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Abstract

Feedforward neural networks are investigated is th
work to verify its ability to control the attitudef a
satellite. Neural nets are a promising tool foitade
control due to its inherent nonlinear behavior, ahhi

makes them a natural candidate to control nonlinea

systems. Nevertheless, as will be shown, to ob#ain
neural 3 axis attitude control is not as simple aas
conventional SISO net control. Main difficultieseahe
large amount of training data, in order to assure t
complete understanding of the attitude dynamicshiey
neural net, and also the fact that attitude consoch
MIMO instead of a SISO system. Regardless of toese/
backs, some results concerning attitude contidbgighown.

Introduction
The training process of a control neural networ

depends on the condition of the dynamic systemnigavi
at least a local inverse around a reference tajgcand

is very much affected by dynamic system complexity.

Thus for a given training method, the learning pasc
can or can not converge, depending on syste
dynamic$. Several methods (generalized, specialize
predictive control) to obtain the inverse dynamiocdal
have been established to guarantee traini
convergenck’, and some particular features make the
more or less appropriate depending on the appicati
These training methods use a feedforward referen
trajectory as an input to the neural net controlléris
arrangement is suggested based on the way hum
control their movements and normally applies tootab
systems. However, for several applications, it isren
important to correct residual errors than to follew
arbitrary trajectory. This is certainly the case &f
satellite attitude control, where small but effeeti
disturbances deviates the target pointing and whe
highly nonlinear dynamics also makes attitud
maneuvering sometimes a difficult process. In taise,
a static input reference trajectory in a feedfodvar
neural net controller can not provide the necessa

dynamic information in order to compensate for the

d

attitude deviations. For systems that need a clészul
control, an error based reference trajectory igested.
The error signal has the characteristic of genegat
null control when the error drops to zero, allied t
enough information on magnitude and velocity. The
neural net, on the other hand, can theoreticaflyni¢he
pnlinear behavior of the satellite, resulting in a
nonlinear feedback error control. The proposed rmehe
is similar to the inverse generalized methadith the
difference that the system is now controlled inselb
loop. The number of neurons in the network and the
number of training points were adjusted interadyive
assuring minimum learning time. A simulation
presenting the neural control is compared to a
conventional PD controller. Although the neural ttoh

is still far behind the PD, it is expected thathwspecific
goal-directed training methods the nonlinear
characteristic of the neural net can be betteizatil

I?(eywords Neural Network Controller, Attitude
Control, Feedback Control.

Neural Networks

Martificial neural nets (ANN) are composed of
individual processing units called neurons grouped

In feedforward nets each neuron applies an

layers.
r:g:tivation functiorf to the sum of the weighted outputs

of the previous layer. For hidden layers, the attbn
fténction generally is a biased nonlinear differabke
¥inction like the sigmoid or hyperbolic tangentr fo
'rl]]%tance, while the output layer can be a linear
unctiont. A supervised training method adjusts the
neuron weights based on error obtained at theutptb
and applying some optimization rule. Training cetssi
of an interactive process in which the weights are
adjusted by propagating the output error throughntitwork
Ilaé/ers. Nonlinear continuous functions can be appeied
th a given accuracy by a 2 layer neural net \lithar
nction in the output and the sigmoid activatiamction:
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in the hidden layd®. A feedforward network important for the approximation degree: few neurons
composed by layers, as shown in Figure 1, can be seeiend to decrease the stability and result bad
as a mapping function withy input elements andy, approximation, too much neurons cause oscillation o

output parameters. Ik* is the output of thé" neuron the output between the trained points

of layerk, w is the weight of thg" input (coming Backpropagation algorithm
from thej" neuron of the preceding layer) afids the
activation function of layek, then: Neural nets have three major advantages when

compared with traditional function approximation
Nt methods. First is parallel processing structurejckwh
X< = fk(xk +h‘<)= fk(ZWﬁ x;('1+th (2) allows quickly response in parallel computers. Beco
j=1 they are able to handle with large number of input
elements, and do not need filtering or state esiima
where b¥ is the neuron bias that allows the neuron tBro¢essing. Third, the weights are easily obtaibgd
. using training procedures, that gradually teacheset
present a non-null output for a null input. how to respond to a given input. The training pssce
normally minimizes the output error through the
application of an optimization method. These meshod
need to know with some extent how the net output
varies with respect to a given neuron weight. Tdaa
be achieved with the back propagation algorithm
developed by Werbds which obtains the partial
derivative of the output elements in a recursive.wa
matrix form the back propagation algorithm the
derivative of the output vector with respect to {ffe

Fig. 1 A feedforward neural network weight of thei™ neuron of thek" layer results the
expression:
Generally the neuron bias can be obtained together
with the weights, by assuming the inclusion of navit T 0]
input. In a vector-matrix representation form the
preceding equation yields [ )
Sr=a| x| ®
W .
K = fk(ik)z fk(\Nka—l) ?) i :
0
where the weight matrix of layet, W includes the S
neuron bias: whereA¥ is the back propagation matrix, obtained from:
W Wlknk_1 by A = AL\ RLEK (6)
(| W o W, b
w . S 4 P, L | _ ol K ;
: : : with initial condition A" = F, whereF" is a diagonal
W bX matrix with the derivatives of the activation functiin
n.1 n Ny n.1
The dimensions of the output vectdrand the weight K sk f (Ylk) 0
: ; e df < (X9) . . .
matrix W< are nowng+1 andn x neq+1, respectively. Ff=——cr—= : . ,: @)
The increasing number of hidden layers normally dx 0 R (RN

makes the neural net to better represent the dyaami

system and to reduce the output effpeven taking the

same number of neurons. Nevertheless, the capefcity |t should be noted that, due to the inclusion @& th
generalization, i. e. the ability to interpolatetie@en neuron bias on the weight matri should be an,;+1
points where the neural net was not trained is mosen,,+1 matrix, with the last diagonal element equal to

accentuated on nets with few or even only one middgero. However, to reduce computation b&thand W
layer. The number of neurons in the hidden layers is



can be resized with elimination of the last row wheof points and the corresponding number of neurbast t

performing matrix products. learns the dynamic behavior.
Steepest descent or gradient method is today tls¢ mo
common training procedure. It is ease to implenient Training approaches

computers, is very fast but converges in a stroslgiw
rate. This certainly is the main reason of theexrgly One of the most peculiar aspects in neural netrabnt
long training times in most neural net applicationsis how to obtain the control signal. Husuggests some
Nevertheless, there are other training methodsstiatv ~ well know training approaches, like the generalized
improved learning speed, as the least sqiamr the inverse, the indirect and the specialized inverse
Levenberg-Marquardt algoritif*> In spite of the methods. Each one of these models has advantades an
training procedure, the network weights can be tgula also disadvantages concerning the quality of result
at each input presentation, in a so-called adapti@eneralized inverse learning presents some negative
training, or at the end of a complete set of ingata, properties when the training is performed with thel
known as batch training. system, as there is no guarantee that the systguatou
Adaptive training allows the network to learn thecovers totally the state space. Of course this Iprob
system dynamics in real time, although the learmizng will not happen in case of a numeric simulated esyst
also be done offline. If the learning rate is targk or if Indirect model presents some instability duringniray,
the system remains at a specific state for long tiine depending on the system dynamics. Specialized sever
network adjust the weights to the last trained fimsi method requires a network direct model in order to
and the learning remains incomplete. The sameauésitr establish a relation between the direct model dutpu
the system do not pass to some points or regiotisein error and the control network output error. In a
state space. Batch training appears to avoid sushmulated system, nevertheless, specialized and
underfitting in the first case, but depending om thgeneralized methods are equivalents and so thétsesu
system complexity, the training can or can not bpresented here were obtained with the generalized
performed over the entire state space. The traiofrey inverse model, as shown in Figure 2.
network attitude controller can not be done afteorbit
injection, because during the learning process the 8(t), w(t)

erroneous control can put the satellite in a danger o) = Simulated e(t+At)=
situation. So, computer simulated dynamics shall be » System

used for training in order to guarantee the colabdlity

before launching. This procedure allows also tithiea

neural net over the entire state space, and ngt ianl L 4 "

one particular trajectory. Nevertheless, some bl Control Neural fu'(t) _
arise from this solution, mainly due to the largenber > Network

of training points necessary to inform the system

dynamics to the neural net. For example, for agales +7/<:—

of freedom second order system (like a satellite =

attitude), the neural input can be determined v@th Fig. 2 — Control network training model.
variables (3 for each position, velocity and cobtrtf

one admits 5 samples for each variable, then #ieirig Inputs to the control network are the state (Jumté

set will have 8 = 1,953,125 training points in order toangles and 3 angular velocities) at tirheand the
cover the state space, which is almost impossiblget propagated position at timerAt. The output is the
with the computer and memory available today. Theontrol signal (torque)u(t). System dynamics is
training process could take several months and tlsémulated considering a non-perturbed 3 axis figidy,
resulting net would be so large that real-time @pibn  with inertia equals to 23, 23 and 11 k§.rorque is
would turn to be a mere desire. Fortunately, astléa provided by gas jets, supposed regulated by a PWM
theory, the training set do not need to be so |abge device. Maximum available torque is considetgg =
taking into consideration the possibility that tregwork 1.5 Nm. The network is trained with the Levenberg-
can acquire enough system information by genergjizi Marquardt methotd™*
and interpolating the input data. In this sense, aThe network final error depends on the number of
statistical method, similar to the Monte Carlo, dam hidden neurons and the number of training poims. |
applied by generating random points in the stateesp order to achieve a given precision, the largetrdiaing
The problem now will be to find the necessary numbeset, the greater the number of hidden neuronsjfis

the maximum available torque, them the networkrerro



shall be a fraction of this value, 1% for instanthis 30— T . . . .
value, nevertheless, has to be selected carehdlthe
number of hidden neurons (and also the training)im
increases quickly with de required net accuracy.
Unfortunately, there is no theory that gives thenbar
of neurons as function of the number of trainingnfso
So it is adopted an iterative approach: the trginm
performed first with a small network with few traig
points. If the required accuracy is not met after a
predefined number of training iterections, then the
number of neurons is increased by a factor latggn fl
(1.4 in this case). On the other hand, if the trajn
succeed, them a new random input set is generatkd a
a new output mean error is calculated. If the nearaés
still below the required accuracy, the trainingqass is ol L 1 1 . 1 .
completed. Otherwise the number of training poists 0 500 1000 150_0. 2000_ 2500 3000
multiplied by a factor greater than one (1.4) ahd t Number of training points
whole process is repeated. With such algorithm theFig. 3 — Number of hidden neurons as function ef th
number of training points and hidden neurons grops number of training points.
to the minimum necessary to learn the system dycami

Training was carried out by generating random_»Gr(HAt) Control Neural [Ju”(t)| Simulated [ 6(t+At)
positions betweert 20° and + 1 rpm on each axis. (), «(t) Network ™| System -
Starting with 8 neurons and 256 training pointg th

20— —

10 + —

Number of hidden neurons

required output error was reached with 24 neurand, State
the learning process succeed with only 2576 poas, estimator ™
shown in Figure 3.
Once trained, the ANN controller is used in Fig. 4 — Neural Network Control
conjunction with the attitude simulator in order to
validate the control. Nevertheless, as shown inféi@, The stability of the ANN control revealed a difficu

the network needs to know previously the attitutle aask, as the scalaeg anday had to be adjusted by trial
time t+At. This information, not available at currentand error, and the stability range is very tighnal
time, can be replaced by the reference trajectodifferences ina, and a; move from long time
o'(t+At), as suggested by Hdrand depicted in Figure convergence to instability. Considerigg= 0.08 anchy

4. This procedure however characterizes a feedforwa= 1.2, the result for a 200 seconds attitude sitimrlas
controlled system, as the network does not cotfteet shown in Figure 5. As can be seen, attitude osioifla
output error of the system. In order to feed bauk t could not be removed entirely. Maybe this can beedo
attitude error, it is adopted a reference trajgctoby using different gains for individual satellitxis
calculated as function of the error between thgetar instead of only one value for all 3 axes. The ANBba
and the actual attitudes. The reference trajectany for presented a small but non-zero bias that causes the

instance, be proportional to the error: control to respond even when the target has reached
This made the trajectory to dump slowly near tielfi
6" (t+At) =6(t)—a_ [6(t) - 6' (t)] 8) attitude. It is possible also that the nonlinearawéor of
P

the network caused the oscillations, but this can b

Lo . ) proved only increasing the number of hidden neurons
wheref(t) is the target attitude. This procedure led thgq training points. Initial conditions for curvés

system to the target position as expected, but Wihy e 5 are: attitude angles in pitch, roll anavy =

increasing oscillation as the satellite has no way E° e =
dump the angular motion. So it is necessary taidela %?no 15, -5) and angular velocitys = (0.1, 0.6, 0.2)

dump factor on th_e reference trajectory prop(_)rilidua Note that the reference trajectory, as proposed in
thg angular vreIOC|ty. If the target attitude is alln Equation 9 is similar to a PD (proportional and
attitude, then®’ becomes: derivative) controller. The difference is that thoeque
obtained by the network is based on a nonlinedudét
0" (t+At) =6(t) —a, 6(t) +a, wt). (9) dynamics, whereas the PD normally obtains the gains



upon linearized assumptions. In fact, the perfomeasf not too many examples, in literature, concerningieay

PD controller is better than the ANN, as seen guFé control with several degrees of freedom by means of
6, even considering that the PD gains were n@&NN. As became clear the larger the number of state
optimized. Both curves have identical initial artdagly variables, the bigger the network. In fact, thestfir
state conditions. Gains for the PD controller arattempt to train the ANN was carried out with
proportional ap= 0.5 and derivative ad= 7.5. Nd#® a maximum torque ofi.x = 0.15 Nm, more realistic with
that the PD reaches the target in 20 seconds, afereespect to the satellite size. However, as the ubutp

the ANN controller takes more than 200 seconds. accuracy was a fraction of this value (1% indeed),
training was not completed even with 128 hidden
L e e e e L B s s s s s neurons. Training times was so large that the moce

had to be stopped.
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by trial and error makes the training process an
exhaustive task. It is important to note also thate is



