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ABSTRACT This paper applies previous research on the
solution of two-point boundary value problems to space-
craft formation dynamics and design. The underlying
idea is to model the motion of a spacecraft formation as
a Hamiltonian dynamical system in the vicinity of a ref-
erence solution. Then we can analytically describe the
nonlinear phase flow using generating functions found by
solving the Hamilton-Jacobi equation. Such an approach
is very powerful and allows one to study any Hamilto-
nian dynamical system independent of the complexity
of its vector field, and to solve any two-point boundary
value problem using only simple function evaluations.
We present the details of our approach through the study
of a non-trivial example, the reconfiguration of a forma-
tion in Earth orbit and in the Hill three-body problem.
Both continuous and impulsive thrusts are considered.

1. INTRODUCTION

Several missions and mission statements have identified
formation flying as a means for reducing cost and adding
flexibility to space-based programs. However, such mis-
sions raise a number of technical challenges. For exam-
ple, the formation reconfiguration problem which con-
sists of changing the geometry of the formation, requires
one to solve alarge numberof two-point boundary value
problems using an accurate dynamic models of the rel-
ative motion. To reconfigure a formation ofN space-
craft using impulsive thrusts, there areN ! possibilities
in general. Similarly, if continuous thrusts are used, this
problem formulates as an optimal control problem and
the necessary conditions for optimality yield a boundary
value problem. Again,N ! boundary value problems need
to be solved. Therefore, techniques and algorithms devel-
oped for solving boundary value problems (such as shoot-
ing and relaxation methods) are no longer appropriate as
they require excessive computation and time. These ob-
servations have motivated the present work. Specifically,
we present a novel approach for solving two-point bound-
ary value problems. A fundamental difference with previ-
ous studies is that we are able to describe the relative mo-
tion, i.e., the phase space in the vicinity of a reference tra-
jectory, as two-point boundary value problems whereas it
is usually described as an initial value problem.
In this paper, to showcase the strength of our method,

we have chosen to study two challenging reconfiguration
problems. We first consider a spacecraft formation about
an oblate Earth (theJ2 and J3 gravity coefficients are
taken into account) that must achieve5 missions over a
one monthperiod. For each mission the formation must
be in a given configurationCi that has been specified be-
forehand, and we wish to minimize the overall fuel ex-
penditure. The configurationsCi are specified as relative
positions of the spacecraft with respect to a specified ref-
erence trajectory (Fig. 1(a)). Then, we consider the de-
ployment problem. We assume several spacecraft at the
Libration point L2 in the Hill three-body problem and
want to find the optimal control law that drive the forma-
tion to its final configuration (see Fig. 1(b)).
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Figure 1: Representations of the two designs we study

2. SOLVING TWO-POINT BOUNDARY VALUE
PROBLEM

In this section, we briefly review the method developed
by Guibout and Scheeres [6, 4] for solving Hamiltonian
two-point boundary value problems.

Definition 1 (Hamiltonian system). A system is called
Hamiltonian if there exists a smooth functionH(q, p, t)
from R

n × R
n × R to R such that its dynamics can be

described by equations of the form:

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
. (1)

H is called the Hamiltonian function and Eqns.(1) are
known as Hamilton’s equations.



Trajectories of Hamiltonian systems can also be charac-
terized by the following variational principle:

Theorem 2 (Modified Hamilton’s principle). Critical
points of

∫ t1
t0

(〈p, q̇〉−H)dt in the class of pathsγ : R →
R

n × R
n whose ends lie in the n-dimensional subspaces

q = q0 at t = t0 and q = q1 at t = t1 correspond to
trajectories of the Hamiltonian system whose ends areq0

at t0 andq1 at t1.

Proof. We proceed to the computation of the variation.

δ

∫

γ

(〈p, q̇〉 − H)dt =

∫

γ

(

q̇iδpi + piδq̇i −
∂H

∂qi
δqi −

∂H

∂pi
δpi

)

dt = [piδqi]
t1
t0

+

∫

γ

[(

q̇i −
∂H

∂pi

)

δpi −

(

ṗi +
∂H

∂qi

)

δqi

]

dt .

Therefore, since the variation vanishes at the end points,
the integral curves of Hamilton’s equations are the only
extrema.

We now introduce the concept of canonical transforma-
tion, a class of coordinate transformations that preserves
the Hamiltonian structure of the system.

Definition 3. A smooth mapf : R
2n × R → R

2n × R

is a canonical transformation from(q, p, t) to (Q,P, t) if
and only if:

1. f is a diffeomorphism,

2. f preserves the time, i.e., there exists a functiongt

such thatf(x, t) = (gt(x), t),

3. Critical points of
∫ t1

t0

(

〈P, Q̇〉 − K(Q,P, t)
)

dt

correspond to trajectories of the Hamiltonian sys-
tem, whereK(Q,P, t) is the Hamiltonian function
expressed in the new set of coordinates.

We consider a canonical transformationf : (q, p, t) 7→
(Q,P, t) and a Hamiltonian system defined byH. Along
trajectories, we have by definition:

δ

∫ t1

t0

(

n
∑

i=1

piq̇i − H(q, p, t)

)

dt = 0 , (2)

δ

∫ t1

t0

(

n
∑

i=1

PiQ̇i − K(Q,P, t)

)

dt = 0 . (3)

From Eqns. (2) - (3), we conclude that the integrands of
the two integrals differ at most by a total time derivative
of an arbitrary functionF :

∑

i

pidqi − Hdt =
∑

j

PjdQj − Kdt + dF . (4)

Such a function is called a generating function for the
canonical transformationf and is,a priori, a function of
both the “old” and the “new” variables and time. The
two sets of coordinates being connected by the2n equa-
tions, namely,f(q, p, t) = (Q,P, t), F can be reduced
to a function of2n + 1 variables among the4n + 1.
Hence, we can define4n generating functions that have
n “old” variables andn “new”. Among these are the four
kinds defined by Goldstein [3],F1(q,Q, t), F2(q, P, t),
F3(p,Q, t) andF4(p, P, t). In the present work, we fo-
cus on the generating function of the first kind,F1. In
other words, we assume that(q,Q) are independent vari-
ables. Then, fromdF1 = ∂F1

∂q dq + ∂F1

∂Q dQ + ∂F1

∂t , Eqn.
(4) simplifies to the following vector equation:

(p −
∂F1

∂q
)dq − Hdt = (P +

∂F1

∂Q
)dQ − Kdt +

∂F1

∂t

Hence, since(q,Q, t) are independent variables, we ob-
tain:

q = ∂F1

∂p (q,Q, t) , Q = −∂F1

∂Q (q,Q, t) ,
∂F1

∂t + H(q, ∂F1

∂p , t) = K(Q,−∂F1

∂Q , t) .
(5)

Let us particularize Eqns. (5) for the canonical transfor-
mation induced by the inverse of the phase flow (a proof
that this transformation is canonical can be found in [1]).
Such a transformation maps the state of the system at time
t to its state at the initial time while preserving the time.
Thus, it maps the system to a trivial one with constant
Hamiltonian function that can be chosen to be0. The as-
sociated generating functionF1 verifies Eqns. (5) where
(Q,P ) now denotes the initial state(q0, p0) andK = 0:

q =
∂F1

∂p
(q, q0, t) , p0 = −

∂F1

∂q0
(q, q0, t) , (6)

∂F1

∂t
+ H(q,

∂F1

∂p
, t) = 0 . (7)

Given two positionsq0 andq, and a transfer timeT , we
immediately notice that Eqns. (6) solves the two-point
boundary value problem that consists of going fromq0 to
q in T units of time. This remark is of prime importance
since it provides us with a very general technique for
solving Hamiltonian position to position boundary value
problems. However, this approach relies on knowledge
of F1. In the next section, we develop an algorithm for
computing this function.

3. COMPUTING THE GENERATING FUNC-
TIONS

The Hamilton-Jacobi theory provides us with a direct ap-
proach for computing the generating functions. Indeed,
it tells us that they are solutions of the Hamilton-Jacobi
equation (Eqn. (7)). This is a partial differential equation



that is difficult to solve in general. However, the Hamil-
tonian function for describing the relative motion has a
particular structure that enables us to solve this differen-
tial equation.

3.1 Relative motion

Consider a Hamiltonian system with Hamiltonian func-
tion H(q, p, t). Let (q0

0 , p0
0) and(q1

0 , p1
0) be two points in

phase space such thatq1
0 = q0

0 + ∆q0 , p1
0 = p0

0 + ∆p0,
where(∆q0,∆p0) is small enough to guaranty the con-
vergence of the Taylor series in Eqn. (12). We denote by
(qi, pi) the trajectory with initial conditions(qi

0, p
i
0), i.e.,

q1 = q(q1
0 , p1

0, t) , p1 = p(q1
0 , p1

0, t) , (8)

q0 = q(q0
0 , p0

0, t) , p0 = p(q0
0 , p0

0, t) . (9)

and we defineXh =

(

∆q
∆p

)

the relative state vector by:

X1 = X0 + Xh , (10)

where Xi =

(

qi

pi

)

. For convenience we shall call

(q0, p0) the reference trajectory and(q1, p1) the displaced
trajectory .
Using our previous notation, Hamilton’s equations for the
displaced trajectory reads:

Ẋ0 + Ẋh = J∇H1 . (11)

We expand the right hand side of Eqn. (11) about the ref-
erence trajectoryX0, assuming(∆q,∆p) small enough
for convergence of the series:

∇H(q1, p1, t) = ∇H(q0, p0, t)

+

(

∂2H
∂q2 (q0, p0, t)∆q + ∂2H

∂q∂p (q0, p0, t)∆p
∂2H
∂q∂p (q0, p0, t)∆q + ∂2H

∂p2 (q0, p0, t)∆p

)

+ · · ·

Substituting this into Eqn. (11) yieldṡXh = J∇Hh,
where

Hh(Xh, t) =

∞
∑

p=2

p
∑

i1,··· ,i2n=0
i1+···+i2n=p

1

i1! · · · i2n!

∂pH

∂qi1
1 · · · ∂qin

n ∂p
in+1

1 · · · ∂pi2n
n

(q0, p0, t)Xh
1

i1
. . . Xh

2n

i2n

Thus, the dynamics of a particle relative to a known
trajectory is Hamiltonian with a Hamiltonian function
Hh(Xh, t) = Hh(∆q,∆p, t). The coefficients of the
Taylor series 1

i!j!
∂i+jH
∂qi∂pj (q0, p0, t) are time varying quan-

tities and are easily evaluated for any Hamiltonian once
the reference trajectory is known.

3.2 Algorithm

We found that the Hamiltonian describing the dynamics
of two particles relative to each other is a power series
in its spatial variables, with time-dependent coefficients.
At first glance, the associated Hamilton-Jacobi equation
may appear impractical. However, if we truncateHh,
a closed-form solution for the generating functions can
be found. In this section we briefly review the solution
procedure. We refer to [5, 4] for additional details and a
study of the convergence properties of our algorithm.
We assume thatF1 can be expressed as a Taylor series
about the reference trajectory in its spatial variables.

F1(y, t) =

∞
∑

q=2

q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n!

fq,i1,··· ,i2n
(t)yi1

1 · · · yi2n

2n , (12)

wherey = (∆q,∆q0). We substitute this expression in
the Hamilton-Jacobi equation (Eqn. (7), withH = Hh).
The resulting equation is an ordinary differential equation
that has the following structure:

P (y, fp,r
q,i1,··· ,i2n

(t), ḟp,r
q,i1,··· ,i2n

(t)) = 0 , (13)

whereP is a series iny with time dependent coefficients
that are functions offq,i1,··· ,i2n

(t) and ḟq,i1,··· ,i2n
(t).

Eqn. (13) holds for ally if and only if all the coefficients
of P are zero. In this manner, we transform the ordinary
differential equation (13) into a set of ordinary differen-
tial equations whose solutions are the coefficients of the
generating functionF1.
This approach provides us with a closed form approxi-
mation of the generating functions. However, there are
inherent difficulties as generating functions may develop
singularities which prevent the integration from going
further (see [1, 6] for more details on singularities). Tech-
niques that rely on the Legendre transformation have
been developed [5] to bypass this problem but have a cost
in terms of computation.
An alternative approach for computingF1 has been ex-
plored in [5, 4]. We present the main ideas of this ap-
proach as in the following we combine both methods to
increase performance. We suppose that∆q(∆q0,∆p0, t)
and ∆p(∆q0,∆p0, t) can be expressed as series in the
initial conditions(∆q0,∆p0) with time dependent coef-
ficients. We truncate the series to orderN and insert these
into Eqn. (1). Hamilton’s equations reduce to a series in
(∆q0,∆p0) whose coefficients depend on the coefficients
of the series∆q(∆q0,∆p0, t) and∆p(∆q0,∆p0, t) and
their time derivatives. By balancing terms of the same
order, we transform Hamilton’s equations into a set of or-
dinary differential equations whose variables are the co-
efficients defining∆q and∆p as a series in∆q0 and∆p0.



For linear systems, this approach recovers the state tran-
sition matrix. Then, a series inversion of the phase flow
provides us with the gradient of the generating functions
that can be integrated to find the generating functions.
The main advantage of this approach is that the phase
flow is never singular, therefore the ordinary differential
equations are always well-defined. However, this method
requires us to solve more equations than the previous
method and provides us with the value ofF1 at a given
time only (the time at which we perform the series inver-
sion).
In the following, we use a “combined” algorithm. The
alternative approach is used to compute the phase flow
over a long time span. Then, we compute the value of
F1 at a time of interest,t1, and solve the Hamilton-Jacobi
equation aroundt1. For both examples, we compute the
first four terms in the series expansion ofF1. We will
see that they provide an accurate picture of the nonlinear
dynamics about the reference trajectory.

4. A MULTI-TASK MISSION ABOUT THE
EARTH

4.1 Problem settings

The motion of a satellite under the influence of the Earth
modeled by an oblate sphere (J2 andJ3 gravity coeffi-
cients are taken into account) in the fixed coordinate sys-
tem (x, y, z) whose origin is the Earth center of mass is
described by the following Hamiltonian:

H =
1

2
(p2

x + p2
y + p2

z) −
1

√

x2 + y2 + z2
[1−

R2

2r2
0(x

2 + y2 + z2)

(

3
z2

x2 + y2 + z2
− 1

)

J2−

R3

2r3
0(x

2 + y2 + z2)2

(

5
z3

x2 + y2 + z2
− 3z

)

J3

]

,

where

GM = 398600.4405 km3s−2 , R = 6378.137 km ,

J2 = 1.082626675 · 10−3 , J3 = 2.532436 · 10−6 ,

and all the variables are normalized. Distances are nor-
malized byr0, the radius of the trajectory at the initial
time, and the time is normalized by

√

r3
0/GM .

We consider a “reference” trajectory whose state is desig-
nated by(q0, p0) and study the relative motion of space-
craft with respect to it. The reference trajectory is chosen
to be highly eccentric and inclined, but any other choice
could have been considered. At the initial time its state
is:

q0
x = rp , p0

x = 0 kms−1 ,

q0
y = 0 km , p0

y =
√

GM
1
2
(ra+rp)

√

ra

rp
cos(α) kms−1 ,

q0
z = 0 km , p0

z =
√

GM
1
2
(ra+rp)

√

ra

rp
sin(α) kms−1 ,

α = π
3 rad , rp = 7, 000 km , ra = 13, 000 km .

Without theJ2 andJ3 gravity coefficients the reference
trajectory would be an elliptic orbit with eccentricitye =
0.3, inclinationi = π/3 rad, argument of perigeeω = 0,
longitude of the ascending nodeΩ = 0, semi-minor axis
rp = 7, 000 km, semi-major axisra = 13, 000 km and

of periodtp = 2π
√

1
23

(ra+rp)3

r3
p

sec ≈ 2 hours 45 min.

The Earth oblateness perturbation causes (see Chobotov
[2] for more details) secular drifts and short terms oscil-
lations in the orbital elements. In Fig. 2, we plot the or-
bital elements for this trajectory as a function of time over
a month period (about300 revolutions about the Earth).
The symplectic implicit Runge-Kutta integrator built in
Mathematica c© is used for integration of Hamilton’s
equations.
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Figure 2: Time history of the orbital elements of the ref-
erence trajectory over a month period

4.2 Multi-task mission

We consider four imaging satellites flying in formation
about the reference trajectory. We want to plan space-
craft maneuvers over the next month knowing that they
must observe the Earth, i.e., must be in a given configu-
rationCi at the following instants (chosen arbitrarily for
our study):

t0 = 0 , t1 = 5 d 22 h , t2 = 10 d 20 h ,
t3 = 16 d 2 h , t4 = 21 d 14 h , t5 = 26 d 20 h .

Define the local horizontal by the unit vectors(ê1, ê2)
such that̂e2 is alongr0 × v0 and ê1 is along ê2 × r0.
At every ti, the configurationCi is defined by the four
following relative positions (or slots):

q1 = 700 m ê1 , q2 = −700 m ê1 ,
q3 = 700 m ê2 , q4 = −700 m ê2 .

(14)

Note that atti, q1 is in front of the reference state (in the
local horizontal plane),q2 is behind,q3 is on the left and
q4 is on the right (see Fig. 1(a)). At eachti, there must
be one spacecraft per slot and we want to determine the
sequence of reconfigurations that minimizes the total fuel
expenditure (other cost functions such as equal fuel con-
sumption for each spacecraft may be considered as well).



For the first mission, there are4! configurations (number
of permutation of the set{1, 2, 3, 4}). For the second mis-
sion, for each of the previous4! configurations, there are
again4! configurations, that is a total of4!2 possibilities.
Thus for5 missions, there are4!5 = 7, 962, 624 possible
configurations.
In this example, we assume impulsive controls that con-
sist of impulsive thrusts applied atti∈[0,5]. For each of
the four spacecraft, we need to compute the velocity at
ti so that the spacecraft moves to its position specified
at ti+1 under gravitational forces only. As a result, we
must solve5 · 4! = 120 position to position boundary
value problems (given two positions atti and ti+1, we
need to compute the associated velocity). Using the gen-
erating functions, this problem can be handled at the cost
of only 120 function evaluations. Then, we need to eval-
uate the fuel expenditure (sum of the norm of all the re-
quired impulses, assuming zero relative velocities at the
initial and final times) for all the permutations (there are
7, 962, 624 combinations) to find the sequence that min-
imizes the cost function. Fig. 3 represents the number
of configurations as a function of the values of the cost
function. We notice that most of the configurations re-
quire at least three times more fuel than the best config-
uration, and less than6% yield values of the cost func-
tion that are less than twice the value associated with the
best configuration. The cost function for the optimal se-
quence of reconfigurations is0.00644 km · s−1 whereas
it is 0.0396 km · s−1 in the least optimal design.

6.44 15.09 22.64 30.18 37.73

502,940

1,027,384

1,979,581

4,452,719*10
5

m/s

Figure 3: Number of configurations as a function of the
value of the cost function

We may verify,a posteriori, if the solutions found meet
the mission goals, i.e., if the order4 approximation of
the dynamics is sufficient to simulate the true dynamics.
Explicitly comparing the analytical solution with numer-
ically integrated results shows that the spacecraft are at
the desired positions at everyti with a maximum error of
1.5 · 10−8 km.

4.3 Considerations on collision management

Our algorithm does not consider the risk of collision in
the design. Integrating Hamilton’s equations shows that
the best scenario yields collisions. Therefore, it cannot
be used for this problem and we need to find another de-
sign. It can be proven that for this specific mission, the
minimum relative distance between the spacecraft is at

best about15 m, and is achieved in3, 360 different de-
signs. Among these3, 360 possibilities, we represent in
Fig. 4 the time history of the relative distance between the
spacecraft for the design that achieves minimum fuel ex-
penditure (the total fuel expenditure is60 % larger than
in the best case). For times at which the spacecraft are

(m)
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(b) Distance be-
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tween Spacecraft2
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(m)
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(e) Distance between
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(m)

(hours)

(f) Distance between
Spacecraft3 and4

Figure 4: Distance between the spacecraft as a function
of time

close to each other, we may use some local control laws
to perform small maneuvers to ensure appropriate sepa-
ration.
Another option consists of changing the configurations
at ti so that there exists a sequence of reconfigurations
such that the relative distance between the spacecraft stay
larger than a given safe distance. This can easily be done
using our approach sinceF1 is already known. Solving a
new design would only require120 function evaluations
as the same generating function can be used.

5. THE DEPLOYMENT PROBLEM IN THE HILL
THREE-BODY PROBLEM

5.1 Problem settings

The Hill three-body problem is a three-body problem in
which three main assumptions are made: 1) One of the
three bodies has negligible mass compared to the other
two-bodies. 2) One of the two massive bodies is in circu-
lar orbit about the other one. 3) One of the two massive
bodies has larger mass than the other one. These hypoth-
esis hold to study the motion of a spacecraft under the in-
fluence of the Sun and the Earth for example. Under these
assumptions, the normalized Lagrangian for this system
is

L(q, q̇) =
1

2
(q̇2

x+ q̇2
y)+

1
√

q2
x + q2

y

+
3

2
q2
x−(q̇xqy− q̇yqx)

where (qx, qy) = (x, y). This problem has2 equi-
librium points, L1 and L2 whose coordinates are

L1(−
(

1
3

)1/3
, 0) andL2(

(

1
3

)1/3
, 0) .



We consider several spacecraft atL2 at the initial time
and solve the deployment problem. In other words, we
want to find the optimal control laws that drive the for-
mation fromL2 to a given configuration att = T . We as-
sume continuous thrusts and no thrust constraints. Thus,
for each of the spacecraft, we need to solve an optimal
control problem formulated as:

min
U=(ux,uy)

J = min
U=(ux,uy)

1

2

∫ t=T

t=0

(u2
x + u2

y)dt , (15)

subject to the dynamics:

∂L

∂q
(q, q̇) −

d

dt

∂L

∂q̇
(q, q̇) = U , (16)

and the boundary conditions:

X(t = 0) = XL2
= (3−1/3, 0, 0, 0) , X(t = T ) = XT ,

whereX = (qx, qy, q̇x, q̇y) andU = (ux, uy). Necessary
conditions for optimality can be found from Pontryagin’s
maximum principle:

Ẋ =
∂H

∂P
, Ṗ = −

∂H

∂X
,

∂H

∂U
= 0 , (17)

whereP = (p1, p2, p3, p4) and

H(X,P,U) = PT Ẋ +
1

2
u2

x +
1

2
u2

y .

Then, from∂H
∂U = 0, we find the optimal control feedback

law: ux = −p3 , uy = −p4. We substituteU = (ux, uy)
into H to obtainH̄(X,P ) = H(X,P,U(X,P )). Thus,
the necessary conditions for optimality now define a
Hamiltonianposition to position boundary value problem
that can be solved usingF1:

Ẋ =
∂H̄

∂P
, Ṗ = −

∂H̄

∂X
,X(0) = XL2

,X(T ) = XT (18)

Eqns. (6) provide the value of the co-stateP at the initial
and final times. Then, the optimal trajectory is found by
integrating Hamilton’s equations (Eqns. (18)).

5.2 The deployment problem

In Fig. 5(a) and 5(b), we plot the optimal control trajec-
tories and the norm of the optimal control laws for dif-
ferent final positionsXT on a circle of radiusr = 0.05
(10, 700 km in the Earth-Sun system) and a transfer time
of t = 2.5 (i.e., about145 days in the Earth-Sun system).
We observe that some values of the final position requires
less fuel, they correspond toXT = r cos(θ) + r sin(θ)
whereθ = {19π/32, 51π/32}. Similarly, we may vary
the transfer time. In Fig. 5(c), we plot the optimal tra-
jectories forT ∈ {0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1} (i.e.,
from 6 to 290 days). AsT increases, the trajectory wraps
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y

(a) Optimal trajecto-
ries

t

|u|

(b) Norm of the opti-
mal control laws

x

y

(c) Optimal trajecto-
ries

Figure 5: The deployment problem
aroundL2 so that the spacecraft takes advantage of the
geometry of the Libration point.
In this manner, we can explore the best deployment se-
quence. Depending on the final configuration geometry
(e.g., the spacecraft must be equally spaced on a circle
of radiusr) and mission specifications, we are able to
choose the optimal transfer time and final configuration
to minimize the fuel expenditure by evaluating a set of
functions.

6. CONCLUSIONS

To conclude, we have been able to obtain semi-analytic
description of the phase flow of complex dynamical mod-
els that solves two-point boundary value problems. Such
a description of the phase space is superior in many ways
to the traditional approach based on the initial value prob-
lem. In previous work [4], we successfully applied this
method to compute periodic and stable configurations.
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