variables: apogee height, inclination
argument of perigee and right ascension ot
ascending mode. It uses these to determine an
injection mass for the spacecraft and uses
the mass trade off values for these optimisation
variables to set initial values for 3M

9z,
The initial values for the 3K,

F]
terms are determined analytically from orbital
equations relating the position and velocity
of the satellite to the injection orbital
parameters. These are evolved in the method
described in section 2.3.1 and 2.3.2 in order
to determine the derivatives of the BOL mass
with respect to these optimisation variables.

derivatives.

3. APPLICATION

A program was written to apply the theory
described above.

The requirements for the software were as follows:
o Transfer orbit optimisation
Options of

a) Optimisation of Ariane transfer orbit
parameters as s Ta

b) Optimisation of STS transfer orbit
mmmmmryw,hﬂ

¢) Fixed injection mass into a fixed
transfer orbit.

o AEF Optimisation
a) Up to 5 burns

b) Single axis slew or inertially fixed
control laws.

c) Burns not necessarily at Apogee, (i.e.
Perigee top-up manoeuvres)

o Station Acgquisition model.

o Optimisation of Nominal Strategy or Worst Case
Strategy.

o Facility to fix any of the optimisation
variables

o Confidence analysis to ensure worst case has
been found.

Further details of the reasons and application
of these requirements are discussed below:-

3.1 Fixing Optimisation Variables

The facility to fix the values of optimisation
variables allows tolerances to be considered on
narameters which cannot be optimised . For
example, the thrust delivered by the LAE is not a
variable which can be modified but it is subject-
to errors. Thus the nominal value is required

to be fixed for evaluations of the nominal BOL mass
but the errors must be included in the worst case
optimisation.
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This facility can also be used to consider injection
errors into a standard GTO.

3.2 Control Laws

The mathematical representation of the control laws
is given in equations (3) and (4). It can be seen
that the inertially fixed law is a special case

of the single axis slew law with

B = 90°

§ =0

5 = Dec (15)
a =RA

Thus by fixing the variables for g and & the
control laws for the single axis slew may be used
without modification.

The requirements on the thrust vector pointing

for the attitude control system will normally be

to maintain the thrust vector to within a certain
fixed tolerance for the duration of the burn. The
worst case for this error will occur if there is

an initial set up error of this magnitude and

it remains so for the duration of the burn. This
can be easily modelled as an error in the slew
plane (i.e. a tolerance on é§3) and an error
(normally of equal magnitude) in the direction
perpendicular to the slew plane. This direction
is a function of o« and g, and, because these are
variables, cannot be modelled as errors in « and 8.

This error requires the inclusion of an additional
optimisation variable e which is fixed at zero
for the nominal function evaluations but has a
non-zero error.

The errors in «, B and & can then be set to zero
for the single axis slew case. For an inertially
fixed control law 8 is constant and hence the

errors can be expressed in « and &, (since the
directions are perpendicular and € need not be used.

3.3 Confidence Analysis

The value returned by the internal optimisation
will be a maximum, but it cannot be ensured

that the value is the global maximum and not a
local maximum. Thus, in order to assess the
confidence that the final optimised worst case
value is statistically near to the true worst case
a confidence analysis is performed.

This takes the form of a ilonte-Carlo evaluation of
a large number of function evaluations for points
on the boundary of the tolerance region and deter-
mines the percentage of points found which were
worse than the 'worst-case' returned by the
optimisation.

A switch was installed which gives the option

to consider points both inside the tolerance
boundary as well as on it so as to enable a
confidence check on the assumption that the worst
case will 1ie on the boundary of the region to be
performed.

4, CASE STUDIES
We shall present two case studies to show the

propellant mass saving which may be obtained using
a worst case optimisation technique.

Case 1 is an Ariane 3 Taunched geosynchronous
spacecraft with a single apogee engine burn, the
thrust vector being controlled by a slew about a
single spacecraft axis. The transfer orbit
parameters will be optimised fn this example.

The second case is an Ariane 4 launched geosyn-
chronous spacecraft which uses the Ariane Standard
Geostationary Transfer Orbit. The AEF is
performed by means of three burns with the thrust
vector fixed in inertial space for each burn.

For both cases we first performed an optimisation
of the nominal strategy and, by performing a worst
case function evaluation about the optimisee
nominal point, determined the worst case BOL mass.
We then performed a worst case optimisation and
present the results for comparison. For both

the worst case determinations a confidence
analysis was performed to assess the validity

of the results.

4.1 Case 1

This considers a spacecraft launched on a dedicated
flight of the Ariane 3 launch vehicle thus allowing
the transfer orbit elements to be ootimised. The
orbit circularisation and inclination removal is
performed by means of a single burn of the liquid
apogee engine which lasts for typically 9U minutes.
For the duration of this burn the thrust vector
pointing will be controlled by means of a single
axis slew control law.

Table 1 shows the tolerances for each variable
and the pertinent values of the optimisation
variables for both runs.

Table 2 shows both the nominal and worst case
beginning of 1ife masses for the two optimisations
and clearly shows the gain which can be achieved
for the worst case. This gain is equivalent

to 65.7% of the random component of the propellant
requirement. As expected the nominal performance
is degraded slightly but this is of Tlittle
importance since the propellant budget design will
be based on the worst case value.

Comparing the ontimised parameters for the two
nominal strategies shows that the principal
difference is the reduction of the burn time. This
is to be expected since the worst possible scenario
is if the engine over-verforms. (This is also
indicated by the worst case for the Nominal Optimis-
ation case which has a large increase in the

engine thrust). In order to allow for over-perform-
ance the burn is deliberately under-sized and the
station acquisition thrusters used to complete the
manoeuvre,

For both the 'worst-cases' a confidence analysis
was performed with 10,000 random points taken on
the boundary and a further 10,000 points in the
subspace. For the worst-case corresponding to
the nominal optimisation none of the 20,000 points
gave a worse BOL mass than that given in Table 2
and for the worst-case obtained by the worst-case
optimisation only one point (on the boundary)

gave a worse BOL mass. Considering the complexity
of the problem and the mathematical impossibility
of performing a global optimisation these are very
encouraging results.
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Table 1
Case 1 Optimised Variables
Nominal Optimisation Worst Case Optimisation
Variable Tolerance Nominal Point Worst Case Nominal Point] Worst Case
Position Point
TO ra (km) 139.58 42100.67 42096.00 42175.89 42176.15
TO i (deg) 0.0593 6.338 6.337 6.291 6.292
TO w (deg) 0.3431 178.416 178.44 178.443 178.44
o« (deg) 0.0 114,351 114.351 114,357 114,357
g (deg) 0.0 7.540 7.540 7.571 7.571
8 (deg) 0.3767 234,895 234.89 234.949 234,950
5 (deg) 0.0 3.1138x1073 3.2557x1073 {| 3.2557x107> | 3.1557x1073
v (rads) 3.646x10_4 21.775 21.775 21.778 21.778
T (seconds) 0.96 6118.12 6118.04 6032.57 6032.57
v (N) 4,165 491.680 495,72 491.680 490.685
e (degs) 0.3767 0.0 -0.08437 0.0 0.3655
RCT ISP (s) 3.0 294.0 293.95 294.0 293.895
Table 2
Case 1 Achieved Parameters
Nominal Worst Case Difference
Optimisation Optimisation
Nominal 1542.900 1541.164 -1.736
Mgop (K9)
Worst Case 1523.772 1536.344 +12.572
MaoL (Ka)

4.2 Case 2

Case 2 concerns an Ariane 4 dual ‘launch into a
standard geostationary transfer orbit. Circularis-
ation at geosynchronous height is achieved by three
inertially fixed burns at apogees 3, 5 and 7.

Table 3 gives the values of the optimisation
variables and their respective tolerances. As
for Case 1 the principal differences are the
reduction of the burn times.

Table 4 shows the nominal and worst case BOL masses
obtained after both a nominal and a worst case
optimisation. For this example the saving
represents 45.4% of the random component of the
propellant requirement for this manoeuvre.

A confidence analysis was performed on both optim-
isation cases with 10,000 points on the boundary
and 10,000 points inside the boundary. None of
these points produced a function evaluation worse
than the worst-case determined by the optimisation.

5. Conclusions

A method for optimising tne worst-case propellant
requirement for the perigee raising and inclination
removal manoeuvre and subsequent station acquisit-
ion has been presented.

Several possible burn strategies can be modelled
for liquid bi-propellant engines, including inert-
ially fixed or single-axis slew burns. A multi-
burn strategy can also be acconmodated.

The optimisation algorithm considers the
optimisation variables in parallel and thus
determines a true optimum. A nominal or a worst
case optimisation can be performed to determine
the beginning-of-life spacecraft mass.

To illustrate the savings in the random component
of the propellant budget available by optimising
for the worst case beginning-of-life spacecraft
mass, two case studies have been presented. These
examples reflect the possible burn strategies
available for optimisation. Common to both cases
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Table 3
Case 2 Optimised Variables
Nominal Optimisation Worst Case Optimisation
Variable Tolerance Nominal Point | Worst Case Nominal Point | Worst Case
Position Point
T.0 ra{(km) 69.66 42353.199 42351.297 42353.199 42353.313
T.0 i (deg) 0.077 7.0 6.9863 7.0 6.9997
T.0 w (deg) 0.413 178.0 177.9798 178.0 177.993
FE_A deg] 0.27 254 .44 254,449 254,404 254,401
ec ideg 0.27 -7.31544 -7.35654 -7.324 -7.323
o (rad) 0.0 15.7019 15.7019 15.7005 15.7005
BSt T (secs) 1.0 831.170 831.109 826.141 826.088
WM AW 2.0 486.5 486.866 486.5 486.574
(R.A (deg) 0.27 255.841 255.855 255.744 255,742
2nd | Dec (deg) 0.27 -7.44121 -7.51306 -7.51451 -7.55892
Burﬂ v (rad) 0.0 12.5196 12.5196 12.5207 12,5207
T (secs) 1.0 1209.08 1209.02 1204.05 1204.11
Lt (N) 2.0 486.5 487.029 486.5 486.444
Bl (R.A (deg) 0.8 257.053 257.142 256.951 256.675
1 Dec (deg) 0.8 -7.50019 -7.97735 -7.61281 -8.28559
Burng (rad) 0.0 12.5302 12.5302 12.5316 12.5316
T (secs) 1.0 751.422 751.361 746.326 746.520
Lt (N) 7.65 486.5 491.257 486.5 484,151
RCT ISP (s) 3.0 291.0 290.961 291.0 291.230
Table 4
Case 2 Achieved Parameters
Nominal Worst Case Difference 7
Optimisation Optimisation
Nominal 699.471 698.906 -0.565
Mgo (K9)
Worst Case 695,235 697.157 +1.922
gy (Kg)

are the significant reductions in the random
component of the required propellants.
considers one single-axis slew burn provides

a saving of 65.7% in the random component of the
propellant budget for a worst-case optimisation
compared with the random propellant requirement
for a nominal optimisation. Case 2 models three
inertially-fixed burns and the reduction in random
propellant for this example is 45.4%.

An added facility of the software is a confidence
analysis of the optimised worst case point to
indicate whether this point is a global or local
maximum. Because the software is computationally
fast many thousands of function evaluations can be
achieved in a short space of time, typically a few
minutes, in order to determine whether the worst

Case 1 which

case is a local or global maximum to a high
degree of confidence.

In conclusion, an optimisation algorithm has been
devised which allows for parallel optimisation,
can consider one or more single-axis slew or
inertially fixed burns, achieves significant
reductions in worst case propellant requirements,
and is computationally fast at achieving a result.



