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ABSTRACT

In this paper, the applications of the
Newton-Raphson iterative method to artifi-
cial satellite 's orbit determination are
discussed. The fundamental equations are
derived. The solving process of the me-
thod is described. The convergency of the
method is analysed. Some numerical examples
are presented so as to demonstrate that the
method is available. The future investiga-
tions are suggested.

LIST OF 9YMBOLS

T- radius-vector from Earth's center to the
satellite

iZ— radius-vector from the Earth's center to
the tracking station

}i- radius-vector from the tracking station
to the satellite

Y- distance from the Earth's center to the
satellite i

GM-the gravitational constant of the Earth

0- 3%1 zero-vector or zero matrix of 3X3

[- 3x3 unit matrix

The inertial rectangular coordinate system

of 1950.0 is used in this paper

X(t), z(t), AB(t) - position components

of satellite

(t), G(t), G(t) - velocity components

satellite
X('G)= x(t) L(t) 2}(1’-) - position-vector
X,(t)= [ (t) - velocity-vectOr
X(t)= (t) 1%( = state-vector
Rq(t), R2 tJ Rz(t) = position components of

the tracking station
R4(t),R5(t),Re(t) - velocity components of
the tracking station

n(t)=[n1<t‘f Ra(t) n;(t)]

RJtJ”[R4(t) Rs(t) Rs(t}] - velocity-vec-
R(t)=?%(t) Rz(t)] -state-vector

£1(X,t rz(x,t) f (I,t) - acceleration com-
ponents caused by acting forces

- position vec-

#3ome parts of calculation are finished by
Wang-bin and Huang Wen-ling

T
£(X,t)=[21(X,t) £2(X,t) £3(X,t)] - acce-
leration-vector

F(x, t)zlfo £(X,t))"- function-vector
Superscripts:

T ' - transpose of a vector or a matrix
'+ ' _ reference vector

't~ ' _ true vector

INTRODUCT ION

A numercal technique in which the sixpoint
boundary value problem of the differential
equation system is solved by and is called
‘Newton-Raphson method' can be used to
determing the artificial satellite's orbit.
On principle, this method can be used for
any kind of the observation data obtained
from a single tracking station and the
complete dynamical equation containing
perturbation forces. Thereforeyit can be
expected that the computing accuracy will
be quite high.

The difficulty in the applications of the
Newton-Raphson method to the orbit deter-
mination is that the convergency of the
method isn'$ assured easily. This is caused
by that on the one hand the observation-
state relationships are the nonlinear
algebraic equation system for the Ranging
data or the Doppler data and on other hand
the linearization of the state equation
will results the errors which limits the
convergency of the iterative process.

In this paper, the solving process of the
nonlinear algebraic equation system is
discussed and the convergency of the method
is investigated. In the numerical examples,
the equation which describes the motion of
the satellite is the equation of the two-
body motion and the simulation data are used.
In fact,the method itself isn't limited by
the two-body motion. The state equation
can involves any acting forces. The future
investigations will be suggested.

FUNDAMENTAL EQUATIONS

According to the Newton's law, the equation
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which describes the motion of the satellite
can be written in general form as:

d t
IO - rxw (1)

where F(X,t) may involves the acceleration
caused by the central attraction of the
Earth, nonspherical attraction of the Earth,
the atmospheric drag, the attraction of the
sun and moon, the solar radiation pressure.

It is assumed that the reference state-
vector is denoted by X*(t), then

§x(t) =X(t) - X () (2)
is called the variation of the state-vector
Sxm—ﬁl.m ‘Mt)]’ : (3)

where

Lf:ft)- (sxce) 80 &) =

t:-[IItt:I:t,m {:em]' =

and 4X,(t) is the variation of the position-
vector and 622(t) is the variation of the
velocity-vector

The partial differential matrix of F(X,t)
and X*(t) is denoted by the expression as
follows:

o) .(B_ru_a_ P
DXL A4y

then the variation equation of the state-
equation near the reference state-vector
is as

-3%- A'(1) EX(t) (6)

This is a linear differential equation
about the dX(t).

It is assumed that the satellite is sub-
jected only to Barth's central forces, the
state equation which describes the motion
of the satellite can be expressed in the
form

o 1 X{t)
d!!t!_

dt )

-f%r of [x4t)

The variation equation can be expressed in
the form

éx(t)
afxe)_ (8)
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The geometrical relation between the satel-
lite and the tracking station is drawn in
Fig.1.

orbit

satellite

F

station

Barth's center

Fig.1 The geometrical relation between the
satellite and the tracking station

The observation-state relationships can be
written as follows:

qj.[z,u,:-mtp]’[x,ct,}-ﬂn,)] - £t =0 )

for the Ranging data where % are observa-
tion data and tj(j=1,2,...,6) are observa-
tion times.

g-[ﬁx.tt,} = Ri(t)]" [(k(3) = Rytty ,]}r (10)

Oy (R Cts1-Ry ) [xpt 4R 4)) - £ fymo 1)

for the Doppler data where [j are observa-
tion data.

SOLVING PROCESS

The problem investigated here is a sixpoint
boundary value problem of the nonlinear
differential equation system in which the
boundary conditions are implicit type. The
boundary value target technique can be
used to solve this kind of the problem. The
solving process can be outlined below:

1) To solve the state equation based on a
guessed initial value (to) so as to
obtain the reference state-vector and
compute the transformation matrix §(t;to).

The computed results are stored at the

observation times ti(j=1,2....,6) and
@(tj;to) is resolved blocks as:

Py, (tg)  Byplty)
Dity:to) = (12)

P,y (tg)  Ppy(ts)
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where Pj)(i,k=1,2,3) are 3X3 matrixes.

The modified state-vector can be written in
the form

{ Xy (45)=X)(45)42y 4 (406X, (0)42, ,(49)6X, (o)
(13)

X,(49)mX] (£9)4B,  (£9)5X, (£0)43,,(t5)8X,( o)

2) To compute the following functions:

a;-[x;u,a-gct,:]"[x,‘u,)-R,ft,)] -2 e

for the Ranging data.

£ {EeprealEesre)f  on
o [xiep-Reep) T (Ratesr-Rsep)] - £ £70e)

for the Doppler data.

The accuracy control quantity is denoted
byge . If

then the computing process would be end.
Else, the iterative process would be con-
tin‘l.i!.Bd.

q <f (17)

3) To compute corrections of the state-
vector: Substituting (13) into (9) or

(10) and (11), then the nonlinear algebraic
equation system about §Xq(to),éX2(to) can
be obtained. This equation system can be
solved by means of whether the Newton
iterative method or the gradient method.
Solving §X4q(to),8Xp(to), then the modified
state-vector can be obtained:

X,(t0) = X, (%0) + X, (o)
|

X,(to) = X;(t0) + 5X,(to)

4) The Xq(to),Xp(to) are served as new
initial state-vector. It is necessary:
repeat the computing process mentioned
above again until (17) is satisfied.

DISCUSSION ON CONVERGENCY

Whether the Newton iterative method solving
nonlinear algebraic,equation system where
the zero point of Qj is solved or the
grad{‘.ent method where the minimum point of
F=5 Q; is solved are all solving local
J=1
zero point or local minimum point. There-
fore, the discussion on the convergency of
the method is necessary.

As computing time is not too long, for
example, it is shorter than 300 second,
then the transformation of the variation
equation can be simplified below:

1 01T
Q(tjnn]: (19)

where J=0,] ,...5 and At is the separate of
the observation time which is taken 4t=60
sec.,

The parameters are defined by
r,(tp = [Kotep-myeep) ™ f;/ﬁcz“ﬂ

(20)
0 (ty) =X, (9)-r,(0)]"

Then the expression of the Q}(J=1.2...,6)
can be simplified in the form:

Qym20,(1)8X, (to)+298¢0,( ) SX,(t0)
+ F!‘(to)] T8z, (to)s23at Fx,{tu)] T8x,(%0)
H2386)%(6,(%0) ) T fx,(t0) (21)

for the Ranging data.
Q;—Cﬂi;]&,ttoh [ea(ty)438%0, (44)] Sx,(t0)
+¥ E/g[Sx,tm]'J’x,cm
(130 fuj:} (8x,0t)) "fx(t0)

+308(1-Y3 8t Q/ﬁ}szuo,] Gt (22)

for the Doppler data.

It can be seen that the ?‘ are a quadratic
type of the ¢X1(to), &Xo %o) whether for
Ranging data or the Doppler data.

As

X{(to) =X, (to)
(23)

X3(t0) =T, (to)

the value of the QE are zero which means
that the true state-vector is a solution
of the problem.

From (21) or (22), it can be drived that

?q'
(w'no C,(tg)42 [rx'(m]’w:m [sz(to)]’

(.’."‘_.. 25810, (to)s208t (§1,(20)] T (24)
X, (to

+2(306)%(Sx,(t0))

for the Ranging data.
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(E:'_

utnn}):c.‘(tli + fi/g— (&) *

+ (1-gat Elg ) [6x,¢e2)
(25)

.
Cx

5 T
—c,(t3)e38tC, () +(1-38t [3/3) [5x, ()
"bxz(to]) 21 124 ‘q [ L )

429 (1438 G,g ) [0 T

for the Doppler data.

It can be derived that the extremity of the
are as follows:

(26)

X;(t0) = Ry(to)

l Xy(t0) = Ry(t0)

This means that when the guessed initial
state-vector is equal to state-vgctor of

the tracking station, then the Qj will take
extremity.

The Xj(to), X5(to) which satisfy below
formula are other zero point of the Qf

X{(t0) = Ky(to) = [K,(t0) = Ry(t0)]
(21)

X5(to) = y(to) = [xztto] - thto]]

which indecates the wrong solution of the
problem,

From results obtained above, the conver-
gency of the method can be summarized as
follows:

4 % (t0) >R (to)

and the guessed initial state-vector satisfy
x (to) DRe(to) (k=1,2,...,6)

3") % (t0)L Ry (to)
and the guessed initial state-vector satisfy
xf (to)< Ry (to)

then it can be predicated that all Q)
(3=1,24...,6) are monotone functions‘of
the &X1(to), §X2(to), the zero point cor-
respond ing to true state-vector is a
unique local compressed point, the true
solution can be obtained by means of the
Newton-Raphson method.

33 %y (t0) > By (to)

and the guessed initial state-vector
satisfy

xy (to0 ) LRy (to)
@) Xy (t0) <Ry (to)

and the guessed initial state-vector
satisfy

xy (t0) >Ry (to)

then it can be predicated that all Qj
(§=1,24+++,6) are monotone functions‘of
the 6X1(to), &X2(to), but the zero point
corresponding to the wrong solution is a
unique local compressed point, the wrong
solution can be obtained.

If the guessed initial state-vector neither
satisfy the condition in 1; and 2; nor
satisfy the condition in 3) and 4), then it
is not predicated that all Q%(j=1,2,...,6)
are uniform monotone functions of the
§X1(to) and 8X2(to), the iterative process
may diverges.

The illustration diagram of the convergency
of the method are drawn in Fig.2. Where it
is assumed that the true state-vector take
values as follows:

i’1 (to)>R1 (to), 'i'z(to)< R,(to), “i5(to )>R3(to)

’i’4(to )>a4(to)."x'5(to )?Rs(to),'i's(to }Rg(to)

fyit0)

5! 101-51 ta)

trus poal q’

T

v 7 =
. .
e ) =Bg{ta] .
£2y0%0) | X)(te)-Ryite)

a) condition of convergency for position

Iyl te)
Vrong poritien

E‘r‘\-

Bgtte)

; = _ sl ta)-R5(te)
hN

{isite)

b) condition of convergency for velocity
Fig. 2 illustration diagram for convergency

If the guessed initial state-vector are in
I region indecated in Fig.2, then the
process will converges towards the true
solution; If the guessed initial state-
vector are in II region indecate in Fig.Z2,
then the iterative process will converges
towards the wrong solution; otherwise, the
iterative process will diverges.

The coordinate system is composed which
three axes parallel with three axes of the
inertial system and the origin is placed at
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the tracking station., This rectangular co-
ordinate system divites space around the
tracking station into eight regions. As
the guessed initial state-vector is in same
region with the true state-vector, then the
true solution can be obtained. As the
guessed initial state-vector is in the
symmetrical region with the true state-
vector about the origin, then the wrong
solution can be obtained. As the guessed
initial state-vector is in other regions,
then the iterative process will diverges.

NUMERICAL EXAMPLES

It is assumed that the initial time is
6:00, March 21, 1981. The simulation data
are as following:

Table 1 The initial valus of trus state-vector

T(to) | Tero) | Tre) | Ttte) | Tgtte) | Fylto
(ma) (mm) (o) (m/Sec) | (mm/3ec) | (D=/Sec)
5836.89070 [1265.61600(3411.49600 | 0.31460 6.94010 =3.11250
Table 2 [ocation of the tracking statien
lgeography latitude geography longltude height
3% 100 ¥ 13% 15 2 0.15 I
Table 3 Stat of the statt
R,(to) Ry(to) Ry(to) R,(to) Rg( to) Rg(to)
(i) (Em) (Em) (Em/sec) | (mm/sec) | (Fm/sec)
[5463.14996|2139.12637 | 2493.77850 | -0.15551 | 0.397T17 0.0
Table 4 Observation data
G’[Iou) (] 60 120 180 240 300
fy (o) 1321.1040 [953.7183| 647.7150 [ 526. 5433 | 695. 2631 1018. 4470
£ (xn/ave) | -6.35643 (-5.79697|-4.07108|0.50565 (4.55832 | 5.95061

It is assumed that the values of {xx(to)
(k=2,3,...,6) take zero and the values of
the &xq(to) as below Table.

Table 5 four initial deviation of x1(toJ

Number 1 2 5 4
611(1;0)
(km) 10 20 30 40

The initial residuals are drawn in Fig.3,

It is assumed that the observation data are
the Doppler data. The technique of the
solution is the boundary value target method
where the solving process of the implicit
boundary condition is the Newton iterative
technique. The residuals curve after the
first time iterative are drawn in Fig.4.

The Range residuals curve after second time

iterative are drawn in Fig.5 and the velo-
city residuals are given in Table 6. The
residuals after third and fouth time
iterative are given in Table 7, Table 8,
9, 10 respectively. The final value of
the components x(t) and its errors are
given in Table 11.

30

25

8

-
o

Range Residuale (Em)
un 5
>> I I l

Velocity Residuale (m/sec)

0

Obaervation  time
(mec) Observation time (sec)

a) Range residuals b) Velocity residuals

Fig.3. residuals for initial state-vector
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IR ER T

Velocity Reaiduale (cm/sec)

Rangs Residuale(m)

60 120 133 240 %m0 By

Observation Tize !sscond) fbasrvation Time (sscond)

a) Range residuals b) Velocity residuals

Fig.4. The residuals after first time

iterative
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Observation Time (second)

Fig.5. Range residuals after second time
iterative
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Table 6 Velocity residuals after second time Lterative

* fa.l,)
(o 0 60 120 | 180 240 | 300
l&ﬁ.t«n ) "o}
10(B=) 2.22 3.39 4.37 -2.42 =5.73 =3.61
20({mm) 4.27 | 6.51 | B.39 | -4.64 | -11.02 | -6.94
Jo(mm) 6.26 9.56 | 12.32 =6.81 | -16.17 | =-10.18
40( ) B8.32 | 12.70 | 16.37 =9.06 | -21.49 | -13.53

Table 7 Range residuals after third iterative

[

(..o)

f’, 0 60 120 180 240 300
Xy ( to >,
10( Em) =13.64 | =19.79 | =28.86| =33.07 |=21.97 | =11.17
20(mm) =26.11| =37.89 | =55.25| ~63.33 |-41.30 | -21.39
30( En) =38.27 | =55.54 | -80.99 | -92.83 |-60.53 | =31.35
40(m) -50.82 | =73.75 |-107.55|=123.27 |-80.38 | -41.63

Table 8 Velocity residuals after third iterative

. o 60 120 180 240 Jo0

10(Ba) =0.08 | <0.13 | =0.17 | 0.09 0.21 0.13

20(Emm) =0.16 | -0.25 | ~0.32 | 0.17 0.41 0.26

30(mm) =0.23 | =0.36 | =0.46 | 0.25 0.60 0.38

40(m) =0.31 | 0.47 =0.61 | 0.33 0.T9 0.50

0 60 120 180 240 300

<
TATDN
10(Em) 0.40 | 0.58 | 0.86 | 0.98 0.63 0.33

20(mm) 0.86 1.25 1.83 2.10 1.36 0.T1

Jo(me) 1.3 1.91 2.78 J.19 2.08 1.08

40(m=) 1.78 2.58 377 4.32 2.81 1.46

Table 10 Velocity residuals after fourth iterative

£,
. r,.J
N
ﬁ| (o '."')

10(mm) 0.01 0.00 0.00 0.00 =0.01 | 0.00

20(km) 0.01 0.00 0.01 | =0.01 =0.02 | =0.01

J0(Em) 0.01 0.01 0.01 | =0.01 =0.02 | =0.01

40(Km) 0.01 0.01 0.02 | =0.01 ~0.03 | =0.02

Table 11 State-vector and errors as convergency

3-11(1\':}
(Em)

10 20 30 40

X, (to)
:m 5836.89071|5836.89073 | 5836.89075 | 5836.89076

4%, (to)
(em)

1.00 3.00 5.00 6.00

CONCLUSTION AND DISCUSSION

The computing accuracy of the method can
commensurate with the current observation

data and computing program is simple which
can be operated on a personal computer.

The condition of the convergency of the
method is not too serious which is satisfied
easily in practice.

The dynamical equation of the two-body mo-
tion is used in numerical examples and the
observation data are computed based on the
relationships of the two-body motion. The
model errors and the observation errors did
not contained in the results. In practice,
the model and observation errors can not be
avoid. Therefore, it would be studied what
type of the perturbation is suitable and
how the observation errors are eliminated
in future investigations.

From the discussion on the convergency
above ;the method is available for the orbit
improvement where the deviation of the
initial state-vector are smaller in general
case., In order to determine the preliminary
orbit, the convergency of the method must

be improve in future investigations.
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