DEVELOPMENT AND TESTING OF AUTOMATICALLY-GENERATED ACS
FLIGHT SOFTWARE FOR THE MAP SPACECRAFT

James R. O’Donnell, Jr., Ph.D., Stephen F. Andr®asjd C. McComas, David K. Ward
NASA Goddard Space Flight Center

Greenbelt, Maryland 20771 USA
James. R ODonnel | . 1@sf c. nasa. gov

Abstract flight software components. Everything came togethe
Using integrated analysis and design tools for thig the test phase, in which the flight software ested,
9 9 y . 9 using results from the HiFi simulation as one o th
development of spacecraft attitude control Sy.St.e”fases of comparison for testing. Maintaining good
g'é‘cusir)incar}egakﬁmgheaﬁéoczzzrtml:ﬁgn mgé?orzmc_'rehn onfiguration control was an issue for the HiFi
req 9 i Qimulation and the flight software, and a way tackr
mtegrate_d toolset use_d for the development ofADS he two systems was devised. Finally, an integréget
of the Microwave Anisotropy Probe (MAP) spacecra pproach was devised to support flight softwartirigs
includes the ab?lity FO a!utom_at_ica!ly ger_lerate \s/_afe at both the unit- and build-test levels that udes HiFi
from the MAP high-fidelity (HiFi) simulation. By usg simulation to generate data for performance veifim
this automatically-generated code to provide po#iof '
the MAP ACS flight software, that part of the
development effort also became more efficient
However, because components of the HiFi simulatic
were being used to generate flight software, speci
consideration needed to be given to these compsne
during all aspects of the ACS analysis, design, ar
testing cycle. An additional benefit of the intetgh
analysis and design toolset used for MAP is that
allowed the opposite to be done; actual flightwafe
could be run in the HiFi simulation environment,
increasing the level of testing possible.

Key Words: attitude control systems, flight software
testing, simulation

Introduction
By integrating the attitude determination and cointr Figure 1: The M AP Spacecraft
system (ACS) analysis and design, flight software
development, and flight software testing procesias, Another benefit of the simulation and code-

possible to improve the overall spacecraft develmm generation application used on the MAP projecha it
cycle, as well as allow for more thorough softwargupported bringing flight software and test data ihe
testing. One of the ways to achieve this integraisoto HiFi simulation environment. This capability waseds
use code-generation tools to automatically generage incorporate the flight software Kalman filtetarthe
components of the ACS flight software (FSW) dingctl HiFi simulation and also to import flight softwatest
from a high-fidelity (HiFi) simulation. In the data for comparison and performance verification.
development of the Microwave Anisotropy Probe We will conclude our discussion with a summary of
(MAP) spacecraft (see Figure 1), currently underay the lessons learned thus far using automatically-
NASA’s Goddard Space Flight Center, approximatelgenerated code for the MAP project.
1/3 of the ACS flight software was automatically
generated. In this paper, we will examine each @luds
the ACS subsystem and flight software design life |n the early stages of the MAP project, it was
cycle: analysis, design, and testing. necessary to make the initial decisions regardieguse

In the analysis phase, we scoped how much softwage automatically-generated flight software, inclugli
would be automatically generated and we created thghether or not to use it, which code-generating too
initial interface. The design phase included patall yse, and how much of the system’s flight softwags w
development of the HiFi simulation and the handetbd to be generated automatically. These decisions waere

Analysis Phase

part of the initial system engineering design oé thsubsystem. However, since this was the first tiha t
spacecraft and the project. these techniques and this product was used omlat fli
project at Goddard, it was decided to limit thepsrof
the portions of the system that would be “AutoCdded
The decision to use automatically-generated code order to minimize risk.
using the AutoCode module of ISI's MatrixX integrdt It was decided early in the process not to AutoCode
toolset was made in an attempt to address somieeof portions of the HiFi simulation to be used bothtie
lessons learned from previous in-house spacecrdiight software and in the HDS, for fear of an erro
developments at Goddard. Following the developmegoing undetected by being replicated in each. Is wa
of the XTE and TRMM spacecraft, a need was seen tecided to use AutoCode for the control law aldwonis
limit the manual interfaces required to design andnd system momentum calculations only. This limited
develop an ACS subsystem. The design system used fisk by not automatically generating code for aliyht
those spacecraft was characterized by a largeftware component that required a direct interface
duplication of effort, with three separate teams—thground commands or to the spacecraft sensors and
analysts, the flight software developers, and thectuators. Further, because the control laws hadjla
developers of the hybrid dynamic simulator (HDSgdis algorithm-to-code ratio and a clearly defined ifaee
to test the flight software—designing the same systeto the rest of the system, they provided a gootldés
independently. the code-generation method. A final benefit to gsin
This method relied on written documentation toAutoCode primarily on the spacecraft control laws i
describe any changes in the control algorithmsrhatt that the controllers are good candidates for remse
be reflected in all three systems. One person wdsture missions.
dedicated to the development of the HiFi simulation It is interesting to note that, in the early, asi#y
which was not useful in the linear analysis of the@hase of the MAP spacecraft development, one
system, and another person was a dedicatedmponent of the ACS subsystem—the Kalman filter
“documentation engineer”, needed to keep the flightsed for onboard attitude determination—was idieatif
software and test simulation teams informed of gean as a good candidate for reuse and also “going tter o
This system was prone to manual implementatioway”. Flight software implementing a Kalman filter
errors and misunderstandings, which resulted in trexisted and had been tested and flown on other
FSW team not always initially implementing thespacecraft, so it could be reused for MAP. Because
algorithms as the design team had envisioned them. MatrixX’s SystemBuild simulation component supports
By the preliminary design stage for the Mediunthe use of existing software within its simulatiprits
Explorers (MIDEX) program, of which MAP is the would be possible to include the flight Kalman flt
second mission, tools existed that would make desiginside the HiFi. As will be discussed later in tpisper,
analysis and development an integrated procedbe ability to move flight into the HiFi simulation
allowing a reduction in manpower and a reduction ienables it to be more completely and thoroughltetes
development time, consistent with the philosophyhef
MIDEX program. There was also an interest in regisin
software and developing reusable model/software During the analysis phase, it was necessary for the
libraries for quicker mission designs in the futufdhe analysis and flight software teams to begin disogss
integrated analysis and design toolset selectedia the interface design. It was necessary to desigtRi
from Integrated Systems, Inc., was selected bec#usesuch that one or more of its pieces would interfiaca
possessed the desired capabilities. The Matrix¥ompatible way with both the other parts of the iHiF
components used for MAP include a linear analysi$é t and the flight software. At this point in the prdjeit
(XMath), a graphical environment for developing andvas necessary to consider two things:
executing nonlinear simulations (SystemBuild), an Input/Output Interface: In SystemBuild, the inputs
automatic code generation product (AutoCode), andamd outputs to a given portion of the simulation
documentation generation product (Documentit). determine what information is available each cyale,
well as what information that block may provide. To
support the flight software as well as the HiFi
For maximum gains in the efficiency of the desigrsimulation, this list of inputs and outputs migleted to
process, it is desirable to do as much as posaiitey be augmented with other points of interest.
the MatrixX integrated toolset. In theory, this wau Smulation Parameters: As opposed to inputs and
include designing, analyzing, simulating, perforgnin outputs, which normally can change each controlegyc
code generation, and documenting the entire AC8mulation parameters are quantities such as dontro

System Engineering

Initial Interface Design

Scoping

gains of spacecraft mass properties. While it srelble

to be able to change these parameters both witlgn t
simulation and during flight, they do not changeyve NomAutocode
often. It was decided that SystemBuild’s %VAR Y .
capability, which allows a variable to be assigmasda

parameter for an element of the simulation, would ["
provide a way of implementing these parameterdién t 7
HiFi and would map into flight software tables, wini
provide the same function on-orbit.

ACS ACE MODELS

A

Figure2: MAP High Fidelity Simulation
Design Phase

; ; ACE: The ACE SuperBlock models the needed
Previously, the early design phase of a spacecraf . :
ACS, particularly could done without worrying abouteltements of the MAP Attitude Control Electronics

- : : : ACE). In the MAP spacecraft, the ACE is used to
too many outside considerations. For example, wthide (.
jinear analysis and low- and high-fidelity imutas Implement the independent Safehold Mode and to

are being developed, they can normally be focusepcfov'de the interface to most of MAP’s sensors and

; P . tuators. Because the MAP simulation uses
exclusively on satisfying the needs of the desigtgss actu > .
and the analysts. In the development of the MAP Acgngineering units and does not go to the levelooihts

however because of the use of AutoCode an%Pd voltages, it was not necessary to model those
Documentlt, it was necessary to design the system f mterf_aces in the ACE SuperBIock. Instead, the two
the start with these considerations in mind. Th-BSqunctlons that are modeled are the independentBlafe

particularly true because the SystemBuild HiF nd the interface that takes the thruster comménds

simulation forms the cornerstone for everythingels he AC.St ISuperI:locIr an%thconverts them into an
SystemBuild is a graphical block diagram editofPProprately sized puise widtn.

used to construct the desired simulation. Its twsid h I\s/liziels:f tlr?e tlt]AeAPM(s)dae::Sechal;th;r?olIOg;’virt(r)]r?mg(r:\ttuglre
element types are “blocks”, which represent th8"Y P

functional elements of a simulation, and “SuperR&c modeled. This includes the models of the spacecraft

which can be used to group other blocks and/orroth f[t',IUdbe’ pOSIt(IjOT, agd (\j/ellocr;yivl AIS’n vironmental d
SuperBlocks into hierarchies. SystemBuild comed wit 'St urt ance modeils, and modeils o S Sensors an
a wide assortment of blocks that can implementaline actuators.
and nonlinear systems, continuous and discretemsygst Flight Software I nterface Consider ations
as well as a variety of user-definable blocks taat be o . .

y HiFi Smulation: Figure 3 shows the ACS

used to include arbitrary functionality into a siation. L . . .
y y SuperBlock, divided into the portion to being

High Fidelity (HiFi) Simulation Development AutoCoded (the Autocodable SuperBlock) and the
- ; tion that wasn't (the Non-AutoCode SuperBlock).
Figure 2 shows a drawing of the top-levepor.

Syl Supeloc of e AP silaion: i P 316 e of e Aot Supelior,

gives an idea of the pieces of the MAP system dhat pon-AutoCode orions of the MAP ACS fliaht

being modeled, as well as how the simulation ig P 9

; - oftware. Very early in the design of the HiFi, sthi
g;g:g:igg' i':tto trt]ﬁret:p SLeg:rléloecvkirytmgr%egai A?g?,ﬂterface was clearly defined between the devekpér

“ » « ” he HiFi and the flight software.
ACE”, and “Models”. These SuperBlocks are used foF . . .
the following simulation elements: SystemBuild uses %VARs in order to parameterize

ACS: The ACS SuperBlock contains elements of th spects of a §|mulat|on. The;e are parameterscéat
simulation that correspond to the aspects of thePM € mcIudeq within SysFemBqu blocks that are tted
flight software contained in the main processo Math variables, allowing them to be set and change

including those elements from which flight softwareWhen a simulation is begun. In the MAP .ACS flight

will be automatically generated (see the Cod oftvv_are, parameter tables are useql fo fulfill shene

Generation section, later in this paper). Othen th8W, unction. The initial stages of the design setsttandard

the ACS SuperBlock also models some of the groun8I using the %VARS in the Autoc_:odable SuperBlock as

based commanding. a smgle flight software table, Whlch_ allowed thmrbe
consistently set and changed in either the HiFther
flight software.

Morn_ dutocode Autocodable

Safehold EodyCombcce 3
[oommeand Tnput. 7 FsSun_acquisition R e | EZ}rodsComaccely j%
[EScifstliuatl TreTtiol BodyComacoe1& 25
N DoSerwiig oy ———————————— = T obh 20 %
[F.Ccifstlguats Telfs & SrbombBatePhi 22
= AstlOuats | srCombBatelheta
GoifstlOouatd He Lo TT tzo 25>
s Mods SrComBatePsi ea-—
Goifstlouatd Thruster Mode [aEwalMeasTachSpeld SrComPhi PE
e terrniorn Mode srComTheta R
[E Bodvlleashatel ode_Huomber [AmEwa2ieasTachSperd SrGomPs1 _'
EodyMeasRate¥ L 4|g 10 SrComduatl 23
(7= cEsEThets o [Ew=steasTachspeld EF TN 2]
EodyMeasRateX® EES1 E 15 >—
FRESterm srComQuatd 16—
walMeasTachSpeld ThateTheTa 4 B3 SrCombustd 17
- Eotelsa odyComBate
walMeasTachSpeled £ ?ﬁn] b ——— e Ot onEat e g 2
T AwaidMesasTachspefd CHuat L | - cduCombate T‘i
[ETEodyhssSuningl TUOaTA %: gg$ §§33§§ 10>
[z BodyDss Sunsngy R [& = CdyECriuat s
[Z-EodyDssSunangs [Countd 1 —— EE AT ey 13>
[fciSunPosX [Counts e — odyEontE o LTo LT =<
GoisunPosY [CountE EodyControlTors RS
Emsei o= 33::;_:!:3:{: ¥ = o I — | FualComTorACs %E{
[Eo.CeifunPosE SOy Rsthatey E i— FwaCComTorAnS T‘i
[EaslciTrusOuatl B oyl oy s Fom S22 il fradGonTocAS e
n Hodyio v Coun T
[EociTrusduats SUPER F o o oS o o L SUBER Count g$>
GCiTruEQuatB oAt |10 gou:nEA Errs
[u - (=i iql T
i 1 Fsilo At ==]
ErSciTrusqus SETaE e 0 Countt ﬁ‘i
e I tavimaburaTimes] Couwntd
=8 e CEaVimaT o r T oine Az BodvissSunhnol BodyErcAttil %
B e ——at tErcor - EodyErrALET
22 Sy TETEx [Eie] [ITEodyGsssunangy SD%tErrﬁtt. 3; 2
P —— 5 Aa BodylssSunangs DeltaVBurnTimex :
e iciTrueVels Yo THEEe ac 2 22 s OetaVBurnTines =L
-Gc:f.TrueVelY FEkiie, FEafbe AL =3 EodyMeasSys bemions -z
[T BciTrusVels =] THELE 22 EodyMeassys bombiomy o]
ooy lruEs EHa . o diyMe 555 s temMom 1
[z BodyTrue Suni ELOCE OOy IruEsEhateT 4 34 BLOCE [EodyleasRwaloms LIE>
EodyTrueSuny LoTei A WS EIOE R A i) A |2 [BodyMeasRwalMomy
GopEstinat Ea [EodyMe asRwalom?
-! odyTrueSunsg et AR IR o 22 f2g———————————— e EBodiyErrRatex T
5 1 FodyErrRatey =0
=9 t FoerfrroT Gk 3 —————————— EodyEcrEateR h
lig— .1 rComBhT &2 [EoOsComby L oecopTETo02 "
tComTheEa f2 7 —————————————————= EBodyComGyroscopicTor¥
11 LT O |25 [EodyComGyroscopicTors
|- cComEatelh - [EodyFilteredTor:
12 o teTheta Fra
L B . EodyFilteredTory
R e —— s 30 - [EodyFilteredTors
E AP IETS) -
[EciTruePosi FoOUF TS SHaTeT el g — 000 [fTottountl
GoiTruePosT Eo iyl Sohol ir] | TotCounts
_ E o 4] Bt bgg———— TotCountsd
GoiTruePos® £ i 32 :
oL DodeDeshiat e [Totoounta
BodyTrueRatex oo = TE fod——————————————————+ TotGounts
SriTueloat, [~
BodyTrueRate¥ SETTOENUSE, r S [[LorCounte
[zeBodylrusRatey 1 Srlrueluak g4 Bal 1 TeltaVsStopFlag S
-! odyTrueRate® [EscT [N RN SE | TotCountT
DssSunPresence sorSunlolapPosd OF A [=5 s [Totcounts
[EoisunloMapFosy OB s Count7
[CoitonTolopPose UE 22 ik —— Count =
4 g'g EE ngjl an |l [Fwallie sshwatom e3>
-6 Gelomninat. =N [Fwra2Me asRwatiomn
L = GoilComju=atad % Lc O | Fwra2Me asRwadlom

Figure 3: MAP HiFi ACS SuperBlock Showing AutoCode Section

Naming Convention: A small but important aspect of
developing the HiFi such that its AutoCoded portion
would be compatible with the flight software invety When developing flight software, the issue of
the names of the inputs, outputs, and parametédrs. Tconfiguration management is very important. Because
naming convention, determined in cooperation with t the success of the mission and the safety of the
flight software developers, made the task of irteirfg spacecraft depends on the quality of its softwires
the AutoCode flight software more straightforward. important to be able to track all changes. Becafishe

Exception Protection: The final consideration that use of AutoCode to generate some of MAP’s flight
needed to be applied to those parts of the HiHbdo software, the configuration control issue now agmplio
AutoCoded was including protection fromparts of the HiFi simulation.
mathematical. Normally, exceptions are not a canaer When development of the MAP HiFi simulation
a simulation; either the simulation tool will haadhem began, there was not a release version of a coafign
or they will cause an error and exit. However,light management tool that could be used along with
such errors are unacceptable. SystemBuild. Also, because of the way that

Having identified the potential problem, thoughe th SystemBuild saves its simulations, it was not ap&m
solution was easily implemented. In addition taask to develop a configuration management pla® Th
protecting from divide by zeros by checking theistiv plan that was devised and used included the foligwi
before performing the division, the HiFi AutoCodepoints:

Configuration Control

blocks also implement common flight software praesi Basdine Smulations; A series of baseline
such as checking in a small delta range about @evalsimulations were developed that exercised all & th
rather than checking for exact equality. different modes and operating conditions of the MAP

HiFi. Then, whenever a new version of the HiFi wsas
to be released, these baseline simulations weua iter

ensure that the only changes that occurred in the Testing Phase

performance of the simulation were those expected Flight software testing at Goddard goes through a

based on the changes made in the HiFi itself. , ; "
Revision History: As blocks were changed in the.number of stages. The first level of testing, tedting,

HiFi, a list of the changes was maintained. Iniiathis is usually do_ne by the flight software developed & a
. . , o low-level series of tests used to show that eafiwace
list was kept in a separate text file. After disiass

. : : component or module works. After unit testing, Buil
with members of the Applied Physics L"jlborato%esting and then acceptance testing is done tfyubet

(APL)? who were using automatic code generation too
from The Mathworks’ Matlab family of products, thezal of the _software components work correctly thget
and provide the functionality that will allow the

revision history was kept within the simulationeifs spacecraft to meet its requirements.

using SystemBuild’s Text block (see Figure 4). Using automatically-generated code as part of the
flight software for MAP introduced some additional

Revision History

01 12701793 De1ta_and_porrentions] requirements and opportunities for the testing phafs
T13 1
gilt condition (Delta¥stopFlag) was set when the sum of all DeCounts was the prOJeCt'
equal to zero; this was changed so the sum must now be less than 0.1))
0z ;i/ggé’ﬁﬁ DeltaV_and_Corrections Unlt TeStlng
Added final x- and Z-ax1s cleanup burn (typically < 1 sec) on last .)
e o e e el mene e L e 7| 1deally automatic code generation would make the
recalculated on output to reflect t:he cleanup hurns (though they do time to transla‘[e the algonthms Into ﬂ|ght Code
not reflect the last Delta ¥ cycle's attitude control burns. .. R B . R
03 12/04/50 f_pssign negligible. This can only be achieved if the tfatisn
Changed around the selection logic to acoaunt for the changes nade in process were guaranteed to be perfect. Sincésthigt
04 m%gﬁ Delta¥_and_Corrections the case, unit testing must be performed. The Mgt
DR # . . .
Bdded toat to xake aure that, in order for s axio Delta ¥ buras to be employed two phases of unit testing. The firstggha
one, either e Impulse Controller 1s en ed or e commande: LI . .
toue in thet wxis is greater in megnieude then 35 meec treated the automatic code as a black box. Nominal
05 12/07/98 DeltaV and Corrections . . .
ot Ravisn QISR inputs were fed into the automatic code and theuist
Eoante i ths brork per bode revise suggations. "ot variove were verified. The goals of black box testing were
verify that the automatic code was properly intégpta
Figure 4: HiFi Revision History Text Block into the manual code and to verify the automatidet®

nominal functional behavior. The second phase df un

By keeping a revision history within eachtesting, known as white box testing, “opened” up th
SystemBuild SuperBlock, it was easy to tell atange automatic code to isolate and test individual cpdtns.
what had changed and when. Also, using “SystendBuill he goals of the white box testing were to testatle
Access” tools, it was possible to extract the rievis Paths and to test boundary conditions.
histories from throughout the HiFi and assemble a Since white box testing is laborious and since the
report covering the changes through the simulation. automatic code was being inspected, we didn’t

Parameter Database: One final technique that was introduce white box unit testing until after severa
needed to control the configuration of the HiFieleases had been made. This strategy allowed the
simulation, the flight software, and the HDS, wasay algorithm-to-flight code translation process to he
to make sure that each of these systems was coadigu€fficient as possible when the number of change® we
in the same way. In previous projects, parametéhore frequent without sacrificing the quality ofraunit
changes—such as spacecraft properties or controlf@sting on the final product. The black box testing
gains—would be changed in each system manually, affvironment was established during the first saftwa
propagating these changes to each system was a tirgeild and was rerun for every build. Since thifoef
consuming and inefficient task. was nearly automated it didn't slow down the flight

For the MAP project, a flight software parametesoftware build process.
database was developed that was used to populehte ea Figure 5 shows the black box unit test environment.
MAP system with the parameters that it needed to ruThe HiFi outputs simulation results, simulation ute
Where these parameters were the same for differedid the automatic code to the unit test platforithe
systems, the values in the database were linkédas@ unit test driver is linked with the FSW controliglasses
change in one would automatically be reflectedhia t and the automatic code. Five HiFi test cases,fone
others. Reports for each system (HiFi or HD<ach operational mode, were used as the test $hite.
initialization scripts, flight software initializimn files) data was run through the FSW and the FSW results

could be generated from this common database. were Compared to the HiFi results. This testing ha

consistently shown that the automatically generatedere a different group than the analysts verifythg
code accurately represents the SystemBuild design. test performance. Typically, one of the analysts wa
responsible for running most or all of the HiFi

c simulations, which created a potential bottleneok f
5 HiFi Simulation testing. Finally, comparing the test and HiFi siatidn
e : : data was often a matter of looking at two setslaifsp
- l AutoCode datafile datafile
I Z, Telemetry Import and Manipulation
A“éoggzﬁc / / Inputs / / Outputs / By using various parts of the MatrixX integrated
toolset, along with some tools based on the unuherly
fimedia Unix operation system, it was possible to automate
£ many of the above steps for flight test verificatidhe
g FSW Unit Test Driver first st.ep of this was to import the telerr_1etry fréinght
T Controller |—" tests into the XMath environment. This was done by
B Classes | finkedto writing an XMath command that in turn automatically
= wrote and executed a Unix shell script to reformmet
- i R-Ie—'seualts ; data to make it compatible with XMath. Then the
XMath command imported the data and saved it in its
own format.
Figure5: Test Procedure for AutoCoded Software Once the flight test data was available within the

XMath environment, it became possible to

The white box testing consisted of a unique testutomatically tie in the other MatrixX components.
driver being written for each section of the autima XMath tools were written to produce a number of
code being tested. This testing proved to be vestandard plots. Also, it was possible to analyzetést
important and uncovered several problems that we@ta to learn about how the corresponding testruas
then able to be corrected. The unit test drivelsahle This, in turn, made it much easier to set up HiFi
hand coded FSW controller functions and not theimulations for comparison, as discussed in thet nex
automatically generated code. Driving the testfthis section.
level verifies that the_ manual codg and the autmmat, .o+ Simulation Generation
code are properly integrated. Since XMath scripts
managed and documented the HiFi test cases, the FSWOnce the flight test data was in a format compatibl
developers didn't require much of the analyst'sgeg to XMath, it was possible to write XMath commands t
necessary information. Defining common controlleanalyze flight test data; looking for such thingsnaode
interfaces in both the HiFi and the FSW and hawng transitions, commanded attitude changes, initial
standardized data file format were the drivers thatosition, velocity, time, and attitude. In order dthow
empowered the unit tests. These activities cooltlio more than just the primary developer to run HiFi
with or without automatic code generation, but wersimulations, the HiFi had originally been set uprtio
used in this case because of it. based on a standard set of XMath script files. G
these files set up the nominal state of the systmd,
were produced from the flight parameter database

Once build testing was begun, there were fewanentioned earlier, and were common to all HiFi
special considerations needed because of the usesthulations. The main script file was set up speify
AutoCode. However, there were considerable benefiter each simulation, and included all off-nominal
from the use of the MatrixX integrated toolset thaparameter values and other simulation-specificiainit
greatly enhanced the efficiency of the build tegtinconditions and system changes and events.
effort. For flight test verification, it became possible to

In previous projects, data from flight softwareproduce HiFi simulation script filesautomatically,
testing was generally used to verify the corredbased on values within the test data itself. Thésunt
performance of the spacecraft ACS by plotting thtad that just about anyone could run HiFi simulatioasd
and then running a comparable HiFi simulation fothat flight software testers could run their own
comparison. For the MAP project, the general oatlifi comparisons (though flight software performance
the process remained the same, but the integrateden verification still required analyst review). Furth@lots
of the toolset improved the process considerablyhé could be produced that put flight test and HiFi
past, the people performing the flight softwaretses

Build and Acceptance Testing

simulation data on the same plot, thus makindeal with upgrades since AutoCode output may vary
performance verification much easier (see Figure 6) from version to version. This affects maintainapili

: . . R : and may require reused software to be completely

Flight Software Testing Using the HiFi Simulation retested from mission to mission.

One additional benefit of using the MatrixX package Learning Curve: Because of the learning curve
other than automatic code generation, though tlte needed the first time this toolset were used, using
it, was SystemBuild’s ability to include user-weitt C AutoCode and MatrixX may not have saved as much
code into its simulation though what it calls a tJSede development time for MAP. However, it has already
Block (UCB). This capability was used on the MAPbeen seen at Goddard that, using MatrixX and the®MA
project to run the actual flight onboard Kalmartefili HiFi as a base, it is possible to develop an inkidri
within the HiFi simulation. Running the flight fdt in for a new project in a fraction of the time necegsa
the HiFi allowed the existing filter flight code tee the “FORTRAN HiFi” days. It is on future projectsat
tested before it made it into the actual flightteafe significant gains can be made using these tools.

(see Figure 7). Also, because of the greater degiee = XMath Environment: XMath proved to be very
control possible with the HiFi versus the HDS tegti useful, as it was possible to import flight testadand
environment, it allowed the flight filter to be ted and automatically create HiFi comparison simulationsy r
stressed in ways that could not be done in théntest simulations, and plot test and verification datatbe
lab. Because the HiFi runs faster than real timalso same plot. This allowed all of the members of the
allowed more testing to be done. testing team to perform their own test verification

There were other benefits to being able to use and Development Process: One of the more dramatic
test the flight Kalman filter within the simulation changes in the ACS FSW development process is that
environment. By conducting tests to cover failuranany people are performing multiple roles. The ystal
scenarios, it is possible to generate backup valoes have participated in every activity, performing lysés,
the filter to be used in the event that the failaogurs writing requirements, reviewing code, writing test
in-flight. Also, because the actual code is being in procedures, and verifying test performance. Dl
the simulation, it makes performing comparisondelped to write the requirements, reviewed the
between flight software tests and HiFi simulation®\utoCode, developed code, and supported the
easier. Finally, an incidental benefit of using flight performance verification. The tools brought thentea
software Kalman filter in the HiFi as a UCB is thiat closer together but also allowed them to work more
sped up the simulation. independently and efficiently. Many participantsvéia
Summary of L essons L earned worked as system engineers with a specialty.

The ACS for the MAP spacecraft has been under
development for over three years, with just ovgrear *Ward, D. K., et. al., “Use of the MatrixX Integrdte
until the scheduled launch. In that time, a number Toolkit on the Microwave Anisotropy Probe Attitude
lessons have been learned concerning the use @dntrol System”, 21 AAS Guidance and Control
automatic code generation techniques. Conference, Breckenridge, CO, 1999.

AutoCode Scope: Using a relatively small scope for ?Salada, M. A., and Dellinger, W., “Using MathWorks’

ag'go dmizgca?lIt)rqgreeniesr?:fr?a(i:r?ldenzzrréhtlﬁ;;ritom:jsyrg;eﬁ Simulink® and Real-Time Workshop® Code Generator
9 ! y to Produce Attitude Control Test and Flight Code?"

done, but it will be much easier to do more onribgt .
mission with what we have learned on the MAF"O‘lAA/USU Conference on Small Satellites, 1998.

spacecraft. 3McComas, D. C., et. al., “Using Automatic Code
AutoCoding HDS: Even though the original design Generation in the Attitude Control Flight Software
philosophy considered AutoCoding the HDS softwar&ngineering Process”, 23 Software Engineering
as well as the flight hardware, it was decided that Workshop, Goddard Space Flight Center, 1998.
HDS models be developed independently, to reduee th
possibility of an error slipping through the cracks
because it was replicated in both the flight soferand
in the test environment.
Configuration Management and Maintainability:
Because MatrixX is a commercial product which has
seen at least one major upgrade during the lifetafne
the MAP project, it is currently an open issue oo

References

1200

a :
<]
o I
=~
Lk !
=37 ! o
Zu B L S
2 k e
e ,
.
T
,
. o
“““]
' <]
' -
[]
T
I
=
I o
“““““ - b <
. o
I
I
I
= .
] I
@ ' o
S = --410
0 7 ®
Q 1
8 .
o '
P ”
8 . o
&t--- = --4o
. ~
m !
5 < ~
@ !]
Q ! c
@ I
2 ' N
[S e e o0
° } c8
o}
2 o
5] ' €
£ , E
7l
a]
" I
@l e 8
2 . n
| I
g '
17}
S \
I
H, . °
o - - S e R e I B o
o I <
I
S, I
2 I
2 I
N I
£ ' o
S - -- 18
1]
I
I
I
I
I
! o]
- - - R i e R B]
o I Q
e I
I
< |
\
b I
a ! o)
. L Fw‘m_ﬂ,
.
w . |
o
' 3
2
' ©
| E
. =z
S , s
c . of
Mv.v o ng
) 8)
@ _ 7L
) T L
o ' I

>

Figure 6: MAP HiFi vs Flight Software Test Data for Science M ode Simulation

c =4
S o
-
FE ©
0% g
<uw
) £
' o
. g
L ‘M nmw
" -
|- e} =y
m o
T
c
2 5%
L.Z 389 ____
—_ -0
g_86
| e2in
L ers
L0
so-E
rSszég
mqnwnw.
F Sofo
| 3385

* Ra
*
*

Cbser

Estimation and AST Errors [mobs_w]

Fri Dec 18 1998

P

:Iﬁ:%O:ZS .
2

600
Time (sec)

0

HiFi Version: mapdb_1_3

Figure7: MAP Flight Kalman Filter Estimation Error from HiFi Simulation

