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ABSTRACT 

TerraSAR-X (TS-X) is a new generation, high 
resolution synthetic aperture radar (SAR) satellite for 
scientific and commercial applications. The launch of 
the satellite into a sun-synchronous dusk-dawn orbit 
with an 11-day repeat period is planned on top of a 
Russian DNEPR-1 rocket for 2006. The requirement for 
the TS-X orbit is that the spacecraft shall fly over the 
same regions following identical flight paths relative to 
ground. The most important orbit control requirement is 
to maintain the satellite osculating orbit within a 
maximum absolute distance of 250 m from a target 
orbit. For dedicated operations this prescribed 
maximum distance is lowered to 10 m. 

This paper addresses the design and computation of the 
target path, the so-called reference orbit. The high 
accuracy orbit control requirements pose tight 
constraints on the generation of the target trajectory. 
Due to the high non-linearity of the problem, former 
strategies based solely on analytical calculus are not 
accurate enough. Instead the combination of numerical 
perturbation analysis and sequential optimization is 
shown to be more effective. It enables automation of the 
analysis and can be easily applied to all Earth remote 
sensing satellites. 

1. INTRODUCTION 

SAR interferometry is the basic principle for the TS-X 
mission. This technique is based on the stereoscopic 
effect that is obtained by matching two SAR images 
obtained from two slightly different orbits, [1]. This off-
set creates an interferometric baseline (IB). The TS-X 
IB is 500 m. For dedicated interferometric operations 
the baseline is reduced to 20 m, [2]. One way to achieve 
this is to prescribe a certain trajectory (relative to an 
Earth-fixed rotating coordinate system) for the 
spacecraft to follow together with specific limitations on 
the satellite motion relative to the reference orbit, [3]. 

In contrast to present day missions (like Envisat at 800 
km and ERS at 700 km altitude), that are controlled to a 
mean reference orbit within typical deadbands of ±1 km, 
TS-X will be controlled at an altitude of 500 km, facing 
highly dynamic disturbance forces, inside a tube-shaped 
boundary defined around the osculating reference orbit 
with a diameter that equals IB, [3].  

Since a conservative mission approach with a state-of-
the-art mono-propellant propulsion system is the 
baseline, an autonomous on-board orbit control is ruled 
out. Instead a ground-based approach was chosen and 
will be implemented for TS-X. This is challenging and 
gives great importance to the design of the target 
trajectory. In order to reduce the amount of orbit 
maintenance maneuvers and therefore increase the 
mission lifetime, an appropriate strategy is developed in 
the following. 

2. ORBIT REQUIREMENTS AND BASIC 
PROPERTIES 

The driving requirements for the TS-X orbit are 

• an exact 11 day repeat cycle for the ground-track, 
• Sun-synchronicity, 
• frozen orbit at about 500 km altitude, 
• a mean local time of 18 h at the ascending node 

Average ground-track repeatability can be achieved by 
having an orbital period which is a rational fraction of a 
day. The value selected for the draconic period, P, (time 
between two ascending node passages) is 11/167 days 
resulting in a repetition cycle of 11 days and 167 orbits 
in the repeat, [2]. If only a two-body potential is 
considered (J0, J1), the period of an elliptical orbit 
depends only on the size of the semi-major axis, aJ1, this 
provides a preliminary estimation of  
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with GM⊕ as the Earth’s gravitational coefficient. If we 
expand the geo-potential to the J2 zonal term (assuming 
an Earth’s mass distribution that is symmetric with 
respect to the axis of rotation), and neglect the 
eccentricity (assuming a circular orbit), then 
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where R⊕ is the Earth equatorial radius and 
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is the regression of the right ascension of the ascending 
node [4], whose size is imposed by the sun-
synchronicity requirement. Under our preliminary geo-
potential (J2) assumption the time-derivative of Ω, (3), 
depends only on the size of semi-major axis, (1)-(3), 
and on the inclination, iJ2, thus 
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Assuming that a given point, S (e.g. separation point), is 
part of the reference orbit at a given time, TS (e.g. 
separation time), the remaining elements can be easily 
calculated by means of spherical geometry and basic 
assumptions, [5]. Given the latitude, ϕ, and the flight 
direction, sign (positive to the North), 

  
( ) 














−⋅
=

2sinsin1

sinsinarctan
isign

iu
ϕ

ϕ , (5) 

is the argument of latitude for the given point. The flight 
time from S to the next ascending node (A.N.) can be 
expressed by a fraction of the orbital period. Based on 
the Earth rotation, the longitude shift of the A.N. is 
given by 
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Again by means of spherical geometry, the longitude 
difference, ∆λ, between A.N. and S is determined as 
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Given the longitude of S, λ (in hours), the node crossing 
longitude can be calculated by 

 NN λλλλ ∆+∆−= . (8) 

Finally, for a given date, the right ascension of the A.N. 
results from 

 ( ) NUTt λ+=Ω 1GMST , (9) 

where GMST is the Greenwich mean sidereal time and 
tUT1 is the mean solar time. Table 1 shows a preliminary 
set of mean orbital elements calculated by equations (1)-
(9) for a launch date at 2006/04/06 and a separation 
point   S = (ϕ ,λ) = (-0.14°, 52.66°). 

Table 1. Preliminary mean elements 
Mean elements at first A.N. J2 J4 

SGP4 elements 
Semi-major axis [km], a 6883.510 6892.950 
Eccentricity, e 0 0.0000001 
Inclination [°], i 97.4220 97.4464 
Right ascension A.N.[°], Ω 104.2750 104.2749 
Argument of perigee [°], ω - 180.0270 
Mean anomaly [°], M 360.00 180.0965 

As soon as the zonal terms up to J4 are included, the 
analytical formulation is better replaced by a Simplified 
General Perturbations 4 (SGP4) numerical propagator, 
[6]. The J2-elements calculated so far are used as input 
mean elements to the SGP4 drag-free propagation (the 
air drag is zero). In particular, the analytical expression 
for the semi-major axis and inclination corrections, (2)-
(3), is replaced by the following numerical formulation. 
Latitude, ϕ, and longitude, λ, are assumed to be linear 
functions of a and i: 

 ( ) ( )iafiag ,, == λϕ . (10) 

The differentiation of both functions, (10), and the 
integration over an entire repeat-period from the first 
A.N. time, T0, to the end of the cycle, Tf=T0+11days, 
bring the following linear system: 
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Where ∆ represents the operator difference over a cycle 
(e.g. ∆λ=λ(Tf)-λ(T0)). The partial derivatives w.r.t. a 
and i are calculated by numerical difference using the 
SGP4 propagator. The formulation of a simplified-
Newton iterative algorithm [5], provided that the 
Jacoby-matrix is not singular, gives the corrections for 
semi-major axis and inclination that satisfy the Sun-
synchronicity constraint. Table 1 shows again the SGP4 
derived mean elements at the A.N.. 

3. REFERENCE ORBIT FINE ADJUSTMENT 

The reference orbit is a trade-off. First of all it shall be 
as realistic as possible, because we want the spacecraft’s 
actual orbit to be as close as possible to the target. On 
the other hand the reference orbit shall be as simple as 
possible, because we want a completely periodic orbit 
(completely periodic relative to an Earth-fixed 
coordinate system), [1]. The outcome is that the 
theoretical reference orbit corresponds to an orbit 
affected only by the gravitational force (120 order, 120 
degree) from a real rotating Earth (the Earth motion 
around its axis is not assumed to be uniform and 
precession, nutation, polar motion and UCT/UT1 
corrections are modeled, [6]). 



 

3.1 GRACE Earth Gravitation Potential 

The GRACE Gravity Model 01 (GGM01) was released 
on July 21, 2003. This model was estimated with 111 
days of in-flight data (K-band, attitude and 
accelerometer data) gathered during the commissioning 
phase of the Gravity Recovery And Climate Experiment 
(GRACE) mission, which was launched on March 17, 
2002. This model is between 10 to 50 times more 
accurate than all previous Earth gravity models at the 
long and medium wavelengths. This improvement has 
been possible by the measurement of the inter-satellite 
range-rate which is itself very sensitive to the Earth 
gravity field. In the resulting gravity model, GGM01S, 
much more detail is clearly evident in the Earth's 
geophysical features, [7]. The GGM01S field was 
estimated to degree and order 120, and is here 
implemented in order to model accurately the 
TerraSAR-X reference orbit. 

3.2 Sun-synchronous Orbit Refinement 

To fulfill the requirements on a precise modeled Sun-
synchronous osculating repeat orbit, the semi-major axis 
and the inclination estimated in the previous chapter by 
means of two-line-elements have to be carefully 
adjusted. As already mentioned, the osculating 
longitude and latitude have to be the same at begin and 
end of a cycle. In order to calculate the appropriate 
corrections for a and i, the numerical strategy based on 
(10)-(11) is applied. The orbit is now propagated 
numerically by the integration of the equations of 
motion using GGM01S as gravity model. 

Table 2. Osculating elements after Sun-synchronicity 
and Frozen orbit adjustment with a 60x60 geo-potential 

Osculating elements at A.N. Sun-synch. Frozen orbit 
Semi-major axis [km], a 6892.94381 6892.94465 
Eccentricity, e 0.001180 0.001370 
Inclination [°], i 97.440434 97.440124 
Right ascension A.N. [°], Ω 104.274891 104.274891 
Argument of perigee [°], ω 65.962352 67.975723 
Mean anomaly [°], M 294.161136 292.169756 

As an example, Table 2 shows the osculating Keplerian 
elements at the A.N. in case of a 60x60 gravity field 
model. The reference orbit is mapped into true-of-date 
coordinates (TOD), thus referred to the true equator and 
equinox of date. 

3.3 Frozen Orbit Adjustment 

The non-circularity of the orbit has been almost 
neglected so far. The gravitational field of the Earth is 
such that the distance between the Earth center and the 
spacecraft inevitably varies with several kilometers over 
one orbit revolution. In order to have that also altitudes 
are equal for consecutive passes over the same area, a 
necessary and sufficient condition is that the secular 

perturbation of e and ω are zero. This is generally 
known as the “frozen orbit problem”. An algorithm to 
compute a frozen orbit as stable as possible over a long 
term basis has been derived by [8]. Accordingly to the 
proposed technique, our preliminary orbit is propagated 
for an integer number of complete repeat cycles (e.g. 10, 
triggered by seasonal periods), taking into account all 
perturbing forces except air drag. Once the osculating 
eccentricity vector is defined as ex=e⋅cosω, ey=e⋅sinω, 
the mean eccentricity vector is computed over each 
cycle and follows the ‘circle’ shown in Figure 1. The 
‘center’ of the ‘circle’ represents the preliminary frozen 
eccentricity (-0.0000039, 0.00123). The ‘diameter’ of 
the ‘circle’ can be reduced iteratively, by adding an 
appropriate increment to the initial osculating 
eccentricity vector. The process is iterated until no 
further improvements are obtained. Figure 2 shows the 
achieved significant reduction of the movement of the 
eccentricity vector around the new frozen eccentricity 
center (0.00000022, 0.00125). 
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Fig. 1. Eccentricity vector over 10 cycles (first iteration) 
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Fig. 2. Eccentricity vector over 10 cycles (last iteration) 



 

4. REFERENCE ORBIT OPTIMIZATION 

The reference orbit that has been calculated so far by 
classical orbit perturbation analysis does not satisfy 
completely the TS-X requirements. The reference orbit 
is the target of the ground-in-the-loop orbit control 
system and should not show at any time discontinuities, 
or at least large discontinuities with respect to the orbit 
control deadband (nominal: ± 250 m, occasional: ± 10 
m). At this stage of the analysis the reference orbit is 
characterized by a discontinuity at the end of each 11 
days-cycle. In particular the difference between the 
osculating state vectors at the initial and final point of 
each cycle in the WGS-84 frame is not negligible. Table 
3 shows the so-called repeat-cycle discontinuity for 
three reference orbits generated by the method 
described in the previous sections. 

Table 3. Repeat-cycle discontinuity for three 
preliminary reference orbits (A.N.). 

WGS-84 20x20 40x40 60x60 
∆X [m] 233.856 65.255 75.890 
∆Y [m] -283.922 -82.740 -95.377 
∆Z [m] -2802.130 -361.680 -500.838 

∆VX [m/s] -2.386 -0.319 -0.437 
∆VY [m/s] -2.050 -0.264 -0.367 
∆VZ [m/s] -5.430 -5.757 -5.776 

For each reference orbit a different degree and order of 
the gravity field has been adopted (20, 40 and 60). A 
further increase of the geo-potential resolution does not 
show significant changes in the reference orbit, although 
slows down considerably the computation. This 
limitation and the large discontinuities shown in table 3 
force the implementation of a new strategy able to 

• match exactly the state vector in Earth-fixed 
coordinates at the beginning and end of a cycle (11 
days) in order to avoid artificial errors in the orbit 
control system,  

• use the most accurate gravity field (120 order and 
degree) at an affordable computational cost in 
order to create a target trajectory as close as 
possible to reality. 

4.1 Optimization problem 

The problem we want to solve is highly non linear. A 
very small change of the reference orbit initial elements 
causes a large variation of the final elements 11 days 
later. A suitable approach extensively used in 
interplanetary trajectories planning is based on 
numerical optimization techniques. Our trajectory 
design problem can be generally posed as: 

Find the “virtual maneuver” times and sizes to 
minimize “fuel consumption” (∆v) for an Earth-, sun-
synchronous, dusk-dawn orbit trajectory starting at a 

specific time T0 with an initial osculating state vector x0 
and ending at time T0+11 days with the same osculating 
vector x0. 

The optimization problem as stated has some important 
features. First, it involves discontinuous controls, since 
the impulsive virtual maneuvers are represented by 
jumps in the velocity. Secondly, all intermediate 
maneuver times shall be included among the 
optimization parameters. This would require further 
reformulation of the dynamical model to capture the 
influence of these parameters on the solution at a given 
optimization iteration. Finally, the overall problem 
under consideration has some important long term 
properties. The TerraSAR-X mission lifetime is 5 years 
and, as shown in the previous section, the “passive” 
eccentricity characteristics are given by an appropriate 
choice of the initial elements e and ω. This means that 
the initial guess solution for our optimization strategy 
will be provided by the approach described in the 
previous sections and that artificial maneuvers must be 
avoided at the beginning of the cycle (T0) in order not to 
degrade the long-term stability. 

Problem Formulation 
Next, we discuss the formulation of the posed 
optimization problem. The evolution of the spacecraft is 
described by a set of six ordinary differential equations 

 ( )xx ,' tf= , (12) 

where x=(xp;xv)∈ℜ6 contains both positions (xp) and 
velocities (xv). The model of Equation (12) is described 
in [6], [9]. A more general and probably too ambitious 
approach would require the model itself to be included 
among the optimization parameters, since the reference 
orbit model is a trade-off. In this paper several 
resolutions of the geo-potential are investigated. The 
equations of motion are solved simultaneously on each 
interval between two maneuvers. Let the maneuvers 
M1,M2,…,Mn take place at times Ti, i=1,2,…,n and let 
xi(t), t∈[Ti-1,Ti] be the solution of Equation (12) on the 
interval [Ti-1,Ti], (see Figure 3). A particular case is 
xn+1(t), t∈[Tn,Tf] that is the solution of (12) in the 
interval between the last maneuver (Mn at time Tn) and 
the end of the repeat cycle Tf. The dimension of the 
dynamical system is thus Nx=6n. Position continuity 
constraints are imposed at each maneuver, that is, 
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p
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The final state vector is forced to match exactly the 
initial state vector, that is, 
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Additional constraints dictate that the first maneuver 
does not change the initial elements, and that the order 
of maneuvers is respected, 

 1,...,2,1,11 −=<< +− niTTT iii . (15) 

With a cost function defined as some measure of the 
velocity discontinuities 
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the optimization problem becomes 
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subject to the constraints in Equations (13)-(16). 

 

Fig. 3. Target trajectory (167 revolutions). Maneuvers 
take place at times Ti=1,2,…,n. 

An appropriate cost function for the optimization 
problem has to be chosen. We consider the following 
two cost functions: 
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While the second of these is the most meaningful, as it 
measures the total sum of the introduced discontinuities, 
such a cost function is non-differentiable whenever one 
of the maneuvers vanishes. The first cost function C1, 
on the other hand, is differentiable everywhere, thus it is 
more appropriate for the optimizer. Due to the fact that, 
in some particular cases, decreasing C1 may actually 
lead to increases in C2, the optimization process should 
be carefully monitored. 

TOMP Software 
TOMP (Trajectory Optimization by Mathematical 
Programming) is a software package designed to control 
and optimize a general class of dynamic systems, 
developed by the Institut für Dynamik der Flugsysteme, 
DLR (German Aerospace Center), Oberpfaffenhofen 
[10]. We make use of TOMP to find the solution of the 
general constrained nonlinear optimization problem 
adopting the method of sequential quadratic 
programming, that has been shown to be very efficient 
in terms of function evaluations and computation time, 
[11]. Here we describe the basic algorithm used in 
TOMP. We consider the general nonlinear 
programming problem 

 ( ) ( )x
x

f
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min:NLP , (19) 

subject to 
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for a local minimum, where the problem functions are 
assumed to be continuously differentiable and to have 
no specific structure. Problem NLP is solved iteratively; 
starting with a given vector of parameters x0, the (k+1)st 
iterate xk+1 is obtained from xk by the step 

 kkkk dxx α+=+1 , (21) 

where dk is the search direction within the kth step and 
αk is the step length. The search direction is determined 
by a quadratic programming sub-problem, which is 
formulated by a quadratic approximation of the 
Lagrange function of problem NLP and a linear 
approximation of the constraints gj. The general 
quadratic programming problem is solved by the 
formulation of an equivalent linear least squares 
formulation that we omit for simplicity; this problem 
has been extensively treated by Lawson and Hanson, 
[12]. 

4.2 Numerical Results 

Initial Guess 
The initialization of the optimization process is given by 
the method described in the previous sections. Sun-
synchronous and Frozen orbit adjustments are 
iteratively implemented until no further improvement is 
achieved for the reference orbit. At each iterate the 
order and degree of the geo-potential is increased 
yielding the results shown in table 3. While the 20x20 
gravity field does not provide a good enough initial 
guess, the 40x40 choice seems to be the most 



 

appropriate in terms of computational cost and reference 
orbit quality. The following initial condition is defined 
by the guess reference orbit in true-of-date coordinates 
at the A.N.: 
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Computational Solution 

We present complete results for the case in which a 
120x120 geo-potential (goal of the analysis) is used as 
force model for (12). We allow for n=2 maneuvers at 
times T1=T0+11/3 days and T2=T1+11/3 days. After 2 
iterations the first cost function has a value of 
C1=4.4331⋅10-3 m2/s2 and the constraint vector is not 
acceptable: 
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After 40 iterations, the optimization was interrupted 
providing as minimal cost function C1=1.7160⋅10-3 m2/s2 
and as constraints: 
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The optimal solution vector is expressed in the height or 
radial (H), tangential or along-track (L) and normal or 
cross-track (C) co-moving orbital frame for a better 
physical comprehension 
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As the maneuvers are uniformly distributed over the 
repeat-cycle, the solution shows a peculiar symmetry. 
Basically, the maneuvers have similar magnitude but 
opposite versus. In fact the difference between the two 
consecutive velocity corrections compensates for the 
end-cycle discontinuity of the guess reference orbit. The 
locations (long.[°],lat.[°],alt.[km]) of the maneuvers are 
(148.046,-59.545,532.423)&(-66.630,59.120,517.549). 

5. CONCLUSION AND FUTURE WORK 

The computation of the reference orbit for a repeat 
observation satellite has been analyzed, with special 
emphasis on the upcoming TerraSAR-X mission. The 
problem is highly nonlinear because of the complexity 
of the dynamic model (Earth gravity field resolution up 
to 120x120) and the fact that a large parameter space is 
investigated (we target an entire surface by requiring the 
exact match of the state vector after 11 days). The 
presented method treats the trajectory planning problem 

as an optimization problem and consists of two main 
steps. First of all an initial approximate solution is 
necessary. A good initial guess is found by applying an 
iterative passive eccentricity control algorithm in order 
to obtain a frozen orbit as stable as possible over a long-
term basis (years). Secondly a non-linear constrained 
optimization problem is defined and solved by the 
formulation of sequential linear least-squares sub-
problems. A more general and ambitious optimization 
problem may be formulated, that joins together the 
autonomous ground-in-the-loop orbit control system 
and the target trajectory generation. The inclusion of the 
reference orbit dynamic model among the optimization 
parameters could lead to an overall minimization of the 
maneuvers required to satisfy the control requirements. 
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