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FAST NUMERICAL INTEGRATION OF INTERPLANETARY ORBITS

F Debatin & A Tilgner

Technische Hochschule Darmstadt
Hochschulstr. , 6100 Darmstadt

ABSTRACT

Mathematical considerations on the stability of
the numerical integration of interplanetary
orbits lead to a special step-size control for the
time that minimizes the camputation time. These
controls are derived fram the eigenvalues of the
Jacobian of the right-hand sides of Newtons
equations of motion. It is shown that the im-
plementation of this control into a multistep
method of constant step-size by means of a time
regularisation has certain disadvantages. They
can be avoided by integrating the equations of
motion by means of a multi-step method with
variable step-sizes like the one due to
Nordsieck. Initialisation problems and the com-
putation of the coefficients of the difference
equations for higher order methods are addressed.

Keywords: Fast numerical integration, inter-
planetary orbits, step-size control, stability,
eigenvalues, Nordsieck-method.

1. INTRODUCTION

The orbit of the nucleus of camet Halley, the
first target of the GIOTTO S/C, has been
determined altogether more than 300 times at ESOC
during the last two years. The GIOTTO flight
dynamics team envisaged frequent runs of the
relevant orbit determination software because it
knew that

- the first interplanetary mission of ESA could
require more checks in the navigation process
than other routine projects;

- different models for the norgravitational
force and for the observation biases had to be
campared fram time to time and last not least

- some observers expected a quick assessment of
the quality of their individual astrometric
data in order to accamodate their equipment
(telescope, plate, filter), the exposure time
and the measuring amd reduction of plates to
the the camet specific problems.

The above facts indicated to seek for a fast
orbit determination methed.
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The numerical integration of state and
variational equations becames the daminant time
consumer in the method if one has to process
observations fram several apparitions of a

camnet. This was the case for camet Halley and
will be the case for the next potential target of
GIOTTO, camet Grigg-Skjellerup. The following
considerations on a fast numerical integration of
interplanetary orbits were therefore the
prerequisite for the development of the ESOC
orbit determination software. It was supposed to
contain a generator for states amd
state-transition matrices that needs a minimum
amount of integration steps per orbital
revolution and a minimum number of evaluations of
the right hamd sides of the equations of motion
and partials in each integration step.

2, INTGRATION ALGDRITHM AND STEP-SIZE CONTROL

It is well known that an approximation of the
6-dimensional state s(t) of a probe moving in
space, e.g. of its position and velocity or its
orbital elements amd angular variable, amd of the
partials 8s/as, of this state w.r.t. a
given initial state s, at the epoch t,, i.e. of
its 6x6 state transition matrix @(t), can be
determined as a function of time t by means of a
numerical integration of the equations of motion

ds
a't—-— f(Sut) [11

and of the variational equations

ad _8f (o ¢)ep

dat ~ 8s (2)

The variational equations (2) are linear in @
since s(t) and hence 8f(s,t) /0 s can be assumed
to be a known function of t for s(t) can be
determined independent of § from equations (1).

Any integration algorithm provides approximations
8, P; of s(t) and P(t) at discrete times tj,
i=0,... . It is well known that the step-sizes
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hi = tj+1-ti are subject to restraints if one
wants to achieve some prescribed accuracy of the
approximations. The step-sizes must be
'controlled'.

A suitable control can be derived fram the local
and global truncation errors of the algorithm and
in particular for finite step-sizes fram an
analysis of its stablity e.g. w.r.t. round-off
errors. The latter fact is sametimes overlooked
although it often imposes more stringent
constraints on the step-sizes than the limitation
of truncation errors.

The step-size control depends on the integration
algorithm amd on the right hamd sides of the
differential equation. The following simple and
well known example illustrates once more same of
the above statements.

Let us assume our right hand side f(s,t) contains
a camponent that contributes noticeable
accelerations 6(t) of the proble only in the
samll time interval (tg— At/2, tg+Aot/2),

A t <<orbital revolution period. Such
accelerations typically occur during a close
fly-by at a small planet and they may cause
remarkable deflections of the trajectory.

The local truncation error of an algorithm of
order n is proportional to hP. One can therefore
often find for a h> At an order n such that the
local truncation error drops below a prescribed
or acceptable limit. This means that when the
step-size control is derived from truncation
errors alone (which is often done) the
integration algorithm may take no notice of the
noticeable perturbation of the trajectory due to
the short term or short periodic acceleration
6(t).

The step-size control depends on the integration
method. We have chosen at ESOC an implicit
multi-step difference scheme as integrator for
the following reasons:

- it does not require more than two evaluations
of the right hamd sides of (1) during the
iterative solution of the implicit difference
equations (predictor-corrector method)
independent of the order of the method;

- the most time consuming part of this
evaluation, the retrieval of the positions of
the perturbing planets fram an ephemeris file,
and the camputation of the partials on the
right hard side of (2) need mot be done more
than once if the time t is the independent
variable.

More details on the algorithm used will be given

in chapter 4.

Those reasons imply that the number of
evaluations of the right hand sides in (1) and
(2) is independent of the order of the algorithm.
Hence, the step-size control can be made rather
irdeperdent of the local truncation error, i.e.
the permissible step-sizes and hence the
canputation time is mainly defined by stability
considerations.

An analysis of the full stability problem in the
case of the large step-sizes we are interested in
is possible only for model equations approxi-
mating the true differental equations, i.e. one
can derive first order conditions fram an

analysis of linearized difference equations for
the truncation errors. For details of this method
we refer to Ref. 1.

Let A p(t), k=1...6, be the eigenvalues of the
Jacobian 3f/38s of the right hamd sides f(s,t)
of system (1). They are the natural frequencies
of the system. We motice that they are identical
to the eigenvalues of the Jacobian of the right
hard side of the secord system (2) for the state
transition matrix because

W
g os

It can be shown after some lengthy analysis that
the step-sizes of the multi-step methods must
fulfil the following stability corditions

of
(s,t)*#]  is proportional to 35 (s,t).

max C*|A |*h = c+A(t)*h < 1 (3)
% k

and

Real (a\k} >0 Jk=1...6, (4)

if one does not want the truncation errors to
grow beyord any limit with increasirng number of
integration steps. We will call A (t) the
'maximun eigenvalue'. These are the conditions
that depend on the system to be integrated. There
are other, well known purely method deperding
stability and consistency conditions. They must
always be fulfilled by a proper choice of the
coefficients of the difference scheme. They do
mot deperd on the step-sizes (see Ref. 3) amd
therefore do mot influence the step-size control.

The coefficient C in comdition (3) also depends
on the methad amd the order selected. C for
instance increases with increasing order (see
Ref. 1). This must be taken into consideration
when determining the optimum order from a trade
off between local truncation error amd stability
cordition.

We would like to mention in this context that the
first comdition (3) is tidily related to the
sampling theorem of the theory of signal
processing. It states that an error free
reconstruction of a signal from samples, i.e. in
our case fram discrete values of the right hand
side f(s,t), requires a certain minimum amount of
samples: There must be taken at least 2 samples
within one revolution period of the signal
canponent with highest frequency. This is
equivalent to the condition max | M |/x"h < 1

The solution of our syste’m will contain terms
proportional to e *k(t=t5) | Hence, amall
truncation errors can build up to such an extent
with increasing time t that they will eventually
swamp the required solution if Real(*x ) > 0.
Condition (4) prevents this type of instability.
It does not depend on the step-size h and has
therefore no influence on the step-size control.

The above considerations and the requirement to

make the number of integration steps per

revolution a minimum led us finally to the

following step-size contral in the numerical

integration of the orbit and partials.

- upgrade the step-size at each integration
step i according to
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hy g =By A /AL ) (5)

in order to make C -h-A (t) = constant.
= Choose an initial step-size h, at the epoch t,
such that

-- the stability conditions C- hg A (t5) <1
is fulfilled for h,,

-- one gets a sufficient number N of
integration steps per orbit with the above
step-size control that assures negligible
truncation errors. ESOC used N = 1200 steps
per orbit in the orbit generator for camet
Halley. It is advisable to optimise N by
means of test runs.

The above rules obviously guarantee that the
stability condition (3) is fulfilled throughout
the integration and that one gets a minimum
anount of steps.

All we need now is to determine the value of A (t)
for the equations of motion of an interplanetary
prabe.

3. EIGENVALUES

We use at ESOC the position vector X amd the
velocity vector v of a massless proble (camet,
spacecraft) in the EMES0 (= Earth Mean Equator
and Equinox of 1950.0 system) as state s in the
orbit generation. The centre of that system is in
the barycentre of the solar system. The equations
of motion ¢'e to Newton then read

as._a (*) - *
dt  dt |7 | |4(x, t)+p(X,7,t) 6)

<

with

g(x,t) = - f ) &_;‘j(tn. (7)

Thex{ ) are the known positions of the sun
(#0) and of N perturbing bodies (planets, moons,
etc.) to be retrieved fram an ephemeris file; the
Y4 _are the relevant gravity constants and

p(s,v,t) stands for other small perturbing

accelerations due to general relativity and non-
gravitational forces, such as out-gassing forces
on camets.

The camputation of the Jacobian G(x,t)= 8g(x,t)/ox
of the gravity temms is a straightforward task.
The gmall partials of p w.r.t. x and v are
neglected in our system. We will therefore get
only an approximation for @ from the integration
of the resulting truncated transition system (2).
But we know from experience that this
approximation is sufficiently accurate in the
paraneter estimation process of the orbit
determination software and for the camputation
of the step-size control.

Using cartesian coordinates as in equations (6)
and (7) respectively has one advantage over
equations of motion using elements that is
worthwhile mentioning. All calculations
necessary in the evaluation of the right hamd

sides involve very simple algebraic manipulations
ard square-roots. This makes the iteration
software fast.

The Jacobian of system (6) has a special form,
0 I\I
- (8)
E(XIt) 0

One can shov (see Ref. 2) that its eigenvalues
are the 6 square-roots of the 3 eigenvalues

w 1,2,3 of the symmetric 3x3-matrix G(x,t),
i.e. square-roots of the zeroes of the 3rd-order
polynomial det(G(X,t)- w I).

These zeroes can easily be camputed at each
integration step. There do mot exist more than two
different absolute values for the A, since
G(x,t) is a special symmetric 3x3 matrix.

Figure 1 shows them for camet Halley's motion
around its perihelion in 1835. The graph gives an
idea of how fast the step-sizes may vary in the
vicinity of the perihelion.
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Figure 1. Absclute values of eigenvalues of
Jacobian for camet Halley around
perihelion

One can furthermore prove that one of the
eigenvalues is positive. This fact has some
consequerce.

- The stability condition (4) is always violated
for at least Newtons equation of motion, i.e.
small truncation errors may build up amd
destroy the solution.

This fact is unfortunately true and rather well
known in general for all Kepler motions
regardless of the formulation of the equations of
motion. Round-off errors will leal to small
differences between the true and the approximated
semi-major axis of Kepler orbits amd hence to
secular or 'unbounded' along-track errors in the
integration process. We have to live with this
phenomenon.

The camputation of the eigenvalues from the 3rd
order polynomial is time consuming. We have
therefore approximated the maximum eigerwalue A
by a simple analytical expression. For N=0, i.e.
for the pure two-body motion of a probe about the
sun, one can determine the following exact
solution with r snTl
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y — -3/2 a P 5 -2
1.2 PRy Ay g0 Agem VAR B
= A
e
-3/2

ard hence A = Zuor

This solution can be gained easily by means of
the fact that the eigenvalues of the Jacobian
must be indeperdent of a rotation of the co-
ordinate system. Rotating the position vector x
into the radius-vector direction gives x =
(r,0,0) and the characteristic polynomial of
G(x,t) assumes the simple form

u 2
[] 2 o

(== - w) T - w) (9)
r r

and thus provides the above eigenvalues " A= Vu ".
This indicates to use either

N 2u, b
A =]z — 5 (10)
J:ﬂ !K—x.{t)l
J
or
N 2u 1/2
§ i 1?:4——§
j=0 x-xj(t)| (11)

as approximations of A . A, is the simpler
by-product of the evaluation of G(x,t) amd it is
the better approximtion for the maximum
eigenvale in the case of camet Halley. Figures 2
and 3 show the errors of the 2 approximations
arourd the two perihelion passages of the camet
in 1835 and 1910 that are most important for the
orbit detemmination.
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Figure 2. Errors in approximations A, (see
formula 10) and Ay, (see formula 11)
of eigenvalues of Jacobian for camet
Halley: 1835 — 1840,

Figure 3. Errors in approximations A, (see
formula 10) and Ay (see formula 11)
of eigenvalues of Jacobian for camet
Halley: 1905 - 1910.

4, THE INTEGRATION ALGORITHM

A multi-step method with constant step-sizes is
the most cammon algorithm for the numerical
integrations of ordinary differential equations.
One can implement a step-size control derived
framn the maximum eigerwalues A (t) of the
Jacobian into those algorithm by means of the
so-called regularisation of the equations of
motion (see also Ref. 4). Making the time t a
dependent variable of a new imdpendent awiliary
variable £ through

at _ 1

dE ~ A(t)

™,

one can control the steps in time t as requested
above with constant steps in the new variable £

This method, however, has some very undesirable
side-effects:

- One has to integrate 7 instead of 6 equations
of motion.

- The right hard sides of (2) amd the ephemerides
of the planets must be recamputed at each step
of the solution of the implicit difference
equations since t will vary as a dependent
variable. Both the effects mentioned will
increase the camputation time.

- Events like observations or manoeuvres are a
function of time. In particular the
implementation of manceuvres requires an
unnecessary canplex logic and a very
time-consuning re-initialisation of the
integration process.

We therefore wsed a multistep method with
variable step-size for the integration of all
differential equations.

These methods exist and the equivalent of the
most stable predictor-corrector method with
constant step-sizes due to Adams-Bashford-
Moulton is the Nordsieck-method (see Ref. 3).
The mth order Nordsieck-algorithm camputes in
each integration step the desired approximation
of the solution together with its derivatives up
to order n. It is not a simple task to compute
the coefficients of the difference scheme for
higher order methods we are interested in (see
Ref. 3).
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canputed them ourselves by means of a formula-
manipulator. They are available on request.

The operational orbit generator works with an 8th
order method.

The next problem we faced was the initialisation

of the algorithm, a well-known task in multi-step
methods. We went two different ways for two types
of application.

The first method improves iteratively some given
rowh initial values by means of a forward-back-
ward integration within the integrator proper.
The initial values can be taken fram a two-body
Kepler motion. For considerations on the
convergence of the method we refer to Ref. 5.
This method may fail if the intial values are bad
which will typically happen when the start point
of the integration is close to a perturbing
planet, e.g. at departure of a probe fram earth.

In this latter case we use the single-step method
of Everhart (see Ref. 6) as starter of the
Nordsieck integrator. It provides in each
integration step exactly what we need, the
solution and its derivatives. But it is a bit
more time consuming than the iterative
initialisation amd it requires more software.

5. CONCLUSION

We have shown that a few rather classical
considerations on numerical integration methods
and their stability led to a special design of
the orbit integrators in the ESOC orbit
determination software for interplanetay
flights. This software was e.g. used for the
frequent determinations of the orbit of camet
Halley as mentioned in the introduction. It
needed about 1 min of CPU time on the Siemens
canputer for one iteration in the least-squares
process if one processed data from 3
apparitions. This campares favorably to the 30
CPU-minutes that were consumed by the
correspording software developed on behalf of the
IHW at JPL when it was running on the SIEMENS on
request of the GIOTTO project for camparison
purposes.
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