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Abstract 

 
  In the last few years, the number of satellite 
constellation concepts has increased dramatically, 
particularly in the commercial communications sector. 
This large growth in the number of satellite 
constellations has made good satellite constellation 
design imperative.  

  To address this need, GMV has studied and tested 
three satellite constellation design algorithms. These 
algorithms are: an inclined, symmetric constellation 
algorithm (often known as Walker constellations), a 
polar, non-symmetric constellation algorithm, and an 
adaptive random search algorithm used for satellite 
constellation design optimization. These three 
algorithms address various needs for the three main 
types of satellite constellations: navigation, earth 
observation and communications. Tests for all of the 
algorithms were performed using constellations which 
are either in use, or in the development phase.  

  These algorithms can be used either separately or 
together to form a powerful, two-step constellation 
optimization design tool. 
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Introduction 
   
  Until the last decade, a single spacecraft was usually 
sufficient to perform most space missions. Within the 
last decade, however, it has become clear that for some 
applications, a single spacecraft can not fulfil the 
mission objectives. One way to fulfill these mission 
objectives is to use a series of satellites in different 
orbits -- in orbit terminology, a "satellite constellation".  

  Over the last decade, satellite constellation concepts 
have been envisioned for a broad range of uses. Initially 

starting with navigation and positioning constellations 
(NAVSTAR/GPS, Glonass, GNSS), satellite 
constellations concepts have branched out into 
telecommunications for direct telephony, mobile 
message systems and broadcasting (Iridium, Globalstar,  
Teledesic, ICCO/Immarsat-p, Ellipso, ECO), and into 
Earth Observation (DMSP 5D-2, GOES, TIROS-N, 
FUEGO). The last few years have seen a virtual 
explosion of satellite constellation issues. 

  The mission analysis, design and planning of all these 
new satellite constellations has been carried out using 
in-house software tools and algorithms. There exist no 
general algorithms or software tool to do this. Towards 
the end of developing a commercial software tool – 
called ORION2 -- for satellite constellation design and 
planning, GMV performed a study of constellation 
design algorithms for the ESA-GSTP contract. This 
study resulted in the development and testing of three of 
these algorithms.  

  GMV chose the three design algorithms to be 
incorporated in ORION based on the following criteria. 
First of all, the algorithms must cover the definition of 
satellite constellations whose primary service objectives 
are either: 

� Global or regional earth observation  

� Global or regional telecommunications 

� Global navigation and location networks 

These three encompass the most common mission 
objectives for satellite constellations.  

  Second of all, in order to take into account a wide 
range of possible mission requirements and objectives, 
the design algorithms must permit the definition of 
satellite constellations for the following: 

� Continuous coverage of all the Earth’s surface 

� Continuous coverage over an entire latitude 
band (i.e. within the δ to ϕ degrees of latitude, 



where δ and ϕ may vary between –90 degrees 
and 90 degrees in latitude). If this latitude band 
is symmetric with respect to the equator (that is, 
ϕ is equal to -δ), the specific problem of 
equatorial coverage is analyzed. 

� Continuous polar or high latitude band coverage  

� Continuous or optimized coverage of a certain 
geographic area (i.e. a latitude-longitude box)  

  After investigation, GMV finally decided that the 
following three constellation design algorithms would 
be developed and tested: 

1. A symmetric, inclined constellation design 
algorithm  based on a Thomas Lang algorithm 
for Walker constellations, 

2. A non-symmetric, polar constellation design 
algorithm  based on the “Streets-of-Coverage” 
principle, and 

3. An adaptive random search constellation 
design algorithm for optimizing constellation 
design with respect to such parameters as the 
DOPs (Dilutions of Precision), revisit time and 
satellite failures. 

  These three algorithms were developed and then tested 
using real constellation concepts. This was done in 
order to reconstruct the actual design processes of the 
original constellation designers, and to see if the final 
constellation design could be reproduced with the 
constraints which were known to GMV.  

  This paper will present an introduction to the theory 
behind each of the three satellite constellation design 
algorithms, an overview of the algorithms, the results 
obtained in testing the algorithms, and finally a 
comparison of each of the algorithms. 

 

Symmetric, Inclined Constellation Algorithm 
 

1. Theory 
 
  The traditional approach to the optimization of a 
satellite constellation has been formulated as the 
minimization of the number of satellites which satisfy a 
given geometrical coverage criterion. Typically this 
means guaranteeing the required level, or fold, of 
continuous global or zonal coverage of the Earth above 
a given minimum elevation threshold, or above a 
minimum altitude. The symmetric, inclined 
constellation algorithm is one of the traditional 
approaches. It provides an arrangement of symmetric, 

circular orbits which is often referred to as a Walker 
Constellation, based on the important contributions of 
J.G. Walker9-10.  

  Walker developed a notation for labeling orbits that is 
commonly used as a starting point for constellation 
design. The Walker Delta Pattern9-10 constellation is 
identified by 4 parameters: 

� i , the constellation inclination 

� T, the total number of satellites 

� P, the total number of orbital planes  

� F, the relative spacing between satellites in 
adjacent planes 

The number of satellites per plane, S, is given as S=T/P.    

  Figure 1 displays a typical delta pattern arrangement of 
satellites. This delta pattern consists of four orbit planes 
(A, B, C and D) with a common inclination angle δ with 
respect to the reference plane. 

  In Walker constellations, all satellites are placed in 
circular orbits at the same altitude. All of the orbit 
planes have the same inclination i., and the ascending 
nodes of the P orbital planes are uniformly distributed 
around the equator at intervals of 360°/P. Within each 
orbital plane, the S satellites are distributed at intervals 
of 360°/S. The only remaining issue is the relative phase 
between satellites in adjacent orbital planes.   

 

 
Figure 1: Walker Delta Pattern 

  

  For this purpose, Walker defined the phase difference 
(∆Φ) in a constellation as the angle in the direction of 
motion from the ascending node of a satellite in one 
place to the nearest satellite in the next most westerly 
plane. The relative angular shift between satellites in 
adjacent orbital planes is equal to F*(360°/T). F may 
assume any value between 0 and (P – 1).  



  It should be noted that the symmetry of the orbital 
configuration leads to frequent recurrence of similar 
satellite patterns during each orbital period. 

 

2. Algorithm 
 
  The Symmetric, Inclined Constellation Design Method 
optimizes a Walker constellation pattern using an 
algorithm developed by Thomas J. Lang in 19933-5. This 
algorithm was chosen because it significantly reduces 
the CPU time needed to run.  

  The user needs very little information about the 
constellation in order to use this. He or she may know as 
little as what type of coverage is desired (either global 
or within a certain latitude band), and the Earth grid 
resolution. However, the more parameters a user knows, 
the more useful the results of the algorithm will be and 
the more quickly the algorithm will run.  

  The additional information that the user may specify 
consists of: minimum elevation angle, minimum 
altitude, minimum and maximum number of satellites, 
minimum and maximum orbital plane inclinations, 
desired fold(s) of coverage, and the number of orbital 
planes.  

 

 
Figure 2: Single Satellite Viewing Geometry  

 

  Essentially, this algorithm optimizes the Earth central 
angle θ for constellations of T circular orbit satellites 
while still achieving continuous coverage in the desired 
latitude band. Figure 2 shows the satellite viewing 
geometry. The elevation angle ε of the satellite viewing 
cone, the central angle radius of earth coverage θ, and 
the satellite altitude h are related by the coverage 
equation as follows: 

                                                                  
)/1/(cos)cos( ERh+=+ εεθ                                    (1) 

 
where RE is the radius of the Earth. The following 
observations can be inferred from this equation: 

− if  h is fixed, ε decreases if θ increases; 

− if ε is fixed, h increases if θ increases. 

Thus, an increase in θ always brings about a negative 
effect, either in terms of altitude or minimum elevation 
angle.   

  The constellation with the lowest required value of θ 
will allow the lowest operating altitude for a fixed value 
of ε. Conversely, if satellite altitude is fixed, the lower 
operating limits on elevation angle ε will be maximized.  

  The value of the central angle radius of earth coverage 
θ, which is required for the constellation to achieve 
continuous global coverage, is used as a measure of the 
efficiency of the constellation configuration. This means 
that θ is the performance index that characterizes the 
global system quality and the optimization method 
consists of minimizing θ. The lower the value of θ for 
fixed T, the more efficient the constellation. 

  In order to obtain the lowest value of θ, the T satellites 
are propagated in time over an Earth grid. The smallest 
value of θ is then determined which ensures that all test 
points are visible to at least N satellites (where N is the 
desired multiplicity of coverage) for all times. The 
satellite constellation which results after many iterations 
is the optimal symmetric, inclined satellite 
constellations for continuous global or zonal coverage. 
One to four fold coverage can currently be handled.  

  It should be noted that for every prograde solution 
(T/P/F, i, θ), there is a mirror image retrograde solution 
(T/P/F*, i*, θ*) with: 
 
                         F* = P – F                                            (2) 
 
                         i* = 180° –  I                                       (3) 
 
                         θ = θ*                                                  (4) 
 
  For most applications, only the prograde solution is of 
practical interest. 

  This algorithm, in spite of being the quickest, is still 
very CPU intensive. There is a nearly exponential 
relationship between the number of satellites in the 
constellation and the time it takes to determine the 
optimum θ and inclination. In other words, it takes less 



than a minute to optimize the 5/P/F constellations, about 
10 minutes to optimize the 12/P/F constellations, about 
1.5 hours to optimize the 70/P/F constellations, and 
about 5 hours to optimize the 100/P/F constellations. All 
of these times assume the same resolution of the Earth 
grid (4° in latitude) with global coverage, and result 
from using a Pentium PC.  

 

3. Results 
 
  In order to test the efficacy of the symmetric, inclined 
constellation design algorithm, the GPS navigation 
constellation was used as a test case to see if it was 
possible to reproduce the various steps of the 
constellation design process. The main requirements 
applied to design the GPS constellation were as follows: 

♦ Continuous 4-fold coverage of the entire surface of 
the Earth (needed for signal triangulation) 

♦ An altitude of 20200 Km (a circular, MEO to avoid 
Doppler shift in the signal to the receiver and to 
have a 12 hour period) 

♦ A 7,5-degree minimum elevation angle (needed for 
the receivers) 

  In order to verify the results, GMV first investigated 
the evolution of the GPS constellation design.  

  The first GPS constellation was a Walker constellation 
with 18 satellites in 3 planes, inclined to 55°. Although 
this pattern guaranteed worldwide continuous coverage 
by at least 4 satellites, it proved to be too sensitive to 
satellite failures. Thus, three spare satellites were added, 
one in each orbital plane, obtaining a configuration with 
21 spacecraft in 3 orbital planes. Then, extensive 
computations with 1, 2 and 3 satellite failures led to the 
current constellation of 24 satellites in 6 planes 
characterized by an inclination of approximately 55°.  

  The results of the symmetric, inclined algorithm 
reproduce the various phases of the GPS constellation 
design.  

  As seen in Table 1, the first possible solutions with 
continuous, global, 4-fold coverage have 16 and 17 
satellites in 16 and 17 planes respectively. These 
solutions are ruled out since they entail too large a 
number of orbital planes. 

  The first acceptable solution is the 18/3/1 inclined to 
55.5°. Remembering this solution’s susceptibility to 
satellite failure, however, the next acceptable solution is 
the 21/3/2 inclined to 54.3°. Finally, keeping in mind 
the extensive satellite failure analysis undertaken by 

GPS constellation designers, the current configuration, 
24/6/4 inclined to 54.4°, emerges. It should be noted 
that there is another alternate configuration possible, 
24/3/2 inclined to 54.5°. That this configuration was not 
chosen is probably due to the extensive satellite failure 
analysis. 

 
Table 1: Results from Symmetric, Inclined Algorithm for 

Possible GPS Constellations 

T P F i (deg) θθθθ (deg) 

16 16 10 56.6 68.516 

17 17 11 52.7 66.093 

18 2 ***** ***** ***** 

18 3 1 55.5 63.544 

18 6 5 61.9 64.721 

18 9 5 51.1 65.825 

18 18 15 55.4 65.696 

19 19 5 57.2 62.224 

20 2 ***** ***** ***** 

20 4 3 56.5 64.664 

20 5 4 58.0 62.207 

20 10 7 58.6 61.756 

20 20 8 55.7 61.396 

21 3 2 54.3 57.985 

21 7 6 61.9 61.382 

21 21 5 59.8 60.999 

22 2 0 45.0 67.431 

22 11 5 56.0 58.987 

22 22 16 57.6 57.366 

23 23 14 54.2 56.094 

24 2 0 45.0 63.409 

24 3 2 54.5 54.455 

24 4 2 59.4 59.440 

24 6 4 54.4 54.485 

24 8 4 57.3 56.674 

24 12 5 55.4 54.359 

24 24 20 55.8 54.698 

**** indicates that no solution was possible 



Polar, Non-Symmetric Constellation Algorithm 
 

1. Theory 
 
  While developing the Symmetric, Inclined 
Constellation Design Algorithm, GMV realized that 
certain types of constellations are better optimized with 
a Polar, Non-Symmetric Design Method using a Streets-
of-Coverage approach. In order to treat this weakness, 
GMV decided to develop a Polar, Non-Symmetric 
Design Algorithm based on the Streets-of-Coverage 
approach with multiple visibilities. This algorithm is 
especially tailored to provide good results for large 
constellations characterized by 1-fold coverage. 

  The Streets-of-Coverage concept is the following. 
Multiple circular orbit satellites at the same altitude are 
placed in a single plane so as to create a Street-of-
Coverage which is continuously viewed (see Figure 3, 
which illustrates one street-of-coverage in the case of a 
non-polar orbit). The objective is then to determine 
analytically how many such streets (i.e., planes of 
satellites at the same inclination) are required to cover 
the zone of interest or the globe.  

  When the Streets-of-Coverage design technique is 
applied to a polar constellation, the resultant optimal 
configuration is a polar satellite network in which the 
motion of a spacecraft in one orbital plane is 
synchronized with that of the spacecraft in the adjacent 
planes (Phased Polar Constellation). 

 

2. Algorithm 
 
  The Polar, Non-symmetric Constellation Design 
Algorithm implements an analytic method for 
identifying families of circular polar orbit constellations 
using minimal total numbers of satellites which can 
provide a desired fold of coverage n at or above a user-
defined latitude (λn).  
  Because this algorithm is analytical instead of 
numerical (like the Inclined, Symmetric algorithm), it 
runs very quickly – typically in a matter of seconds. 

  The optimal configuration for a Polar, Non-symmetric 
satellite constellation is determined using the “Streets-
of-Coverage” method. The algorithm proposed by 
Ullock and Shoen8 for continuous 1-fold global 
coverage is implemented. In order to achieve multiple 
folds of coverage (2-, 3- and 4-fold), this algorithm has 
been integrated with Rider’s algorithm1,5-6. The 
algorithm obtained provides very accurate results for 1-
fold continuous global coverage and less accurate 
results for multiple levels of coverage. The results in 

terms of central angle radius of earth coverage θ tend to 
be very good. 

  
Figure 3: Continuous Street of Coverage from a Single 

Orbital Plane 
 

  The user needs to provide very little information about 
the constellation in order to use the Polar, Non-
symmetric Constellation Design Algorithm. The only 
necessary input information is the type of coverage 
desired (either global or above a certain latitude). The 
additional information that the user may specify consists 
of minimum elevation angle and/or altitude, along with 
minimum and maximum values of the following 
parameters: number of satellites, desired fold(s) of 
coverage, and number of orbital planes (p).  

  The basic assumption of the optimization method 
stems from Rider’s algorithm: the constellation can be 
arranged so that there are 2(p – 1) co-rotating interfaces 
and two counter-rotating interfaces. The resultant 
configuration is defined as “non-symmetric” because 
the orbit separation (delta RAAN) between co-rotating 
planes is different from the orbit separation between the 
two counter-rotating interfaces (see Figure 4).  

  The optimization methodology is carried out using a 
series of analytical relations which provide the values of 
the variables that define the constellation arrangement. 
Optimally phased polar constellations are derived by 
minimizing the central angle of coverage θ. As output, 
the program provides the optimal values of the angular 
spacing between co-rotating orbits (φ) and of the 
relative phase between satellites in adjacent planes (ω), 
along with the optimum θ. Note that, since a polar 
network is taken into account, the inclination of the 
orbital planes is assumed to be 90 degrees. 



 

 
Figure 4: Non-symmetric Polar Network 

 

  The first step of the optimization process consists in 
determining the optimum central angle of coverage θ. 
This is obtained by solving equation (5) employing the 
bisection method of approximating roots, using an 
ending tolerance in the solution of 10-6 degrees.  
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  If a value of optimum θ is obtained (that is, if equation 
(5) has a solution), then the program computes the 
optimal value of φ and the optimal value of ω. These 
angular quantities are determined using some relations 
provided by Ullock and Shoen8 and adapting them to 
the case of multiple folds of coverage. 

  For the co-rotational segments, reference is made to 
Figure 5. It is seen that the three satellites located at 
points A, B and C have fields of view θ which intersect 
at point T, located at latitude λT. The latitude of the 
three satellites are designated as λ1, λ2 and λ3 
respectively. Since it is desired to maximize the 
incremental longitude β between points T and C, the 
great circle arc TC must be perpendicular to the arc of 
longitude OC. The arc DT is a perpendicular to 
longitude OB and bisects AB. The derivation of the 
equations holds only in the region in which satellites 1, 
2 and 3 are on the same “side” of the pole and thus is 
limited to θ ≤ 90°  - λT.  

  In order to design the optimal polar network that 
provides a desired fold of coverage n at or above a 
specified latitude λn, the most critical condition occurs 
when λT = λn. In fact, the main requirement is to design 
the synchronization between co-rotating planes so as to 
ensure continuous coverage at or above latitude λn. 

  From spherical trigonometry relations applied to 
triangles DTB, DTO and CTO and considering DT = cj, 
the following relations are obtained: 
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Figure 5: Synchronization of satellites in adjacent 
orbital planes 

 
  As underlined, these relations hold if θ ≤ 90° - λn. In 
addition, these relations provide more accurate results 
when sinθ / cosλn is small, that is, when a large number 
of satellites is taken into account (θ is small), 
particularly when λn is not 0 degrees.  This was also 
pointed out in the paper by Adams and Rider1 who 
analyzed arbitrarily and optimally phased polar orbit 
constellations and provided a much more complex 
algorithm to obtain minimum total numbers of satellites 
to achieve continuous single or multiple coverage above 
a specified latitude. Moreover, in their work Adams and 
Rider also notice that in general, to maximize the 
number of co-rotating interfaces in a polar network, 
their ascending nodes should be distributed over kπ 
radians with an approximate value for the angular 
spacing between co-rotating orbits (φ) of kπ/p radians.    

  This approximation is used to compute φ when 
equation (6) cannot be applied (because θ > 90° - λn). 
Similarly, when equation (7) cannot be used, the relative 
phase between satellites in adjacent planes (ω) is 
considered to have an approximate value of π/s. In some 
cases these approximations are considerable and the 
corresponding values of φ and ω are not very accurate if 



compared with the results provided by Adams and 
Rider1. However, the results in terms of central angle θ 
tend to be very good and GMV has largely been able to 
reproduce the values of θ provided by Adams and 
Rider. 

 

3. Results 
 
  In order to test the efficacy of the Polar, Non-
Symmetric  Constellation Design Algorithm, Motorola’s 
telecommunications constellation Iridium was used as a 
test case. GMV wanted to see if it was possible to 
reproduce the various steps of the constellation design 
process. The main requirements applied to design the 
Iridium constellation were as follows: 

− Continuous 1-fold coverage of the entire surface 
of the Earth  

− A 10-degree minimum elevation angle, which is 
a very common requirement for satellite 
telecommunication systems. 

  In order to verify the results, GMV first investigated 
the evolution of the Iridium constellation design. 

  The first Iridium constellation consisted of 77 
satellites, at 765 km, in a polar orbit, and the first plane 
had a RAAN of 27° which yielded a counter-rotating 
plane separation of 18°. There were seven planes and 11 
satellites in each plane. This constellation evolved and 
became the current Iridium orbital configuration which 
is characterized by 66 satellites, arranged in six planes, 
and containing 11 satellites each. The orbital altitude is 
780 Km and the inclination is 86.4° -– probably to avoid 
the risk of collisions between spacecraft.  

  Using the Polar, Non-Symmetric algorithm and the 
constraints outlined above, GMV was able to reproduce 
the initial configuration of the Iridium constellation 
perfectly (see Table 2). Given the above constraints, the 
first constellation configuration possible with an altitude 
of 765 km is the configuration with 77 satellites in 
seven planes with a co-rotating planar separation of 27°.  
 

Table 2: Results from the Polar, Non-Symmetric 
Algorithm for the Initial Iridium Constellation 

T P S θθθθ(deg) φφφφ(deg) ωωωω(deg) H (km) 

77 7 11 18.457 27.114 16.364 766 

  In all of the following tables for Iridium, the notation 
is the same. T is the total number of satellites, P is the 
number of planes, S is the number of satellites per 
plane, θ is the Earth central angle, φ is the angle 

between two co-rotating planes, ω the relative phase 
between satellites in adjacent planes and H is the 
minimum altitude possible for the given configuration.   

  In attempting to reproduce the new configuration of 
Iridium, GMV assumed  the change was brought about 
by a reduction in the minimum elevation angle. This 
worsens the minimum altitude somewhat, but results in 
a significant savings of spacecraft (66 instead of 77). In 
order to verify this, the optimization algorithm was run 
again with the following requirements: 

− Continuous 1-fold coverage of the entire surface 
of the Earth  

− An 8-degree minimum elevation angle, which is 
a common requirement for satellite 
telecommunications systems. 

  As seen in Table 3, the first satellite configuration 
which the algorithm produced, was the configuration of 
66 satellites in six planes with 31.4 degrees between co-
rotating planes. The altitude associated with 
configuration, however, was slightly lower than the 
current Iridium configuration. 
 

Table 3: Results from the Polar, Non-Symmetric 
Algorithm for an Intermediate Iridium Constellation  

T P S θθθθ(deg) φφφφ(deg) ωωωω(deg) H (km) 

66 6 11 19.907 31.402 16.364 769 

 
  In order to clear up this last bit of confusion regarding 
the Iridium configuration, GMV did a literature search 
on the exact elevation angle of the current Iridium 
constellation. A value of 8.2° was found. Running the 
Polar, Non-Symmetric algorithm again with an 
elevation angle of 8.2°, gave the following results (see 
Table 4). 

Table 4: Results from the Polar, Non-Symmetric 
Algorithm for the Final Iridium Constellation  

T P S θθθθ(deg) φφφφ(deg) ωωωω(deg) H (km) 

66 6 11 19.907 31.402 16.364 780 

   
  This gives the Iridium configuration exactly. In fact, if 
the algorithm is run with an altitude of 780 Km and a 
minimum elevation angle of 8.3° degrees, the first 
available solution is the one with 70 satellites and the 
solution with 66 satellites is no longer available. 

Advanced Adaptive Random Search Algorithm 
 

1. Theory 
 



  The two constellation design algorithms described 
above are both well-known and widely used methods of 
constellation design. However, both of these methods 
have certain limitations. The most important of these 
limitations are their inability to take anything but 
classical, geometric design factors into consideration, 
and their inability to consider a latitude-longitude box 
for optimal coverage. Both of the previous algorithms 
can be used for regional coverage, but the regional 
coverage must be over an entire latitude band. It cannot 
be of a latitude-longitude box. Nor can either of the 
previous algorithms take satellite failures or hybrid 
constellation possibilities into account in the 
constellation design. In order to address these 
limitations, GMV developed the Adaptive Random 
Search algorithm for constellation design.  

  The Adaptive Random Search algorithm is a variation 
of a genetic algorithm. The basic theory underlying 
genetic algorithms is the following. Given an individual 
with certain traits which the user wants optimized, the 
algorithm does a Monte Carlo simulation to propagate 
these traits in the offspring of the original individual. If 
one of the offspring is “better”, i.e. more optimized, 
than the parent individual, this offspring is then chosen 
to have offspring in order to see if the trait to be 
optimized can be improved upon again. If the parent 
individual is “better” than any of the offspring, then a 
Monte Carlo simulation generates more offspring. This 
cycle repeats either a certain number of times or until 
the trait has reached an optimum decided by the user. 
This process can be repeated any number of times for 
any number of traits to be optimized.  

  If several traits are to be optimized and one trait has a 
much stronger influence than any other trait on the 
optimization of the individual, then certain problems 
can arise. For example, if Trait 1 has a 
disproportionately large effect on the optimization as 
compared to Trait 2, then if both traits are optimized 
simultaneously, the results are heavily dominated by the 
optimization of Trait 1. This can result to the point that 
Trait 1 is optimized, but Trait 2 is not at all – it may be a 
local minimum or some other value.  

  In order to avoid this problem, a subset of genetic 
algorithms called adaptive random search algorithms 
was developed at GMV by Miguel Romay et al. 7 and 
consequently adapted for use in this study. In adaptive 
random search algorithms, Trait 1 of the above example 
is optimized first and completely separately from Trait 2 
(or any other traits). The optimized value of Trait 1 is 
then used for the optimization of the other traits, 
allowing for slight variations of Trait 1 to see if this can 
be bettered when optimized with Trait 2. The adaptive 

random search method should be defined as a genetic 
algorithm where the population is reduced to one 
chromosome. Crossover is not possible and only 
mutation can occur.  

  After testing, satellite constellations were found to 
have one variable with a much stronger influence on the 
optimization process than any other: inclination angle. 
This was independent of the function to be optimized.  

 
2. Algorithm 
 
  In any optimization problem the first step is to define 
clearly the function that has to be optimized. In order to 
be able to choose the best solution among two (or more) 
possible solutions. This function must take into account 
that different performances have to be provided at 
different locations. This algorithm allows for the 
optimization of the following functions: 

♦ VDOP, for the vertical positioning accuracy 

♦ HDOP, for the horizontal positioning accuracy 

♦ PDOP, for the 3-dimensional positioning accuracy 

♦ TDOP, for the time determination 

♦ GDOP, for the total position and time accuracy 

♦ Mean Revisit Time for a particular latitude-
longitude box 

♦ Maximum Revisit Time for a particular latitude-
longitude box 

♦ Satellite Failures 

  Any of the above functions can be used in the 
calculation of the cost function, CF (see eq. 8). The cost 
function only considers the variable to be optimized that 
is calculated in a set of points chosen by the user over a 
period of 24 hours. The cost function is calculated as the 
sum of the sums of the weighted, squared, maximum 
variables to be obtained at each of these points. 

∑∑∑

∑∑

∑∑

===

==

==

++

+++

+=

PPP

PP

PP

N

i
iAVT

N

i
MAXiMXT

N

i
MAXiG

N

i
MAXiT

N

i
MAXiP

N

i
MAXiH

N

i
MAXiV

AVGTwwMAXTwwGDOPww

TDOPwwPDOPww

HDOPwwVDOPwwCF

1

2

1

2

1

2

1

2

1

2

1

2

1

2

 (8) 

 

where Np is the number of points on the earth surface, 
VDOPMAX  is the maximum VDOP obtained on each of 
these points during the selected period (and so on for 
each of the possible cost functions listed above), and wi 



is the weight that the user gives to any of the points. An 
example of the set of points, and their associated 
weights, used for some preliminary optimizations is 
showed in Figure 6. The user can control the function to 
be optimized by putting more control points in the most 
important areas, or giving more weight to those points. 

  It should be noted here that the cost function 
evaluation requires a significant amount of 
computational time. A significant effort has been 
devoted to minimize the required time to evaluate this 
function, as every time that any of the parameters of the 
constellation (typically thousands of times) is changed, 
the cost function must be re-evaluated. 

 

 
Figure 6: Map of Weighted Points Used as Input for the 

Adaptive Random Search Constellation Algorithm 
 

  In order to use this algorithm, the user must specify the 
six Keplerian orbital elements for all of the satellites in 
the constellation:  

♦ Semi-major axis 

♦ Eccentricity 

♦ Inclination 

♦ Right Ascension of the Ascending Node (RAAN) 

♦ Argument of Perigee 

♦ Mean Anomaly 

  If the user intends to use either the mean or maximum 
revisit time in the cost function, then he or she must also 
specify the elevation angle of each satellite.  

  As is obvious from the input necessary to use this 
algorithm, the Adaptive Random Search algorithm has a 
fundamental difference with the two previous 
algorithms described in this paper. Namely, the user 
must already have a very good idea of the constellation 
design desired and must have a very specific way in 

which he or she wishes to optimize the constellation. 
Because of this difference, the Adaptive Random Search 
algorithm is best used as a second step in constellation 
design after first using either of the previous algorithms. 

  The logic flow of this algorithm is shown in Figure 7. 

 
3. Results 
 
  In order to test the efficacy of the Adaptive Random 
Search algorithm, the optimization of the Earth 
observation constellation, Fuego, was considered as a 
test case. Fuego is a satellite constellation envisioned 
primarily to detect and monitor forest fires in real time 
with coverage that is optimized over the Mediterranean 
basin (although a certain service is intended to be 
provided over land masses in the latitude band ± 60°). 

  The optimization of Fuego was done in two steps so as 
to show how the classical design algorithms and the 
advanced design algorithm can be integrated to perform 
a detailed study. 

  In the  first step, the Symmetric, Inclined Constellation 
Design Algorithm was implemented to design a 
constellation with following requirements: 

− continuous 1-fold coverage of the latitude band ± 
60 degrees 

− 12 satellites 

  The results of the Symmetric, Inclined Constellation 
Design Algorithm resulted in the configuration 12/3/2 
inclined to 49 degrees being selected for further 
optimization. The current configuration of the Fuego 
constellation is 12/3/2 inclined to 47.5 degrees.  

  In the second step, the constellation has been 
optimized so as to minimize the maximum and the mean 
revisit time over the Mediterranean basin (prime service 
area) and most of Europe. The symmetric configuration 
provided by the previous step (12/3/2) is used as the 
input of the Adaptive Random Search Algorithm. 

  In the second step, the Adaptive Random Search 
Algorithm was used to optimize the constellation with 
the following constraints: 

− All planes had to have the same inclination 

− The number of planes was fixed at three 

− The orbital altitude was fixed at 700 km 

− A 20°  minimum elevation angle for all satellites 

READ INPUT FILES 



↓ 

COMPUTE COST FUNCTION USING INITIAL CONSTELLATION 
↓ 

OPTIMIZE CONSTELLATION WITH RESPECT TO INCLINATION (IF INCLINATION IS VARIABLE): RANDOM 
SEARCH WITH A UNIFORM DISTRIBUTION AND THE STANDARD DEVIATION PROVIDED BY THE USER 

↓ 

OPTIMIZE LONGITUDE OF GEO S/C (IF ANY): RANDOM SEARCH WITH UNIFORM DISTRIBUTION AND 
USER-DEFINED STANDARD DEVIATION 

↓ 

OPTIMIZE COST FUNCTION USING UNIFORM DISTRIBUTION ONCE 
↓ 

→ OPTIMIZE COST FUNCTION USING A GAUSSIAN DISTRIBUTION UNTIL ENOUGH CONVERGENCE 
HAS BEEN DETECTED 

 
    ↓ 

 OPTIMIZE COST FUNCTION ONCE MORE USING UNIFORM DISTRIBUTION TO CHECK IF THE RESULT 
OF THE GAUSSIAN DISTRIBUTION OPTIMIZATION IS A LOCAL MINIMUM OR NOT 

 
    ↓ 

 

← 

IF UNIFORM DISTRIBUTION GETS BETTER RESULTS, RUN GAUSSIAN DISTRIBUTION AGAIN 

↓ 

PRINT OUTPUT 
 

Figure 7: Adaptive Random Search Algorithm Logic Flow 

 
− Mean revisit time over the Mediterranean was 

the most important function to optimize 

− Maximum revisit time over the Mediterranean 
was weighted 20% of the mean revisit time 

  The maximum and mean revisit time were computed 
over a simulation period of 28 hours and a region which 
covers the Mediterranean basin and most of Europe. 
This simulation period has been selected because the 
Fuego satellites complete an integer number of orbits in 
28 hrs (17 revolutions). 

  The resulting optimized constellation was changed 
from the original constellation in the following ways: 

♦ The inclination was changed from 49° to 45.73°. 

♦ In the first orbital plane, the mean anomaly was 
shifted by 2.11°, in the second plane by 3.36°, and 
in the third plane by 15.72°. 

♦ The RAAN of the first orbital plane was changed 
by 11.57°, the RAAN of the second orbital plane 

was changed by 25.79°, and the RAAN of the 
third orbital plane was changed by 40.87°.  

  Table 5 provides a comparison of the mean and 
maximum revisit times of the initial and final designs.  
 

Table 5: Mean and Maximum Revisit Times 
Comparison for Fuego 

 Mean Revisit Time  Max Revisit Time  

Initial Design 22.867 min 320 min 

Optimized Design 19.184 min 237 min 

 

Comparison of the Algorithms 
 
  Comparing the results provided by the Inclined, 
Symmetric and the Polar, Non-Symmetric Constellation 
Algorithms the following conclusions were reached. 

  For single-fold continuous global coverage with more 
than 20 satellites, the optimally phased polar 
constellations appear to be more efficient. In all other 
cases (1-fold coverage with less than 20 s/c and multiple 



levels of continuous coverage), the symmetric, inclined 
constellations are more efficient. In most cases, for the 
same number of satellites, the symmetric, inclined 
constellations offer continuous global coverage at a 
lower altitude (correspondingly lower θ).  

  For both the Inclined, Symmetric and the Polar, Non-
Symmetric Constellation algorithms, the user needs 
very little information about the constellation in order to 
use these algorithms. He or she may know as little as 
what type of coverage is desired (either global or within 
a certain latitude band). Neither of these algorithms will 
ever output a hybrid constellation configuration. 

  The Adaptive Random Search algorithm is 
fundamentally different from the Inclined, Symmetric 
and the Polar, Non-Symmetric algorithms. In order to 
use the adaptive random search algorithm, the user must 
already have a very specific constellation in mind. This 
constellation may be inclined, polar, symmetric, non-
symmetric, LEO, MEO, HEEO, GEO or any hybrid 
combination thereof.  

  What is important is that the user knows and is able to 
define the six Keplerian orbital elements of each 
satellite in the constellation in the first instant of time. If 
the user does not know the orbital elements for each 
spacecraft, then this algorithm will not function.    

  Additionally, the user must know exactly where 
constellation coverage is desired and what weighting, if 
any, to give to each area, as well as how he or she 
would like to optimize the design of the constellation.     

  Fundamentally, the Adaptive Random Search 
algorithm is not a pure constellation design algorithm. It 
is a cross between a design algorithm and a performance 
algorithm. The results of the algorithm are an improved 
constellation design. In order to obtain these results, 
certain performances of the constellation are optimized. 
This is the fundamental difference between the 
Adaptive Random Search constellation design 
algorithm, and the Inclined, Symmetric and Polar, Non-
Symmetric constellation design methods. 

5. Conclusions 

  The Inclined Symmetric, Polar Non-Symmetric, and 
Adaptive Random Search algorithms form a powerful 
two-step tool for designing satellite constellations. First, 
to obtain a design using classical geometric methods, 
the user may run either the Inclined Symmetric or the 
Polar Non-Symmetric algorithm according to his or her 
requirements. Then, in order to further refine the 
constellation design with regard to certain performance 
parameters, the user may run the Adaptive Random 

Search Algorithm. The result of this two-step process is 
an optimized constellation. 

 

References  
 

1Adams, W.S. and Rider, L., “Circular Polar 
Constellations Providing Continuous Single or Multiple 
Coverage Above a Specified Latitude”, The Journal of 
the Astronautical Sciences, Vol. 35, No 2, April-June 
1987, pp. 155-192. 
2Belló Mora M., Prieto Muñoz J., Dutruel-Lecohier G., 
“ORION – A Constellation Mission Analysis Tool”, 
IAF Workshop on Satellite Constellations, Toulouse, 
November 1997. 
3Lang, Thomas J., “ Symmetric Circular Orbit Satellite 
Constellations for Continuous Global Coverage”,  
AAS/AIAA 87-499, 1987. 
4Lang, Thomas J., “Optimal Low Earth Orbit 
Constellations for Continuous Global Coverage”, AAS 
93-597. 1993. 
5Lang, Thomas J., ”A Comparison of Satellite 
Constellations for Continuous Global Coverage”, IAF 
Workshop on Satellite Constellations, Toulouse, 
November, 1997. 
6Rider, L., “Optimized Polar Orbit Constellations for 
Redundant Earth Coverage” , The Journal of the 
Astronautical Sciences, Vol. 33, No 2, April-June 1985, 
pp. 147-161. 
7Romay Merino, M.M., et al., “Design of High 
Performance and Cost Efficient Constellations for a 
Future Global Navigation Satellite System”. 
8Ullock, M. H, Schoen, A. H., “Optimum Polar Satellite 
Network for Continuous Earth Coverage”, AIAA 
Journal Vol. 1, No. 1, pp 69-72, January 1963.  
9Walker, J. G., “Circular Orbit Patterns Providing 
Continuous Whole Earth Coverage”, Royal Aircraft 
Establishment, Technical report 70211, Nov., 1970. 
10Walker, J. G., “ Continuous Whole Earth Coverage by 
Circular Orbit Satellite Patterns”, Royal Aircraft 
Establishment, Technical report 77044, March 1977. 

 


