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ABSTRACT

This paper is concerned with the on-ground attitude
reconstitution  (DOGAR) that shall be performec
of f-line with a target precision better than 0.1
aresec RMS by the Scientific Consortium FAST durinc
the reduction of the astrometric data transmittec
2y the Hipparcos satellite. To achieve this target
a minimum variance estimator of the satellite
three-axes attitude, which processes on-board star
mnapper data, has been designed and implemented;
trials performed under severe simulated conditions
have proven that the target precision is reachec
with a good margin.
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1 OUTLINE OF THE PAPER
The aim of this paper is to present the
attituds reconstitution  (OGAR) that has been
adopted by the Scientifie  Consortium  FAST
(Fundamental Astronomy by Space Techniques) for the

on-ground

reduction of the science data that will be
collected by the ESA satellite Hipparcos. The
Hipparcos attitude shall be off-line reconstituted

during its wuseful 1life by processing the data of
the on-board sensors, namely rate-integrating gyros
and star mappers (SM), with an average precision
better than 0.1 arcsec RMS.

In the 2nd section a brief presentation of the
Hipparcos satellite and its mission will be given,
highlighting the on-board instrumentation for the
attitude estimation and the accuracy specifications
of the on-ground reconstitution. In the 3rd
section the problem of estimating attitude from
gyro and SM data will be formulated: since it
appears as a complex Gauss-Markov estimation
sroblem, simplified estimators trading-off between
computing load and statistical efficiency are
usually used. When as for Hipparcos OGAR precision
is the most important target, simplifications must
not impair statistical efficiency: to this end the
design of a simple but sufficiently accurate model

and a careful measurement selection are capital.
The design of such attitude model for Hipparcos
OGAR is explained in the 4th section; it has been
obtained by integrating satellite state equations
driven by unknown but band-limited perturbations
and impulsive control torques of unknown intensity.

The measurement equations and the estimation
procedure for the Hipparcos OGAR are reported
together with Monte Carlo results in the 5th
section: a not time-recursive  Gauss-Markov

estimator has been implemented which processes only
the SM crossings of bright stars filed in the Input
Catalogue. When Catalogue errors on star positions
are predominént over SM instrumental errors, star

positions can be improved using the reconstituted
satellite attitude as explained in the last
section.

2 THE HIPPARCOS SATELLITE AND ITS MISSION

A detailed description of the Hipparcos mission
principles and its implementation is contained in
Ref.1; here we will limit to the aspects relevant
to OGAR.

The main mission of the Hipparcos satellite is tc
produce a new astrometric catalogue for about
100,000 celestial objects (program stars) filed in

the Input Catalogue, with an accuracy of few
milliarcseconds. The principle at the base of the
mission is to observe almost simultaneously

celestial objects which are largely separated in
the sky, by means of a compass-like telescope,
having two fields-of-view (preceding and following
FOV's) and a single focal plane and to measure
their angular distances with precision around ten
milliarcseconds. Angular measures will be obtained
by on-ground processing the star photons modulated
by a 2688-slits grid placed in the telescope focal
plane and counted by an Image Dissector Tube (IDT),
capable of piloting its spot-like sensitive area
(Instantaneous Field-0f-View, IFOV) on the image of
a specified star located anywhere in the grid. The
measurements that will be collected by scanning the
whole celestial sphere during 5 consecutive
semesters, will allow to construct a tight net of

angular distances between stars covering all the
sphere. By solving this net, update star
coordinates in a common reference frame will be
obtained.

The Hipparcos satellite is essentially a spinning
satellite whose spin axis is guided by the attitude
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control to slide on a quasi-precession cone
centered on the sun-satellite line; the nominal
spin rate is 11.25 rev/day and the quasi-precessior.
rate is 6.4 rev/year. A sketch of the nominal
Hipparcos orientation law is shown in Fig.l; the
spin axis is orthogonal to the telescope viewing
plane defined by the central directions U1 and U_,I

of two FOV's, separated by the basic angle y:58°;
the intersection of the plane with the unit sphere
is called Viewing Great Circle (VGC).
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Fig.1 - Nominal Hipparcos orientation law

The spin movement allows the Hipparcos double
telescope to scan a Great Circle every T0:2.15 i H

the quasi-precession movement around the sun
direction allows a complete scan of the celestial
sphere during half a year. The maximum permissible
deviation, 10', of each satellite axis with respect
to its nominal trajectory is dictated by the size
of the telescope FOV's, S4'x54'.

To 1limit telescope attitude jitter to few
milliarcsecond wvalues, a discrete-time impulsive
control (actuated by gas jet) has been preferred to
a continuous-time attitude control (actuated by
reaction wheels); all the three control torque
components will be actuated when one of the three
axes will deviate more than 10'; it results a not
uniform sequence of variable control pulses whose
computation has been designed to maximize the
duration of the ‘'quiet time', i.e. the time
without any actuation.

The satellite attitude is on-board estimated by
real-time processing the data of three-axes
rate-integrating gyros and one star mapper. Two
star mappers are located at both sides of the main
grid as in Fig.2, but only one of them will be
used, the other being in cold redundancy; since the
operating star mapper will receive star images from
the two largely separated FOV's (preceding and
following) of the Hipparcos telescope, it actually
behaves like two separated instruments, allowing
three-axes attitude observability. The star mapper
is made by two groups of four aperiodic and
parallel slits: the vertical slits are parallel to
the main grid slits and a star nominally crosses
them perpendicularly; the other four slits are 45°

inclined and are folded like a chevron to reduce
edge distortions of the signal. Adequate
processing of the photon counts collected during
the crossing of a star having magnitude B<9, allows
to locate the star on the slit reference line with
a RMS error less than 0.1 arcsec (see Ref.2).
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Fig.2 - The Hipparcos main grid and star mappers.

The attitude needs to be on-board estimated very
precisely (1 arcsec RMS) and at high sampling rate
(1 Hz) for allowing a neat piloting of the small
IDT IFOV on the program star to be observed. This
precision will be obtained from the observation of
about 50% of the Hipparcos program stars (reference
stars); the main limitation to on-board precision
will be the a-priori error on reference star
positions (about 1 arcsec RMS).

The attitude shall be on-ground reconstituted at
the same on-board rate but with a much better
precision (less than 0.1 arcsec RMS) to provide
during all the Mission the telescope pointing
direction with the necessary accuracy to connect
star angular distances in a common inertial frame.
The connection will be made by projecting the
angular distances measured along instantaneous
VGC's over an inertial Great Circle, called
Reference Great Circle (RGC), which is intermediate
to the consecutive and almost overlapping telescope
scannings performed during half a day. The 0.1
arcsec 0GAR precision is necessary to make
projection errors caused by satellite attitude
uncertainty, to be negligible with respect to
instrumental errors (due to star and IDT photon
noise).

OGAR will process all the SM crossings of bright
program stars (B<10); to eliminate the prevailing
uncertainty of the Input Catalogue star coordinates
(worse than 1 arcsec RMS), OGAR shall be iterated
using intermediate Hipparcos Catalogues until
Catalogue errors on star positions will appear
negligible with respect to SM errors.

*3 THE ATTITUDE ESTIMATION PROBLEM.

The Hipparcos attitude vector x(t) at time t during
an RGC period is defined as a triple of Euler
angles (V,%,p) which align the satellite body frame
(X,Y,Z) to the satellitocentric inertial RGC frame
(0,Q,P). The body frame is defined by the pole 7
of the telescope viewing plane and by the bisector
X of the central optical directions U1 and U-T; Y

is consequently defined. The inertial frame is
defined by the RGC pole P and by a direction O
lying on the RGC plane and defining the origin of
the RGC longitude; O is consequently defined. The
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nutation angles -g and -§ take respectively Y and X
on the RGC plane and -y aligns X to 0; during an
RGC  period the nutation angles § and ¢ will remain
less than 100'. An RGC and its origin 0 define &
pair of coordinates: @, the longitude, and %, the
latitude, which identify any star direction.

The Hipparcos body frame must follow the nominal
rotating frame, specified by the orientation law;
the attitude error vector is a triple of Euler
angles which align body to nominal frame. They are
estimated in real-time by the on-board Attitude
Control System, wusing gyro and SM measures, for
computing the actuating signal u which command the
three-axes control actuators.

If we assume a rigid spacecraft, the attitude x(i)
at discrete times iT, T being the sampling period,
is modelled by the dynamics and kynematics
nonlinear state equations:

(1) wli+1)=Flwli),c(i),d(i),i]
(2)  x(i+1)=G[x(i),w(i),i]

where c is the control torque vector produced by
the actuators, d 1is the vector of external and
internal disturbance torques, w and are
respectively the vectors of the actual and nominal
spacecraft inertial rates.

When, as usually, disturbance torques d are not
directly measured, Eqs. 1 and 2 must be completed
with the disturbance model:

(3) d(i}:D[x(iJ,wd(i).i]

where w,(i) is an unknown and unconstrained  signal

(e.q. a white noise realization); the most simple
disturbance model is of course obtained by assuming
d(iJ:wd(iL

To account for discrepancies between actuating
signals u and control torques c, also actuators
must be modelled; if their dynamics can  be
neglected a general model is:

(4) c{k):D[u(k),wa(k),k]

where k is the sampling index of the actuation
times, which may not have a uniform rate, and ",

nas the same properties as w in this case the

d;
most simple model is c(k):u(k)+wa(k).
The gyro measurements, indicated by yg(j}. are the

increments of the gyro output rates, computed
during the j-th sampling period of length Tg

(usually T=Tq); they measure the mean inertial

rates o j) in the j-th sampling period up to a
discrete-time white noise n_ and a random walk dg

{called drift-rate bias), driven by a white noise
"g‘ according to the well known state equations

{Ref.3):
(5: dg(%:?):dgfj)+w§(j?) £
(6 Yq(J —TgLJJJ+ngg(J +ng J

The SM output Ye is the estimate of the crossing

time tS of a program star through a SM slit; the

corresponding measurement equation is a scalar
implicit equation which expresses, up to a random
and uncorrelated error n.s the alignement of the

apparent star direction (given by star Catalogue

coordinates) with the plane passing through the

slit reference line (depending on satellite

attitude). The equation depends on the type of

crossed slit, which 1is parameterized by the

following indices:

1. FOV index f: 1 for preceding and -1 for
following FOV

2. slit inclination index 1: 0 for vertiecal, 1
for upper chevron and -1 for lower chevron
slits

and holds:

(29 D:Ot-lﬁ-q‘(l,f)x(ts)wns(tspstfmﬁ,l,F)-ns
q'(1,f)=[1,-1cos(y/2),1fsin(y/2)]

where n(.) is the RGC projection of the VGC
longitude (=y/2) of the slit reference line and is
a nonlinear function of nutation attitude angles
and star latitude. SM equations must be completed
with the Catalogue equations:

(B) a=zG+8a, B=£+83

where & and # are the mean apparent star RGC
coordinates computed from the Catalogue and da
and &8 the Catalogue errors.

Now the general attitude estimation problem can be

formulated. Given:

1. the following data measured during the time
horizon [tu'tf]: SM crossing times t_ and the

corresponding star coordinates, gyro rate
increments y and actuating signals u,

2. a second order statistics for the uncorrelated
measurement errors: n and w (gyros), nS

(SM), 8o and 88 (Catalogue), and the driving
noises W, and Wy

3. the measurements Egs. 4, 6, 7 and 8 and the
constraint Egs. 1, 2, 3 and 5,

solve the set of Egs. 1-8 into the following

unkowns : the states x(i), w(i), dg(j), the

disturbance torques d(i) and the control torques
c(k) at the corresponding sequences of samples.

Since the number of equations is greater than the
number of unknowns and the second order statistics
of the noises is assumed known, the problem must be
solved as a Gauss-Markov estimation, i.e. using
the Weighted-lLeast-Squares criterion.

The solution of this problem is very complex due to
the high number of equations and unknowns; thus in
practice simplified estimators have been designed
by dropping constraint equations and unknowns
and/or measurements; the simplification level is
always the result of a trade-off between computing
load and the estimator efficiency as measured by
the expected attitude variance.

Computing load is particularly constraining in Real
Time Attitude Estimation (RTAE) problems, 1i.e.
when attitude must be estimated at a current time
from past measurements; a first consistent
reduction of computing load is obtained by adopting
a time-recursive Gauss-Markov estimator in the form
of a Kalman filter. Computing load appears instead
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not  very limiting when attitude must be off-line
reconstituted using past and future mesurements
(AR); one can still solve this problem by running
the corresponding RTAE Kalman filter backwards and
forwards in the time interval of the measurements
and then by optimally weighing backward and forward
estimates, but a not time-recursive Gauss-Markov
estimator can be employed as well.

Coming back to the simplification  problem,
different classes of simplified, but not efficient,
attitude estimators are used:

1. Kynematics estimators (Ref.3): the most simple
way of reducing the number of equations and
unknowns is to assume that the inertial
rates w(i) are unknown and unconstrained
signals; by this way all the  dynamics
constraints are neglected and the estimator
solves only Eq. 2 and Egs. 5-8. In practice
it is posed T:Tg and inertial rates w(i) are

substituted, sample by sample, in Eq. 2 with
the gyro measurements yg(i)/Tg obtained from

Eq. 6, and the only unknowns are attitude,
gyro drift-rate bias and star coordinates.
When only attitude estimation is needed, the
latters are eliminated in SM Eq. 7 by
substituting longitude and latitude unknowns
with the Catalogue values obtained from Eq. 8.
2. Dynamics estimators: to obtain with the same
instrumentation a more efficient attitude
estimator, one must take into account 1in some
way that inertial rates are actually
band-limited signals with a frequency bandwidth
well below gyro half sampling rate. The most
usual way 1s to  assume that the rate
errors Aw={Q-w satisfy the state equations:

(9)  Awl(i+1)=F[Aw(i),d(i)-c(i),i]

driven the uncompensated disturbances d(i)-c(i)
which are assumed white noise realizations.
This estimator solves the same equations as the
kynematics one plus Eq. 9 and inertial rate
errors add to attitude and gyro bias as problem
unknowns.

3. SM estimators: an alternative way for reducing
computation  load is to drop measurements
instead of constraint equations; in practice
only gyro measures can be dropped, but in this
case the spacecraft dynamic constraints on
inertial rates (Eq. 1) must be taken into
account to not fall into a problem with more
unknowns than equations.

When precision instead of computing efficiency is
rewarding, one must look for efficient (i.e.
minimum variance) estimates through a solution of
the complete estimation problem; at this point
simplifications are still possible: e.g.
discarding too noisy redundant measurements or
reducing degrees of freedoms (d.o.f.) in constraint
equations; but they must not impair statistical
efficiency. This route has been followed by the
authors pushed by the concern of guaranteeing the
high OGAR precision during all the Hipparcos
mission. The main features of the Hipparcos
attitude estimator are:

1. a simple model of the three-axes attitude has
been so designed that modelling error might be
guaranteed to be well below OGAR target
precision (see Sect.4);

2. of the on-board measurements only SM data are
used, since it has been proved (see Ref.4) that
minimum variance estimates might be well

obtained without processing gyro readings;

3. a not time-recursive Gauss-Markov estimator has
been adopted, since reconstitution will run
off-line (see Sect.5);

4. the reconstituted attitude is used to improve
star coordinates when Catalogue errors are
prevailing (see Sect.6).

4 MODEL OF HIPPARCOS ATTITUDE

The Hipparcos attitude motion is the composition of
the nominal spin and quasi-precession motions and
of residual perturbations due to interaction of
disturbance and control torques.

The most severe disturbances are torques due to
solar radiation pressure on spacecraft surfaces,
gyro moments, spacecraft gravity gradient and
spacecraft electric dipole in the earth magretic
field; less severe disturbances, but still
contributing to perturb attitude above OGAR
precision, are torques due to earth albedo, earth
infrared emission and solar wind. An estimate of
their peak values is reported in Tab.1.

Tab.1 - Expected peak values of perturbations

Perturbing cause Peak value [microNm]
Solar radiation m
Gyro moments 10
Gravity gradient 1
Earth magn.field 0.
Earth infrared em. 0
Earth albedo 0
Solar wind 0

The solar radiation and wind torques, due to spin
motion and a gquasi-constant sun aspect angle, are
expected to be periodic with the spin motion; the
gyro torque is expected to be constant. The other
torques are periodic over 12 or 24 hours due to
geostationary orbit and are modulated by spin
motion.

The sum of the disturbance torques has been
modelled as unknown deterministic, periodic and
band-limited signals with period TD and frequency

bandwidth known; thus each disturbance component
can be modelled as a finite Fourier series with
unknown coefficients.

The active control torques are actuated by firing
cold gas jets at discrete times (in average one
actuation every 600 s). The characteristics of the
actuating pulses (duration and torque level) are
known, but to account for actuator dynamics and
misalignements control torque components has been
modeled as ideal impulses of unknown intensity
centered on the known actuation times.

The model of each attitude angle has been obtained
by integrating linearized dynamics and kynematice
state equations of a rigid body, driven by the
Fourier series of the disturbance torques, the
impulse train of the control torques and the
unknown initial states (inertial rates and Euler
angles). The resulting attitude model during any
spin period ID is the linear superposition with

unknown coefficients of two classes of linearly

indipendent functions:

1. a train of impulse responses of the spacecraft
dynamics, which models the large bandwidth
component of the attitude due to impulsive
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control torques;
2. a series of trigonometric  functions with
fundamental period Io, which models the low

frequency components mainly produced by solar
radiation torque.

This model looks robust, since it is based on very
simple assumptions like spacecraft and telescope
rigidity (jitter due to solar panel vibrations has
been verified by Industrial Consortium to be less
than 3 milliarcsec), stability of spin period and
sun aspect angle, type of control actuations. In
addition the trigonometric series included in the
model can be conveniently expanded to make the
approximation error compatible with the OGAR target
precision.

If the values at time t of the attitude Ffunctions
are collected in a 3-rowed matrix A(t) and the
related unknown coefficients in the vector p, the
attitude vector x(t) can be written as:

(10) x(t)=A(t)p+e(t)

where e(t) is the model approximation error.
Eq. 10 substitutes the set of Egs. 1-4 of the
complete estimation problem.

The dimension m of the vector p yields the degrees
of freedom of the attitude model. As already said,
they can be easily accomodated by extending or
limiting the bandwidth of the Fourier series; an
optimal choice of the d.o.f. would minimize for a
given set of measurements and noise statistics, the
norm of the estimated residuals; but this optimum
is only reliable for simulated data. Thus a more
realistic choice is to a-priori fix d.o.f. to make
model approximation error negligible with respect
to target precision in a simulated environmment and
to equip the estimator with statistical tests to
verify model adequacy from real data.

Using a detailed simulator it has been found that
the RMS5 modelling error might be lowered to about
0.01 arcsec if a 15th order Fourier series
(bandwith=0.002 Hz) is used; moreover appropriate
statistical tests (F-tests) have been designed to
verify this model from real data, possibly during
the Commissioning Phase preceding Mission Phase.

5 THE HIPPARCOS ATTITUDE RECONSTITUTION

Since gyro readings are disregarded, the O0GAR
measurement equations are obtained from the SM
Eq. 7, by replacing the unknown star coordinates
with their Catalogue values and the attitude x with
its model (Eq. 10). Let wus rearrange Eq. 7 by
separating terms which are linear in the attitude
from the nonlinear term

(1) y(t ,8,¢)=6-18-n(t_,3,¢,1,f)

which plays the rdle of a SM measure; by neglecting
in Eq. 10 the model approximation error e(t) one
obtains:

(12) yfts,3.¢)=q'(I,F)A(ts)p+n8—6u+158

The set of the SM Egs. 12 for all the crossing
times tS in the estimation horizon [tu'tf] can be

rewritten in matrix Fform using the following
notations: y($,0) is the vector of SM measures; Q
is the model matrix having the generic row

q'(1,f)A(t_ ), €. is the SM error vector, €_ and €
s s a i

are the Catalogue error vectors of the SM crossing
stars; since a star may be observed more than
once, €, and €, are related to y by a pair of

B

matrices L and M having at any crossing time ts a

row which is null except for a positive or negative
unit entry in the column of the observed star; it
results:

(13) y(3.¢)=ap+cs+Lsa+M£B

Since the three error vectors are assumed to be
uncorrelated random vectors with covariance
matrices IS, Z& and ZB respectively, the covariance

matrix I of the total
holds Z=L +L'Z L+M'I_M. At the
s o B

reconstitution' based on Input Catalogue, I is not
diagonal and shall be inverted using an ad hoc
algorithm; instead at ‘'intermediate' and 'final
reconstitutions' the approximation E=Zs holds,

since intermediate Hipparcos Catalogue errors are
expected to be negliglible (less than 10
milliarcsec RMS) with respect to SM errors.

error E:€s+LEa+H€8
'first

The matrix Eq. 13 can be solved into the wunknown
vector p as a nonlinear Gauss-Markov estimation
problem, i.e. iteratively in the parameters of the
nutation angles $# and ¢ appearing in the measure
vector . The solution algorithm has  been
implemented using Householder orthogonal
transformations, which are well suited due to the
rather limited number of unknowns.

A typical reconstitution is made over a time
horizon comprised between two actuation times and
lasting less than the spin period To; during this

interval about 13 control actuations happen and
less than 600 program stars cross SM slits, but
less than 450 can be unambiquously located by SM
processing (see Ref.2) giving a total of 1800
equations, against a total of about 250 unknowns in
case of a 15-th order Ffourier series. Thus one
expects that attitude reconstitution smooths
consistently star coordinates errors and achieves a
good reduction of the measurement error variance.

The OGAR algorithm has been tested using a detailed

numerical simulator of the satellite attitude and

Star Mapper measurements. The results reported

hereafter refer to a quite conservative case of the

final OGAR:

1. 300 stars observed during each of 6 scanning
circles at uniform rate;

2. Catalogue errors of star RGC coordinates
negligible with respect to SM errors;

3. wuniform standard deviation of SM measurements
equal to 0.1 arcsec;

4. attitude model with a 15th order
series;

5. impulsive control at a nonuniform rate ranginc
between 0.0013 and 0.0025 Hz.

Fourier

Six independent Gauss-Markov estimations have been
performed, each processing the SM measurements
collected during one scanning; OGAR performance is
evaluated by the rms difference between estimated
attitude and simulated values (Monte Carlo error)
and by the root mean estimated variance (estimated
error). The results reported in Tab.2 confirm the
expected reduction of measurement variance, which
guarantees a good margin versus target precision.
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fab.2 - RMS errors of a 'final OGAR' (6 scannings)

vValues Monte Carlo Estimated
[arcsec] psi theta  phi psi  theta phi

Maximum 0.031 0.041 0.066
Average 0.029 0.037 0.063

0.027 0.034 0.063
0.026 0.034 0.062

The diagram of the Monte Carlo error for the
angle @ during the first of the 6 scannings as well
as of the estimated standard deviation are shown in
Fig.3. The peaks of the estimated standard
deviation correspond to control actuation times and
to the initial and final instants of the
reconstitution horizon.

1

50.20
[

v Q.45+

2 1 1 1 1 i
B0 8.8 8.0 B8 B0 A5 4.0
Time [hours]

Fig.3 - Attitude Monte Carlo error and 1-sigma
strip computed from the estimated variance

6 IMPROVEMENT OF STAR COORDINATES PRECISION

The smoothing properties of the attitude
reconstitution can be conveniently used for
improving the Catalogue precision of the observed
stars, when the Catalogue variance is larger than
the 5M one. For the Hipparcos data reduction this
improvement, if adequate, may help to unambiguously
locate program stars within main grid slits, 1.2
arcsec  large, at the very beginning of data
reduction.

The theory underlying this improvement, called
'dynamical smoothing', has been presented in Ref.5
for the unidimensional case (improvement of star
RAGC  longitude using the spin angle 1 reconstituted
from the star grid coordinates estimated from IDT
shoton counts); since then the theory has been
extended by the authors to Star Mapper data, which
allowing to reconstitute the three attitude angles,
make possible the improvement of both star RGC
coordinates ('three axes dynamical smoothing').

The equations of this problem are the SM Eq. 7, the
Catalogue Eq. B and the attitude model Eq. 10. At
first sight the estimation problem is much larger
than a pure attitude estimation since now also star
coordinates are unknown (e.g. 900 unknowns in
addition to attitude unknowns for one scanning);
but a deeper analysis shows that the problem can be
decomposed into two consecutive steps:

1. first the attitude reconstitution is obtained
using the Catalogue values of the star
coordinates as explained in Sect. 5;

2. since the reconstituted attitude is a minimum
variance estimate, the coordinates of each star
can be improved just by knowing the spacecraft
attitude at the time of a SM crossing; for

improving longitude vertical crossings are
sufficient, instead for improving latitude both
vertical and inclined crossings are needed.

Trials up to now made have given very encouraging
results, The results reported in Tab.3 refer to
the following case:

1. six satellite scannings for a total of 12Zh21',
with 72 actuation times;

2. about 1000 different stars usable by attitude
reconstitution corresponding to about 350 stars
for scanning;

3. Catalogue errors on both star RGC coordinates
simulated as a zero-mean white gaussian noise
with s.d. of 1 arcsec for all the stars;

4, wuniform standard deviation of SM measurements
equal to 0.1 arcsec:

These results confirm that the Input Catalogue
improvement also in the case of a single SM
crossing (through vertical and inclined slits) is
sufficient for solving main grid ambiguity
(longitude RMS error <0.2 arcsec).

Tab.3 - Monte Carlo errors of attitude angles
and improved star positions

Values [arcsec] psi  theta phi
Maximum 0.10 0.47 0.79
Minimum 0.06 0.26 0.48

Values [arcsec ] longitude latitude
Maximum (1 crossing) 0.14

Average (all the stars) 0.09 0.33
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