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Abstract 

Using integrated analysis and design tools for the 
development of spacecraft attitude control systems 
(ACS) can make the process much more efficient, 
requiring less time and effort than before. The 
integrated toolset used for the development of the ACS 
of the Microwave Anisotropy Probe (MAP) spacecraft 
includes the ability to automatically generate software 
from the MAP high-fidelity (HiFi) simulation. By using 
this automatically-generated code to provide portions of 
the MAP ACS flight software, that part of the  
development effort also became more efficient. 
However, because components of the HiFi simulation 
were being used to generate flight software, special 
consideration needed to be given to these components 
during all aspects of the ACS analysis, design, and 
testing cycle. An additional benefit of the integrated 
analysis and design toolset used for MAP is that it 
allowed the opposite to be done; actual flight software 
could be run in the HiFi simulation environment, 
increasing the level of testing possible. 
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Introduction 

By integrating the attitude determination and control 
system (ACS) analysis and design, flight software 
development, and flight software testing processes, it is 
possible to improve the overall spacecraft development 
cycle, as well as allow for more thorough software 
testing. One of the ways to achieve this integration is to 
use code-generation tools to automatically generate 
components of the ACS flight software (FSW) directly 
from a high-fidelity (HiFi) simulation. In the 
development of the Microwave Anisotropy Probe 
(MAP) spacecraft (see Figure 1), currently underway at 
NASA’s Goddard Space Flight Center, approximately 
1/3 of the ACS flight software was automatically 
generated. In this paper, we will examine each phase of 
the ACS subsystem and flight software design life 
cycle: analysis, design, and testing. 

In the analysis phase, we scoped how much software 
would be automatically generated and we created the 
initial interface. The design phase included parallel 
development of the HiFi simulation and the hand-coded 

flight software components. Everything came together 
in the test phase, in which the flight software was tested, 
using results from the HiFi simulation as one of the 
bases of comparison for testing. Maintaining good 
configuration control was an issue for the HiFi 
simulation and the flight software, and a way to track 
the two systems was devised. Finally, an integrated test 
approach was devised to support flight software testing 
at both the unit- and build-test levels that used the HiFi 
simulation to generate data for performance verification. 

 
Figure 1: The MAP Spacecraft 

Another benefit of the simulation and code-
generation application used on the MAP project is that it 
supported bringing flight software and test data into the 
HiFi simulation environment. This capability was used 
to incorporate the flight software Kalman filter into the 
HiFi simulation and also to import flight software test 
data for comparison and performance verification. 

We will conclude our discussion with a summary of 
the lessons learned thus far using automatically-
generated code for the MAP project. 

Analysis Phase 

In the early stages of the MAP project, it was 
necessary to make the initial decisions regarding the use 
of automatically-generated flight software, including 
whether or not to use it, which code-generating tool to 
use, and how much of the system’s flight software was 
to be generated automatically. These decisions were a 



part of the initial system engineering design of the 
spacecraft and the project. 

System Engineering 

The decision to use automatically-generated code 
using the AutoCode module of ISI’s MatrixX integrated 
toolset was made in an attempt to address some of the 
lessons learned from previous in-house spacecraft 
developments at Goddard. Following the development 
of the XTE and TRMM spacecraft, a need was seen to 
limit the manual interfaces required to design and 
develop an ACS subsystem. The design system used for 
those spacecraft was characterized by a large 
duplication of effort, with three separate teams—the 
analysts, the flight software developers, and the 
developers of the hybrid dynamic simulator (HDS) used 
to test the flight software—designing the same system 
independently. 

This method relied on written documentation to 
describe any changes in the control algorithms that must 
be reflected in all three systems. One person was 
dedicated to the development of the HiFi simulation, 
which was not useful in the linear analysis of the 
system, and another person was a dedicated 
“documentation engineer”, needed to keep the flight 
software and test simulation teams informed of changes. 
This system was  prone to manual implementation 
errors and misunderstandings, which resulted in the 
FSW team not always initially implementing the 
algorithms as the design team had envisioned them. 

By the preliminary design stage for the Medium 
Explorers (MIDEX) program, of which MAP is the 
second mission, tools existed that would make design, 
analysis and development an integrated process, 
allowing a reduction in manpower and a reduction in 
development time, consistent with the philosophy of the 
MIDEX program. There was also an interest in reusing 
software and developing reusable model/software 
libraries for quicker mission designs in the future. The 
integrated analysis and design toolset selected, MatrixX 
from Integrated Systems, Inc., was selected because it 
possessed the desired capabilities. The MatrixX 
components used for MAP include a linear analysis tool 
(XMath), a graphical environment for developing and 
executing nonlinear simulations (SystemBuild), an 
automatic code generation product (AutoCode), and a 
documentation generation product (DocumentIt).1 

Scoping 

For maximum gains in the efficiency of the design 
process, it is desirable to do as much as possible using 
the MatrixX integrated toolset. In theory, this would 
include designing, analyzing, simulating, performing 
code generation, and documenting the entire ACS 

subsystem. However, since this was the first time that 
these techniques and this product was used on a flight 
project at Goddard, it was decided to limit the scope of 
the portions of the system that would be “AutoCoded” 
in order to minimize risk. 

It was decided early in the process not to AutoCode 
portions of the HiFi simulation to be used both in the 
flight software and in the HDS, for fear of an error 
going undetected by being replicated in each. It was 
decided to use AutoCode for the control law algorithms 
and system momentum calculations only. This limited 
risk by not automatically generating code for any flight 
software component that required a direct interface to 
ground commands or to the spacecraft sensors and 
actuators. Further, because the control laws had a high 
algorithm-to-code ratio and a clearly defined interface 
to the rest of the system, they provided a good test of 
the code-generation method. A final benefit to using 
AutoCode primarily on the spacecraft control laws is 
that the controllers are good candidates for reuse on 
future missions. 

It is interesting to note that, in the early, analysis 
phase of the MAP spacecraft development, one 
component of the ACS subsystem—the Kalman filter 
used for onboard attitude determination—was identified 
as a good candidate for reuse and also “going the other 
way”. Flight software implementing a Kalman filter 
existed and had been tested and flown on other 
spacecraft, so it could be reused for MAP. Because 
MatrixX’s SystemBuild simulation component supports 
the use of existing software within its simulations, it 
would be possible to include the flight Kalman filter 
inside the HiFi. As will be discussed later in this paper, 
the ability to move flight into the HiFi simulation, 
enables it to be more completely and thoroughly tested. 

Initial Interface Design 

During the analysis phase, it was necessary for the 
analysis and flight software teams to begin discussing 
the interface design. It was necessary to design the HiFi 
such that one or more of its pieces would interface in a 
compatible way with both the other parts of the HiFi 
and the flight software. At this point in the project, it 
was necessary to consider two things: 

Input/Output Interface: In SystemBuild, the inputs 
and outputs to a given portion of the simulation 
determine what information is available each cycle, as 
well as what information that block may provide. To 
support the flight software as well as the HiFi 
simulation, this list of inputs and outputs might need to 
be augmented with other points of interest. 

Simulation Parameters: As opposed to inputs and 
outputs, which normally can change each control cycle, 
simulation parameters are quantities such as control 



gains of spacecraft mass properties. While it is desirable 
to be able to change these parameters both within the 
simulation and during flight, they do not change very 
often. It was decided that SystemBuild’s %VAR 
capability, which allows a variable to be assigned as a 
parameter for an element of the simulation, would 
provide a way of implementing these parameters in the 
HiFi and would map into flight software tables, which 
provide the same function on-orbit. 

Design Phase 

Previously, the early design phase of a spacecraft 
ACS, particularly could done without worrying about 
too many outside considerations. For example, while the 
linear analysis and low- and high-fidelity simulations 
are being developed, they can normally be focused 
exclusively on satisfying the needs of the design process 
and the analysts. In the development of the MAP ACS, 
however, because of the use of AutoCode and 
DocumentIt, it was necessary to design the system from 
the start with these considerations in mind. This was 
particularly true because the SystemBuild HiFi 
simulation forms the cornerstone for everything else. 

SystemBuild is a graphical block diagram editor 
used to construct the desired simulation. Its two basic 
element types are “blocks”, which represent the 
functional elements of a simulation, and “SuperBlocks”, 
which can be used to group other blocks and/or other 
SuperBlocks into hierarchies. SystemBuild comes with 
a wide assortment of blocks that can implement linear 
and nonlinear systems, continuous and discrete systems, 
as well as a variety of user-definable blocks that can be 
used to include arbitrary functionality into a simulation. 

High Fidelity (HiFi) Simulation Development 

Figure 2 shows a drawing of the top-level 
SystemBuild SuperBlock of the MAP simulation, which 
gives an idea of the pieces of the MAP system that are 
being modeled, as well as how the simulation is 
organized. At the top level, everything has been 
organized into three SuperBlocks, named “ACS”, 
“ACE”, and “Models”. These SuperBlocks are used for 
the following simulation elements: 

ACS: The ACS SuperBlock contains elements of the 
simulation that correspond to the aspects of the MAP 
flight software contained in the main processor, 
including those elements from which flight software 
will be automatically generated (see the Code 
Generation section, later in this paper). Other than FSW, 
the ACS SuperBlock also models some of the ground-
based commanding. 

ACS ACE MODELS

Non-Autocode

Autocodable

 

Figure 2: MAP High Fidelity Simulation 

ACE: The ACE SuperBlock models the needed 
elements of the MAP Attitude Control Electronics 
(ACE). In the MAP spacecraft, the ACE is used to 
implement the independent Safehold Mode and to 
provide the interface to most of MAP’s sensors and 
actuators. Because the MAP simulation uses 
engineering units and does not go to the level of counts 
and voltages, it was not necessary to model those 
interfaces in the ACE SuperBlock. Instead, the two 
functions that are modeled are the independent Safehold 
and the interface that takes the thruster commands from 
the ACS SuperBlock and converts them into an 
appropriately sized pulse width. 

Models: In the Models SuperBlock, the actual 
physics of the MAP spacecraft and environment are 
modeled. This includes the models of the spacecraft 
attitude, position, and velocity, environmental 
disturbance models, and models of MAP’s sensors and 
actuators. 

Flight Software Interface Considerations 

HiFi Simulation: Figure 3 shows the ACS 
SuperBlock, divided into the portion to being 
AutoCoded (the Autocodable SuperBlock) and the 
portion that wasn’t (the Non-AutoCode SuperBlock). 
The inputs and outputs of the Autocodable SuperBlock 
provide the main interface between the AutoCode and 
non-AutoCode portions of the MAP ACS flight 
software. Very early in the design of the HiFi, this 
interface was clearly defined between the developers of 
the HiFi and the flight software. 

 SystemBuild uses %VARs in order to parameterize 
aspects of a simulation. These are parameters that can 
be included within SystemBuild blocks that are tied to 
XMath variables, allowing them to be set and changed 
when a simulation is begun. In the MAP ACS flight 
software, parameter tables are used to fulfill the same 
function. The initial stages of the design set the standard 
of using the %VARs in the Autocodable SuperBlock as 
a single flight software table, which allowed them to be 
consistently set and changed in either the HiFi or the 
flight software. 



 

Figure 3: MAP HiFi ACS SuperBlock Showing AutoCode Section 

Naming Convention: A small but important aspect of 
developing the HiFi such that its AutoCoded portions 
would be compatible with the flight software involved 
the names of the inputs, outputs, and parameters. The 
naming convention, determined in cooperation with the 
flight software developers, made the task of interfacing 
the AutoCode flight software more straightforward. 

Exception Protection: The final consideration that 
needed to be applied to those parts of the HiFi to be 
AutoCoded was including protection from 
mathematical. Normally, exceptions are not a concern in 
a simulation; either the simulation tool will handle them 
or they will cause an error and exit. However, in flight 
such errors are unacceptable. 

Having identified the potential problem, though, the 
solution was easily implemented. In addition to 
protecting from divide by zeros by checking the divisor 
before performing the division, the HiFi AutoCode 
blocks also implement common flight software practices 
such as checking in a small delta range about a value 
rather than checking for exact equality. 

Configuration Control 

When developing flight software, the issue of 
configuration management is very important. Because 
the success of the mission and the safety of the 
spacecraft depends on the quality of its software, it is 
important to be able to track all changes. Because of the 
use of AutoCode to generate some of MAP’s flight 
software, the configuration control issue now applies to 
parts of the HiFi simulation. 

When development of the MAP HiFi simulation 
began, there was not a release version of a configuration 
management tool that could be used along with 
SystemBuild. Also, because of the way that 
SystemBuild saves its simulations, it was not a simple 
task to develop a configuration management plan. The 
plan that was devised and used included the following 
points: 

Baseline Simulations: A series of baseline 
simulations were developed that exercised all of the 
different modes and operating conditions of the MAP 
HiFi. Then, whenever a new version of the HiFi was set 
to be released, these baseline simulations were rerun to 



ensure that the only changes that occurred in the 
performance of the simulation were those expected 
based on the changes made in the HiFi itself. 

Revision History: As blocks were changed in the 
HiFi, a list of the changes was maintained. Initially, this 
list was kept in a separate text file. After discussions 
with members of the Applied Physics Laboratory 
(APL)2 who were using automatic code generation tools 
from The Mathworks’ Matlab family of products, the 
revision history was kept within the simulation itself, 
using SystemBuild’s Text block (see Figure 4). 

 

Figure 4: HiFi Revision History Text Block 

By keeping a revision history within each 
SystemBuild SuperBlock, it was easy to tell at a glance 
what had changed and when. Also, using  “SystemBuild 
Access” tools, it was possible to extract the revision 
histories from throughout the HiFi and assemble a 
report covering the changes through the simulation. 

Parameter Database: One final technique that was 
needed to control the configuration of the HiFi 
simulation, the flight software, and the HDS, was a way 
to make sure that each of these systems was configured 
in the same way. In previous projects, parameter 
changes—such as spacecraft properties or controller 
gains—would be changed in each system manually, and 
propagating these changes to each system was a time-
consuming and inefficient task. 

For the MAP project, a flight software parameter 
database was developed that was used to populate each 
MAP system with the parameters that it needed to run. 
Where these parameters were the same for different 
systems, the values in the database were linked so that a 
change in one would automatically be reflected in the 
others. Reports for each system (HiFi or HDS 
initialization scripts, flight software initialization files) 
could be generated from this common database. 

Testing Phase 

Flight software testing at Goddard goes through a 
number of stages. The first level of testing, unit testing, 
is usually done by the flight software developer, and is a 
low-level series of tests used to show that each software 
component or module works. After unit testing, build 
testing and then acceptance testing is done to verify that 
all of the software components work correctly together 
and provide the functionality that will allow the 
spacecraft to meet its requirements. 

Using automatically-generated code as part of the 
flight software for MAP introduced some additional 
requirements and opportunities for the testing phase of 
the project. 

Unit Testing 

Ideally automatic code generation would make the 
time to translate the algorithms into flight code 
negligible.  This can only be achieved if the translation 
process were guaranteed to be perfect.  Since this is not 
the case, unit testing must be performed. The MAP team 
employed two phases of unit testing.  The first phase 
treated the automatic code as a black box.  Nominal 
inputs were fed into the automatic code and the outputs 
were verified.  The goals of black box testing were to 
verify that the automatic code was properly integrated 
into the manual code and to verify the automatic code’s 
nominal functional behavior. The second phase of unit 
testing, known as white box testing, “opened” up the 
automatic code to isolate and test individual code paths. 
The goals of the white box testing were to test all code 
paths and to test boundary conditions. 

Since white box testing is laborious and since the 
automatic code was being inspected, we didn’t 
introduce white box unit testing until after several 
releases had been made.  This strategy allowed the 
algorithm-to-flight code translation process to be as 
efficient as possible when the number of changes were 
more frequent without sacrificing the quality of our unit 
testing on the final product. The black box testing 
environment was established during the first software 
build and was rerun for every build.  Since this effort 
was nearly automated it didn’t slow down the flight 
software build process. 

Figure 5 shows the black box unit test environment.  
The HiFi outputs simulation results, simulation inputs, 
and the automatic code to the unit test platform.  The 
unit test driver is linked with the FSW controller classes 
and the automatic code.  Five HiFi test cases, one for 
each operational mode, were used as the test suite. This 
data was run through the FSW and the FSW results 
were compared to the HiFi results.  This testing has 



consistently shown that the automatically generated 
code accurately represents the SystemBuild design. 
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Figure 5: Test Procedure for AutoCoded Software 

The white box testing consisted of a unique test 
driver being written for each section of the automatic 
code being tested.  This testing proved to be very 
important and uncovered several problems that were 
then able to be corrected. The unit test driver calls the 
hand coded FSW controller functions and not the 
automatically generated code.  Driving the test from this 
level verifies that the manual code and the automatic 
code are properly integrated. Since XMath scripts 
managed and documented the HiFi test cases, the FSW 
developers didn’t require much of the analyst’s to get 
necessary information. Defining common controller 
interfaces in both the HiFi and the FSW and having a 
standardized data file format were the drivers that 
empowered the unit tests.  These activities could occur 
with or without automatic code generation, but were 
used in this case because of it.3 

Build and Acceptance Testing 

Once build testing was begun, there were fewer 
special considerations needed because of the use of 
AutoCode. However, there were considerable benefits 
from the use of the MatrixX integrated toolset that 
greatly enhanced the efficiency of the build testing 
effort.  

In previous projects, data from flight software 
testing was generally used to verify the correct 
performance of the spacecraft ACS by plotting the data 
and then running a comparable HiFi simulation for 
comparison. For the MAP project, the general outline of 
the process remained the same, but the integrated nature 
of the toolset improved the process considerably. In the 
past, the people performing the flight software tests 

were a different group than the analysts verifying the 
test performance. Typically, one of the analysts was 
responsible for running most or all of the HiFi 
simulations, which created a potential bottleneck for 
testing. Finally, comparing the test and HiFi simulation 
data was often a matter of looking at two sets of plots. 

Telemetry Import and Manipulation 

By using various parts of the MatrixX integrated 
toolset, along with some tools based on the underlying 
Unix operation system, it was possible to automate 
many of the above steps for flight test verification. The 
first step of this was to import the telemetry from flight 
tests into the XMath environment. This was done by 
writing an XMath command that in turn automatically 
wrote and executed a Unix shell script to reformat the 
data to make it compatible with XMath. Then the 
XMath command imported the data and saved it in its 
own format. 

Once the flight test data was available within the 
XMath environment, it became possible to 
automatically tie in the other MatrixX components. 
XMath tools were written to produce a number of 
standard plots. Also, it was possible to analyze the test 
data to learn about how the corresponding test was run. 
This, in turn, made it much easier to set up HiFi 
simulations for comparison, as discussed in the next 
section. 

Automatic Simulation Generation 

Once the flight test data was in a format compatible 
to XMath, it was possible to write XMath commands to 
analyze flight test data; looking for such things as mode 
transitions, commanded attitude changes, initial 
position, velocity, time, and attitude. In order to allow 
more than just the primary developer to run HiFi 
simulations, the HiFi had originally been set up to run 
based on a standard set of XMath script files. Several of 
these files set up the nominal state of the system, and 
were produced from the flight parameter database 
mentioned earlier, and were common to all HiFi 
simulations. The main script file was set up specifically 
for each simulation, and included all off-nominal 
parameter values and other simulation-specific initial 
conditions and system changes and events. 

For flight test verification, it became possible to 
produce HiFi simulation script files automatically, 
based on values within the test data itself. This meant 
that just about anyone could run HiFi simulations, and 
that flight software testers could run their own 
comparisons (though flight software performance 
verification still required analyst review). Further, plots 
could be produced that put flight test and HiFi 



simulation data on the same plot, thus making 
performance verification much easier (see Figure 6).  

Flight Software Testing Using the HiFi Simulation 

One additional benefit of using the MatrixX package 
other than automatic code generation, though related to 
it, was SystemBuild’s ability to include user-written C 
code into its simulation though what it calls a User Code 
Block (UCB). This capability was used on the MAP 
project to run the actual flight onboard Kalman filter 
within the HiFi simulation. Running the flight filter in 
the HiFi allowed the existing filter flight code to be 
tested before it made it into the actual flight software 
(see Figure 7). Also, because of the greater degree of 
control possible with the HiFi versus the HDS testing 
environment, it allowed the flight filter to be tested and 
stressed in ways that could not be done in the testing 
lab. Because the HiFi runs faster than real time, it also 
allowed more testing to be done. 

There were other benefits to being able to use and 
test the flight Kalman filter within the simulation 
environment. By conducting tests to cover failure 
scenarios, it is possible to generate backup values for 
the filter to be used in the event that the failure occurs 
in-flight. Also, because the actual code is being run in 
the simulation, it makes performing comparisons 
between flight software tests and HiFi simulations 
easier. Finally, an incidental benefit of using the flight 
software Kalman filter in the HiFi as a UCB is that it 
sped up the simulation. 

Summary of Lessons Learned 

The ACS for the MAP spacecraft has been under 
development for over three years, with just over a year 
until the scheduled launch. In that time, a number of 
lessons have been learned concerning the use of 
automatic code generation techniques. 

AutoCode Scope: Using a relatively small scope for 
automatically generated code for this first mission was a 
good idea; there is certainly more that could have been 
done, but it will be much easier to do more on the next 
mission with what we have learned on the MAP 
spacecraft. 

AutoCoding HDS: Even though the original design 
philosophy considered AutoCoding the HDS software 
as well as the flight hardware, it was decided that the 
HDS models be developed independently, to reduce the 
possibility of an error slipping through the cracks 
because it was replicated in both the flight software and 
in the test environment. 

Configuration Management and Maintainability: 
Because MatrixX is a commercial product which has 
seen at least one major upgrade during the lifetime of 
the MAP project, it is currently an open issue of how to 

deal with upgrades since AutoCode output may vary 
from version to version. This affects maintainability, 
and may require reused software to be completely 
retested from mission to mission. 

Learning Curve: Because of the learning curve 
needed the first time this toolset were used, using 
AutoCode and MatrixX may not have saved as much 
development time for MAP. However, it has already 
been seen at Goddard that, using MatrixX and the MAP 
HiFi as a base, it is possible to develop an initial HiFi 
for a new project in a fraction of the time necessary in 
the “FORTRAN HiFi” days. It is on future projects that 
significant gains can be made using these tools. 

XMath Environment: XMath proved to be very 
useful, as it was possible to import flight test data and 
automatically create HiFi comparison simulations, run 
simulations, and plot test and verification data on the 
same plot. This allowed all of the members of the 
testing team to perform their own test verifications. 

Development Process: One of the more dramatic 
changes in the ACS FSW development process is that 
many people are performing multiple roles. The analysts 
have participated in every activity, performing analysis, 
writing requirements, reviewing code, writing test 
procedures, and verifying test performance.  Developers 
helped to write the requirements, reviewed the 
AutoCode, developed code, and supported the 
performance verification. The tools brought the team 
closer together but also allowed them to work more 
independently and efficiently. Many participants have 
worked as system engineers with a specialty. 
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Figure 7: MAP Flight Kalman Filter Estimation Error from HiFi Simulation 


