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Abstract

This paper presents the definition and the calmrat
method of the reference orbit for the SkyBridge
constellation of satellites. The feasibility of thtation
keeping of the SkyBridge satellites has already be
shown in a previous pager

It begins with the calculation of a frozen and pths
orbit with a first order theory where only secular
variations of the orbital parameters are consideféen
the reference orbit is computed in mean paramaitigins
an analytical method where only zonal harmonics
coefficients up to 16 are considered. The shorioder
perturbations are added in order to provide a eefsr
osculating orbit. Finally the accuracy of this oris
estimated with a numerical integration.

The choice of a unique reference orbit for the whol
constellation is the best solution to ease theiostat
keeping, to minimize the computation load in therus
terminals and to minimize the ground segment
operations.

The study has been performed jointly by CNES and
ALCATEL Space Industries.
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1-Introduction
SkyBridge intends to provide a telecommunication

service by means of an homogeneous constellati@0 of
satellites Low Earth Orbit. This constellation

architecture impose the same semi-major axis, dhees
inclination and the same eccentricity for all the
satellites. Only mean orbital parameters allow efirek
the same reference orbit for the whole consteltatio
while keeping the homogeneity properties with high
accuracy. Moreover SkyBridge has to provide a smpl
orbit model which allows each user to localize lgakie
satellite from its terminal. The use of an anaBitic
model for the reference orbit is well adapted feens
because it minimizes the time and the size of it o
computation.

A reference orbit should provide at every time the
position of one satellite to the ground stationwaek.
For the usual station keeping of only one satelfitest
of the predictable orbital perturbations are talkeio
account in the dynamical reference orbit model.sThi
orbit is built specifically for a particular missipso a
change of one parameter of this orbit needs ofseoar
complete new calculation of the reference orbitm&o
forces which are difficult to forecast, like theadr the
radiation pressure and also the thermal effects, ar
usually not included into the dynamical model oé th
reference orbit. Some maneuvers are realized to
maintain the satellite close to its theoretical ipos
defined by the reference orbit.

The station keeping of a whole constellation needs
new approach. The most convenient solution in¢haé
is to calculate the same reference orbit for a# th
satellites of the constellation. We have to defie
dynamical model where the semi-major axis, the
inclination and the eccentricity of the referenebitis
only dependent of the phase of the satellite posiéind



not of the time. To respect such a definition oé th
reference orbit, only zonal coefficients of the thar
gravity field have to be included in the dynamical
model. This orbit is firstly calculated in terms mwiean
parameters with an analytical method in an iteeativ
process where the cycle duration, the semi-maj ax
and the eccentricity of the orbit are recomputedhea
time. We obtain a frozen and phased orbit verylstab
over every cycle. Short orbital perturbations doehte
zonal coefficients are added in last step of tleegss to
provide an osculating orbit. The periods of thoksers
perturbations are sub-multiples of the revoluti@migd

of the satellite, the final reference orbit pressnthe
stability properties of the mean reference orbit.

The definition of an unique reference orbit for the
constellation simplifies the tracking of the sated by
the ground control segment and by the user tersiinal
The computation of the reference orbit for one Ibtge
to another is direct. All the satellites move orisaane
reference grid and the only difference from onel§t
to an other is a constant shift of phase imposethby
initial conditions, the ascending node and the mean
anomaly.

2-Definition of the reference orbit

When defining the same reference orbit for all the
satellites of the constellation, the difficulty i®
choose a realistic dynamical model which
independent of the initial conditions of each dutel
A dynamical model which includes only the main
zonal deformations of the Earth gravity field can
provide the desired reference orbit.

The zonal harmonic coefficients represent the zonal
deformations of the Earth gravity field in a gedcien
frame where the z-axis is oriented toward the north
pole. According to Kaula's thedryhose coefficients
produce three types of orbital perturbations on a
satellite moving around the Earth:

* some secular perturbations, due to the even
coefficients, on the ascending node, on the
argument of perigee and on the mean anomaly,

» some long-period perturbations, mainly due to the
odd coefficients, on all the orbital elements excep
on the semi-major axis at the revolution period of
the perigee and at the sub-multiples of this period

» some short-period perturbations on all the orbital
elements at the revolution period of the satellite
around the Earth, the mean anomaly, and at the
sub-multiples of this period.

is

The phasing of the orbit should consider all these
perturbations. But the cycle duration of an orbitai
whole number of satellite revolutions, so the
calculation of the phased orbit can be accomplished
mean parameters, independently of the short period
perturbations. Moreover it is convenient to uset tha
type of parameters, because with a judicious chaice
the mean parameters it is possible to cancel feetsf
of the long perturbations due to the odd zonal
coefficients, that is to say to freeze the orbihaly
the phasing of the orbit can be first executed bly o
considering the secular variations of the mean
parameters.

2.1-Frozen or bit

A frozen orbit is an orbit where the mean
eccentricity, the mean inclination and the mean
argument of the perigee keep their initial value. T
calculate such an orbit, only the zonal coefficient
have to be considered.

By using the Kaula’s theory, it is has been prdved
that the motion of the mean eccentricéy, of the
mean inclinationi,, are cancelled on the Earth for a
mean argument of perigag, equal to90 degrees.
The 90 degrees value of the mean argument of perige
is kept constant for a particular combination oé th
triplet (an, en im), Wherea,, is the mean semi-major
axis. The orbit is so called frozen.

In the case of SkyBridge, where the mean semi-
major axis was initially fixed to7845 km and the
mean inclination t&b3 degrees, the calculation of the
frozen orbit is accomplished for a mean eccenyrioft
0.8454 10°.

This calculation has been executed with the J6M3
Earth gravity field model. The choice of the JGM3
model for the definition of the reference orbit is
justified by the fact that JGM3 is the operational
gravity model used for the TOPEX/POSEIDON
satellite which orbits close to the SkyBridge atti¢.

2.2-Phased or bit

An Earth phased orbit is an orbit which periodigall
passes over the same ground points. As it wasiegpla
before, the calculation of the phased orbit iglfirsyade
in terms of mean parameters where only secular
variations are considered. Moreover the orbit ézén,
so the secular variation of the argument of perigae
been cancelled. In fact the secular drift of theelite



position on its orbit is equal to the secular doftthe
mean anomaly.

The initial phasing of the orbit is calculated watHirst
order dynamical model where only & taken into
account. The secular drifts of the ascending nbdQe,
of the mean anomalyMs and of the argument of
perigeeAws are given by the following expressions:

« AQs = - 3/2 (@/aY & n/(1-€)* cos i (t-b)
« AMs=[n + 3/4 (gay J, n/(1-€)*? (2-3sirfi)](t-to)
» Awxs = 0 (for afrozen orbit) ==>A(wtM)s=AMg
where ais mean radius of the Earth, n is the mean

motion of the satellite and, Js the amplitude of the
second zonal harmonic in the JIGM3 model.

The value of the semi-major axis has to be adjusted
again in order to take in account the second order
secular drifts of the ascending node and of thenmea
anomaly due to the other zonal harmonics and to
coupling effects of the zonal harmonics. The ectatyt
value has to be corrected simultaneously with #rais
major axis to stabilize the frozen orbit. That et
subject of the next paragraph.

3-Adjustment of the mean reference or bit

The previous paragraph describes the calculation of
the frozen and phased orbit with a first order theo
where only J2 is taken in account. We have now to
introduce additional accuracy on the orbital
perturbations in order to provide a realistic refere
orbit. At an altitude of 1500 km, the knowledgeEairth
gravity field truncated to the order 16 is quiteoegh

The secular drifts are calculated by using these for the mission analysis. The orbital perturbatidos to

expressions with the following initial conditions:
* 8, =7845 km, g= 0.8454 16, i, = 53 deg,

* uy =90 degQ, =0 deg, M =-90 deg,

« any initial value of the mean sidereal times .

The drift of the mean sidereal time which has been
considered is d(@D)/dt=0.72921150902 1brad/s.

Different cycle durations are found by looking faf

the dates where the orbit plan has accomplished a

complete revolution with regard to the Earth. This
condition is expressed b@(t) + TSD(t) — TSDy = 2k,
where k is the number of sidereal days. The nurober
revolution of the orbital plan in a fixed geoceatiiame

is disregarded because in less than 36 days, tekitea
plan has not yet accomplished a complete revolution

The SkyBridge specifications have chosen a cycle

duration close to 36 days. For the closest cormedipg
cycle duration estimated with this method, the gabd

major axis is adjusted by a dichotomy method ineord
to cancel the shift position of the satellite wigispect to
its initial position (M = -90 deg) at the beginnion§the
cycle. We finally obtain:

k = 36 sidereal days

8y = 7845.083615 km

Teycle = 35.6150402 days

The satellite has accomplished 445 revolutionsratou
the Earth during this cycle duration.

the zonal harmonics of this potential have to be
considered for the calculation of the phased ohbié
now use an analytical method where the orbit ttajgc

is calculated in terms of mean parameters. Theaete
orbit is so calculated with a high accuracy. Thagihg
error of the orbit and the residuals of the longiquke
perturbations are easily estimated. We have taitzke
successively some corrections on the mean semirmajo
axis and on the mean eccentricity until we obtain a
stable solution.

3.1-Mean parameters

A satellite orbit is classically calculated with a
numerical integrator where all the orbital pertuidras
due to a dynamical model are taken in account witho
any distinction. With the analytical theories, it
becomes possible to identify separately the angsiu
and the periods of the orbital perturbations duerte
Earth gravitational coefficient. In an analytical

; . computation of satellite trajectory, the satellitean
mean anomaly is calculated. The value of the semi- P ) Y,

parameters are calculated taking into account the
different orbital perturbations due a consideredieho

The SkyBridge reference orbit is determined with
mean parameters, the dynamical model used foris th
JGM3 Earth gravity field limited to 16 zonal harnon
coefficients. The orbit is tabulated with a 100cs®ts
step on a duration of 10 cycles. The period ofrtiaén
long period perturbations is near 180 days, so a
calculation of the orbit on 10 cycles minimize the
influence of the residuals of the long period
perturbations.



3.2-Correction of the semi-major axis

3.3-Correction of the eccentricity

The ephemeris is obtained in mean parameters with The calculation of the value of the mean eccemyrici

the new initial conditions where, &#7845.083615 km.
The formulaQ(t) + TaD(t) — TSDy = 2kit, with k=36,
allow us to estimate the accuraf (figure 1) of the
phased orbit. The new cycle duration is calculdigd
considering the new value of the drift orbit plahieh
has been shifted to a more

considered as the new phasing ef&bfr (figurel).

Corrected orbit Initial orbit
real
point
phasing error of
point phase
Line of nodes
AQ
>

figure 1: Correction of phase

To cancel out this error, the semi-major axisi|
adjusted by a linear approximation based on thenmea
Keplerian motion of the satellite. The mean anonmby
linear function of the time, M = nt, with n the nmea
motion of the satellite, so the correction on tleeis
major axis is:

Aa = ([Mo/ (Mg+AM)]?° 1) a,

where M) = 2riN,e, corresponds to the corrected value of
the ascending node to phase the orbit, apgi®the
whole number of satellite revolution around the tEar
over the whole cycle duration.

realistic value. The
corresponding new value of the mean anomaly is

to freeze the orbit has been done with a Kaula
algorithm where only first order secular variatiars
taken in account. The coupling effects between lzona

FROZEN ORBIT (Kaula)

figure 2: Frozen orbit

coefficients have not be considered. So some rakidu
long-period perturbations appears in the tabulated
orbit. The amplitude of those residuals are:

Ae = 5. 10 andAw = 0.4 deg.

It is possible to improve the accuracy of the froze
orbit. For that we have to calculate the mean value
the eccentricity plotted ifigure 2, the result obtained
is: e = 0.847915 Idwith Ae = 5. 10 andAw = 10*
deg.

The successive semi-major axis corrections to phase
the orbit are weak. The resulting perturbationshan
eccentricity and on the argument of perigee can be
corrected by centering the eccentricity value athea
iteration.

3.4-Resultswith mean parameters

Successive adjustments of the semi-major axis and

The orbit is then computed with this new semi-major of the correction of the eccentricity are executed!

axis value. But the correctiomda is a linear

we obtain a stable solution which leads to an ateur

approximation, so it has to be done many times. And phased and frozen mean orbit. The following values

between each iteration, the value of the eccetytri@s
also to be corrected in order to maintain the fnoze
properties of the orbit.

are finally:

e a=7847.3978918 km
« ©=0.8405 18
* Teyoe = 35.615318481 days



The phasing error corresponding to this new set of which corresponds to the accuracy obtained with the
mean parameters 48Vl = 10° deg on 10 cycles. analytical method. So this reference orbit can $sdu
for the operational station keeping.
We have finally obtained a very accurate mean ghase
and frozen reference orbit. We have now to prode
osculating reference orbit. 5-Conclusion

In this paper, we have described the definitiothef
4-Final reference or bit reference orbit conducted by CNES and ALCATEL
Space Industries. The different step of this stady
This paragraph describes the computation of the summarized on thiggure 3.
osculating reference orbit where the short-period
perturbations are added. Then the accuracy of ithi¢ o

is estimated by using a numerical integrator. Procedure of calculation i Valuesof parameters
of the reference orbit H
4.1-Addition of the short perturbations a = 7845 km
Skybrid ificati T v
. . ridge speciticatiorys . i=
The occurrences of the short period perturbations [ SR r] : ITC iid;sg days
due to the zonal coefficients are the revolutioriquke : s
of the satellite and its sub-multiples. So the eycl Frozen eccentricit : |©=0.0008454
duration of the phased orbit is independent of éhos (Kaula; : |©=90deg
perturbations. Nevertheless, the short period :
perturbations due to the odd zonal coefficientsnate Orbit phasedhith le N Lo 7845.083615 km
phased on the equator like the ones due to the even [ i | Towe= 35.615 days
zonal coefficients. The real position of the s#telis :
shifted of 6. 10 degree on the orbit and on the :

ascending node. Only the short period perturbatidns [Mean orbit(J29J16)]
J2, J3, J4 have been added on the mean parameters.

L . . . . First iteration
T ) prametes o e ot ot v | (G5 GIRETER |- e
sc — . ose— +- ’ . cycle= 9. ays
iose= 53.01476 degQos. = 359.99994 deg, ! :
W= 53.72314 deg and M= -53.72308 deg. [Mean orbit32> J16))

The phasing error corresponding to this computation [Correction of eccentricity] : | Firdtiteration
over 10 cycles is Iddegree instead of the f@egree : | ©=000084049

obtained previously. This difference can be attedu stability :
to a small shift of the mean inclination which adds
secular drift on the ascending node. But this teisul [ Mean orbit + short DeriOd}

still very good and quite enough with respect te th
station keeping constraints. We are now going to
calculate a new orbit with a numerical integrator i
order to check the accuracy obtained.

a=7847.3978918 km
€=0.000840489

i=53 deg

w=90 deg
Teyee=35.615318481 da

REFERENCE ORBIT

2]

4.2-Numerical integration of the orbit

The initial osculating parameters of the reference figure 3: Algorithm of calculation
orbit calculated with the analytical model have rbee of the reference orbit
introduced in a numerical integrator. The orbitss
calculated with a 10 seconds step on a 10 cycle The experience acquired has given confidence in the
duration We plot the value of the ascending and the feasibility of the station keeping with a refererubit
value of the satellite position on the orbit. The defined in mean parameters, which is a key of the
accuracy obtained is Todegree on both parameters ~ SkyBridge project.



The analytical orbit model which will be loaded in
the terminals is still on study and final refinertsen
could be added.
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