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This paper extends a previously developed method for finding spacecraft initial condi-
tions (ICs) that minimize the drift resulting from J2 disturbances while also minimizing
the fuel required to attain those ICs. It generalizes the single spacecraft optimization to
a formation-wide optimization valid for an arbitrary number of vehicles. Additionally, the
desired locations of the spacecraft, separate from the starting location, can be specified,
either with respect to a reference orbit, or relative to the other spacecraft in the formation.
The three objectives (minimize drift, minimize fuel, and maintain a geometric template) are
expressed as competing costs in a linear optimization, and are traded against one another
through the use of scalar weights. By carefully selecting these weights and re-initializing
the formation at regular intervals, a closed-loop, formation-wide control system is created.
This control system can be used to reconfigure the formations on the fly, and creates fuel-
efficient plans by placing the spacecraft in semi-invariant orbits. The overall approach is
demonstrated through nonlinear simulations for two formations – a GEO orbit, and an
elliptical orbit.

I. INTRODUCTION

Spacecraft formation flying is expected to be an enabling technology for many future missions [1]. In a
spacecraft formation, it is critically important both to conserve fuel when maneuvering and to maneuver to
a state that will, over time, conserve fuel. The latter is an initial condition (IC) problem, the specifications
of which will depend upon the unique requirements of a particular mission. However, in any spacecraft
formation, a primary goal will be to prevent the vehicles from drifting apart, since that will typically end
the mission. If the spacecraft in a formation tend to drift apart, then periodic maintenance maneuvers
will be required to restore the formation. Initial conditions are called invariant if they eliminate drift,
thereby allowing spacecraft to maintain their relative orbits without expending fuel. Two expected sources
of relative drift in a formation are mismatched semimajor axes and J2 disturbances. This paper presents
an online method for finding spacecraft formation initial conditions that not only achieve mission objectives
and minimize the drift resulting from natural dynamics, but also minimize the fuel required to attain those
ICs.

References [2] and [3] present approaches for achieving J2 invariance based on solving necessary conditions
for partial invariance of the mean orbital elements. These methods minimize secular drift in the mean orbital
elements, but contain unspecified degrees of freedom. Previous work [4, 5] introduced an optimization-based
approach for finding invariant orbits that can minimize more general definitions of drift (e.g., Cartesian
separation, osculating states) over arbitrary time frames while minimizing fuel and considering performance
objectives. The optimizations used linear programs [6], which are fast and reliable, in combination with the
J2-modified state transition matrices presented in Ref. [7]. This approach yields results that can be used
online to optimize and re-optimize initial conditions for Earth-orbiting formation flying missions (e.g., LEO,
HEO) that require drift to be minimized, but that also have particular geometry requirements on separation
distance or shape (e.g., MMS [8]). This paper extends that method by separating the desired geometry from
the starting geometry, and by including multiple spacecraft in a single optimization. This enables a fully
formation-wide approach to initialization and control.
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II. FORMATION OPTIMIZATION

Reference [4] derived the single spacecraft IC optimization

C∗ = min
U

{Qd‖Wd(Φ̄∗D1 − I)(Φ̄∗D0δe(t0) + Γ̂U)‖+ Qx‖WxΓ̂U‖+ Qu‖U‖} (1)

where C∗ is the optimal cost, U is a column vector of control inputs, δe is a differential column vector of
osculating orbital elements, Γ̂ is a discrete convolution matrix, and the weighting matrices Wd and Wx specify
the form of the penalties for drift and geometry, respectively. The scalar weights Qd, Qx, and Qu determine
the penalties on drifting, variation from a geometric template (i.e., performance), and fuel use. The state
transition matrix, Φ̄∗Dn, propagates the differential state vector from time tn to time tn+1. Additionally, t0 is
the time at the start of the optimization, t1 is the time at the end of the initialization maneuver, and [t1, t2]
is the period over which drift is minimized (in this paper, one orbit). The control sequence U(τ), τ ∈ [t0, t1]
is of the form

U =
[

uT
0 uT

1 · · · uT
n

]T

(2)

where n is the number of steps in the plan. Moreover, each entry uk is a three element vector

uk =
[

uxk
uyk

uzk

]T

(3)

where the subscripts x, y, and z denote the radial, in-track, and cross-track directions in the LVLH frame.
Since control is not allowed during the drift period, a good solution to the optimization problem must balance
the desire to achieve low-drift initial conditions at t1 with the desire to preserve formation geometry and
conserve fuel. Writing the three costs separately as Cd, Cx and Cu, the overall cost for a given control
sequence U becomes

C = QdCd + QxCx + QuCu (4)

Separating the Desired State

The optimization in Eq. 1 can be improved by separating the initial state, δe(t0), from the desired state. This
is done by introducing the vector δed(t1) for the desired geometry at the end of the initialization maneuver.
The difference between the desired position and the actual position at t1 is penalized

Cx = ‖Wx(δed(t1)− δe(t1))‖ (5)

Substituting δe(t1) = Φ̄∗D0δe(t0) + Γ̂U gives a new geometry cost

Cx = ‖Wx(δed(t1)− Φ̄∗D0δe(t0)− Γ̂U)‖ (6)

making the altered problem statement

C∗ = min
U

{Qd‖Wd(Φ̄∗D1 − I)(Φ̄∗D0δe(t0) + Γ̂U)‖+ Qx‖Wx(δed(t1)− Φ̄∗D0δe(t0)− Γ̂U)‖+ Qu‖U‖} (7)

The independence of the starting position, δe(t0), from the desired position, δed(t1), provides the capability
to design trajectories that deploy the spacecraft to some new orbit, while still minimizing drift and fuel use.
This is more consistent with the concept of an initialization, where the start of a new operations phase might
require the relocation of a spacecraft. It is also useful for implementing the optimization as a closed-loop
controller, because in practice, the spacecraft will never exactly achieve the desired position.

Extension to the Multi-Vehicle Case

Previously, formation flight consisted of combining separate solutions to the single spacecraft optimization
in Eq. 1 [4]. While this has the advantage of keeping the problem size small (less decision variables and
constraints), it is unlikely that implementing independent solutions for each spacecraft will result in an
optimal overall plan. For example, sometimes it may be advantageous for one spacecraft to sacrifice individual
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optimality (e.g., one spacecraft uses more fuel so that all of the others can use less). To extend the formulation
to the multi-vehicle case, introduce the formation state δẽ, a desired formation state δẽd, and a formation
plan Ũ as

δẽ =
[

δeT
1 δeT

2 · · · δeT
N

]T

, δẽd =
[

δeT
d1 δeT

d2 · · · δeT
dN

]T

,

Ũ =
[

UT
1 UT

2 · · · UT
N

]T

(8)

where N is the number of spacecraft in the formation, δei is the state of the ith spacecraft in the formation,
δedi is the desired state of the ith spacecraft, and Ui is a vector of control inputs for the ith spacecraft.
Similarly, define the formation-wide propagation matrix from ti to ti+1 as Φ̃i and a formation-wide discrete
convolution matrix Γ̃ as

Φ̃i =


Φ̄∗Di 0 · · · 0

0 Φ̄∗Di 0
...

... 0
. . . 0

0 · · · 0 Φ̄∗Di

 Γ̃ =


Γ̂ 0 · · · 0

0 Γ̂ 0
...

... 0
. . . 0

0 · · · 0 Γ̂

 (9)

Finally, the multi-spacecraft weighting matrices are

W̃d =


Wd 0 · · · 0

0 Wd 0
...

... 0
. . . 0

0 · · · 0 Wd

 W̃x =


Wx 0 · · · 0

0 Wx 0
...

... 0
. . . 0

0 · · · 0 Wx

 (10)

Combining Eqs. 8–9 yields the state of the entire formation at time t1 given the state at t0

δẽ(t1) = Φ̃0δẽ(t0) + Γ̃Ũ (11)

The propagation in Eq. 11 and the formation weighting matrices in Eq. 10 can be combined to form a full
formation initialization optimization based on Eq. 7

C̃∗ = min
Ũ

{Qd‖W̃d(Φ̃1 − I)(Φ̃0δẽ(t0) + Γ̂Ũ)‖+ Qx‖W̃x(δẽd(t1)− Φ̃0δẽ(t0)− Γ̃Ũ)‖+ Qu‖Ũ‖} (12)

Solving Eq. 12 yields the optimal formation-wide initialization cost, C̃∗, and produces a set of optimized
control inputs for each spacecraft in the formation. These control inputs, in turn, specify the trajectories
each spacecraft should follow to achieve the initial conditions. In contrast to the analytic methods for finding
invariant orbits that are available in the literature, this new approach to finding formation ICs can be used
to minimize drift globally across an entire formation of spacecraft.

Relative Position Cost

The primary reason for converting to a formation-wide optimization is to provide coupling between the
spacecraft. An example of coupling is when a mission requires the position of one spacecraft to be controlled
relative to another. Equation 12 only penalizes absolute geometry deviations from a reference orbit; penal-
izing relative geometry requires the trajectories to be optimized jointly. This is because a variation in the
trajectory of one spacecraft will require an adjustment in the trajectory of the other, and vice-versa. This
is available only if the formation-wide optimization is used. Start by defining one spacecraft as the leader,
with a differential state at t0 of δeL(t0). The relative position of the ith spacecraft is then given by

∆δei(t) = δei(t)− δeL(t) (13)

Using Eq. 13 and the single-spacecraft equivalent of Eq. 11 yields the desired relative position at t1

∆δedi(t1) = Φ̄∗D0(δei(t0)− δeL(t0)) + Γ(Ui − Uc) (14)
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where Uc is the control plan of the leader. To penalize the deviation from the desired relative position at t1,
∆δẽd and ∆δẽ(t1) are constructed in the same manner as Eq. 8 and a new term, Cr, is added to the cost
function:

C̃r = Qr‖Wr(∆δẽd(t1)−∆δẽ(t1)‖ (15)

In this cost, Qr is a scalar weight specifying the penalty on relative position error, and Wr is a weighting
matrix specifying the form of this error. The relative geometry can be penalized in a Cartesian sense through
the transformation

Mx = δeosc → x = M−1δeosc (16)

where M(e(t)) is defined in Ref. [9] and rotates

x = [ x y z ẋ ẏ ż ]T (17)

from an LVLH frame to differential osculating elements. Although the form of C̃r is similar to C̃x in Eq. 12,
the matrices in Eq. 9 must be slightly modified to incorporate the new coupling effects. Subtract Φ̄∗Di from
the column of the formation propagation matrix corresponding to the leader, and subtract Γ̂ from that same
column in the discrete convolution matrix for the full formation. Without loss of generality, we will let i = 1
be the leader. The new relative formation matrices, denoted by the subscript r, then become

Φ̃ri
=


0 0 · · · 0

−Φ̄∗Di Φ̄∗Di 0
...

... 0
. . . 0

−Φ̄∗Di · · · 0 Φ̄∗Di

 Γ̃r =


0 0 · · · 0

−Γ̂ Γ̂ 0
...

... 0
. . . 0

−Γ̂ · · · 0 Γ̂

 (18)

The cancellations in the first row results in a row of zeros that automatically discards the position constraint
of the leader relative to itself. In fact, the row can be omitted entirely. The new cost, C̃r, is adjoined to the
global optimization, yielding the final cost function

C̃∗ = min
Ũ
{Qd‖W̃d(Φ̃1 − I)(Φ̃0δẽ(t0) + Γ̂Ũ)‖+ Qx‖W̃x(δẽd(t1)− Φ̃0δẽ(t0)− Γ̃Ũ)‖

+ Qr‖W̃r(∆δẽd(t1)− Φ̃r0δẽ(t0)− Γ̃rŨ)‖+ Qu‖Ũ‖} (19)

III. IMPLEMENTATION

A MATLAB code, called the “planner,” converts the optimization in Eq. 19 to a linear program (LP)
and solves it. The LP is formulated as

minimize cT u
subject to Au ≤ b

(20)

The number of constraints and decision variables scales linearly with N , so the formation-wide IC problem
can grow quickly with the number of spacecraft. The structure of the problem lends itself to the use of
sparse matrices for the matrices in Eq. 19 as well as in the constraint matrix A that results. For a formation
of 7 spacecraft, with a planning horizon of 1 orbit and a discretization of 1000 time steps per orbit, A is
approximately 40, 000× 40, 000. A full matrix representation would require a prohibitive 1.6 billion entries.
Fortunately, the number of nonzero entries is roughly 600,000. Therefore, by switching to sparse matrices,
the required storage space in memory for the constraint matrix alone can be reduced to less than 0.05%
of the full matrix equivalent. Solving LPs of this size requires a solver that can handle sparse constraint
matrices. Two LP solvers were used for solving the optimizations in this paper: linprog, which is part of
the MATLAB Optimization Toolkit, and CLP [10]. The latter has been successfully tested on problems with
up to 1.5 million constraints.

To validate the control sequences generated by the planner, a number of closed-loop simulations were
conducted using a commercial, high fidelity, nonlinear orbit propagator [11]. These simulations included
disturbances due to Earth’s oblateness (J2 and higher order terms), absolute and differential atmospheric
drag, and point mass effects from the sun, moon, and planets. The planning horizon of the planner was
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set to 1 orbit (plus 1 additional orbit of drifting), and replanning occurred after every orbit. New plans
were generated using the current spacecraft locations as the starting positions in the IC optimization. The
duration of the simulations varied as required, and the weighting matrices and desired geometry could vary
from one iteration of the planner to the next. The planner followed a predefined maneuver sequence, and
at each replan step, the planning parameters were set to appropriate values for current maneuver. The
procedure for the simulation is

1. Initialize the simulation by setting the starting locations of the spacecraft.

2. Generate a formation-wide plan for the next orbit.

3. Propagate the orbit by one time step in the simulator.

4. Pass the new states of the satellites from the simulator to MATLAB.

5. Add any control responses to the states. These responses are implemented as impulsive velocity
changes.

6. Repeat steps 3 to 5 for all steps in the plan.

7. At the end of the plan, adjust the planning parameters as dictated by the current state and maneuver.

8. Go to step 2 and continue in this manner until the conclusion of the simulation.

IV. RESULTS

To verify the correct operation of the cost function in Eq. 19, consider a formation of four spacecraft.
Take the reference orbit to be roughly at GEO:

eref (t0) =
[

6.6107 0.005 .01 0 0 0
]T

(21)

where the elements of eref are semimajor axis (normalized by the radius of Earth), eccentricity, inclination
(radians), right ascension of the ascending node (radians), argument of perigee (radians), and mean anomaly
(radians). The initial positions of the spacecraft are:

δe1(t0) =
[

3.13571× 10−5 0 0 0 0 0
]T

δe2(t0) =
[
−1.56785× 10−5 0 0 0 0 0

]T

δe3(t0) =
[
−3.13571× 10−5 0 0 0 0 0

]T

δe4(t0) =
[
−4.70356× 10−5 0 0 0 0 0

]T

(22)

The only elements that differ from the reference orbit are the semimajor axes, so the spacecraft begin
in a straight line along the radial direction in the LVLH frame. The first spacecraft begins at an altitude
200 meters above the reference orbit (eref ), the second spacecraft at an altitude 100 meters below eref , the
third spacecraft 200 meters below eref , and the fourth spacecraft 300 meters below eref . In addition, the
first spacecraft is designated as the leader (δe1 = δeL), and the other three spacecraft as its followers. The
desired geometry is specified as a combination of both the absolute and relative geometry conditions. The
leader’s target location is chosen to lie on the reference orbit (although this is unnecessary):

δed1 =
[

0 0 0 0 0 0
]T

(23)

The followers are given desired LVLH states relative to the leader, using Cr.

∆xd2 =
[

0 −200 0 0 0 0
]T

∆xd3 =
[

0 −400 0 0 0 0
]T

∆xd4 =
[

0 −600 0 0 0 0
]T

(24)
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Table 1: Numerical data from the GEO simulation. Position and Velocity columns are error values.

1st Orbit 2nd Orbit
Pos. (m) Vel. (mm/s) Fuel (mm/s) Pos. (m) Vel. (mm/s) Fuel (mm/s)

Leader 29.8247 0.5488 27.2799 2.3926 0.0836 1.6001
SC2 51.5167 0.8865 18.4177 4.4724 0.0765 1.1501
SC3 73.2449 1.2562 36.8346 6.5525 0.0824 2.3009
SC4 94.8905 1.6270 55.2539 8.6285 0.0989 3.4498

3rd Orbit Drift Orbit
Pos. (m) Vel. (mm/s) Fuel (mm/s) Pos. (m) Vel. (mm/s) Fuel (mm/s)

Leader 0.1205 0.0144 0.0877 0.2648 0.0142 0
SC2 0.2062 0.0537 0.0698 0.4804 0.0539 0
SC3 0.2919 0.1213 0.1395 0.6962 0.1215 0
SC4 0.37706 0.1890 0.2091 0.9105 0.1891 0

Here, ∆xdi has the form in Eq. 17 with positions in meters and velocities in meters per second. Note that
∆δedi (used in Eq. 19) can be recovered by applying the rotation in Eq. 16. The weighting matrices Wx and
Wr are used to select the absolute geometry penalty for the leader, and the relative geometry penalty for
the followers.

The simulation had a duration of four orbits (roughly four days), with a planning horizon of one orbit.
Replanning was executed after every orbit, and the linear optimization never took more than 40 seconds
to solve. Control was allowed at any time during the first three orbits, but the fourth orbit was specified
as a drift orbit, with no control allowed. The reason for this decision was to observe how well the planner
minimized drift. The scalar weights Qu, Qx, Qd, and Qr were chosen to achieve a balance between fuel
use and maintaining the target formation geometry. Drift was penalized even during periods with allowable
control; if it was not, the planner would have little reason to maneuver the spacecraft to semi-invariant
orbits. Instead, it would only try to minimize fuel use and deviation from the desired geometry. With a
planning horizon of one orbit, this might result in short-sighted plans that, while using little fuel initially
and positioning the satellites correctly at the end of the orbit, require more fuel on subsequent orbits to
correct drift tendencies.

Data on the performance of the planner is tabulated in Table 1. The error values in the table are
taken from the actual positions and velocities of the spacecraft during the simulation. Because the velocity
error and fuel expenditure were much smaller than the position error, they are expressed in millimeters per
second. Figure 1(a) shows the leader’s separation from its desired position. It begins 200 meters away from
the reference orbit, but moves 170 meters closer during the first orbit. Over the next two orbits, the actual
position converges to within 12 centimeters of the desired position. The complete trajectory is shown in
the absolute LVLH frame in Figure 1(b). Figure 2 shows the positions of the three followers relative to the
leader in the LVLH frame. Because the cross-track direction is out of the plane of the maneuver, and the
orbit is nearly circular, the fluctuations in Figure 2(c) are small. After one orbit, the position errors are large
(between 50 and 90 meters), but they converge on the second and third orbits to within 50 centimeters. As
expected, the formation uses the most fuel during the first orbit, when the in-track formation was initializing.
Fuel use declines over time as the new formation stabilizes (see Figure 3). By the start of the drift orbit,
each spacecraft in the formation is established on a stable, semi-invariant orbit, and the desired positions are
maintained absent any control. The position and velocity errors increase only slightly over that duration.
The ability to maintain the relative geometry without using thrust is advantageous because thruster activity
is often discouraged for missions that perform science.

The success of the maneuver is best illustrated in the LVLH frame of Figure 2(d). The frame is centered
on the leader, and the relative trajectories of the followers are shown. The switch from the initial radial
alignment to the final in-track formation is visible from this perspective.
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(a) (b)

Fig.1: The LVLH separation from the leader to the desired orbit for the GEO case.

(a) (b)

(c) (d)

Fig. 2: The relative positions of the followers with respect to the leader for the GEO case. Figure 2(d)
shows the trajectories of the spacecraft in the relative LVLH frame during the control phase. A � represents
a location at t0, and a � represents a location at the start of the drift orbit.

7 of 12

20th International Symposium on Space Flight Dynamics



(a) (b)

Fig.3: Fuel use of the formation for the GEO case. A I indicates a replanning point.

Control of a Formation in an Elliptical Orbit

A more difficult task is to control a formation in an elliptical orbit. One orbit of this type is

eref (t0) =
[

4.69549 0.471 1.10497 4.24115 3.7350 0
]T

(25)

To directly compare and contrast the type of trajectories planned for a circular orbit and for an elliptical
orbit, the initial and desired conditions for the elliptical simulation were set to the same values as in Eqs. 22–
24. Because the elliptical orbit was expected to be harder to control, the simulation was extended to eight
orbits to ensure steady-state performance was reached. The time to solve the optimizations varied between
40 and 250 seconds. With an orbit period of approximately 50,000 seconds and a step size of 50 seconds,
the planner is active for at most 5 time steps per orbit. In a practical application, this would be addressed
by disallowing control inputs for the first part of the orbit.

The general trends of fuel use and convergence to the desired geometry were the same for both the GEO
and elliptical cases, as shown by Figures 5 and 6. However, Table 2 indicates that the actual magnitudes
for fuel use and error are larger for the elliptical orbit. After the first four orbits, all spacecraft in the
formation were regulated to within 1.5 meters of their desired positions. With target formation separations
of 200 meters, this represents about 1% error. The error arises from two main sources. First, there is
some inaccuracy that results from using linearized dynamics in the planner to control a nonlinear system.
The ability to solve linear optimizations quickly (necessary for real time control) is an acceptable tradeoff.
Second, the planner is not forced to drive the geometry error completely to zero because it is also trying to
minimize drift and fuel use. If more accuracy is required, a smaller time step with more frequent replanning
could be used. Slight improvements might also be possible by varying the weights on the individual elements
of the cost function.

Once the formation is established, the fuel required to maintain it is only a few millimeters per second per
orbit (see Figure 4). A characteristic that differentiates the elliptical trajectories from the GEO trajectories
are the oscillations in Figure 6(b). The oscillations have a period of 1 orbit, and the peaks occur at the end
of every plan. The relative separations at these peaks is as desired. The oscillations are not present in the
radial and cross-track directions; this is characteristic of an eccentric orbit, where the in-track velocity varies
with the true anomaly. The scenarios considered in this paper only constrain the geometry at the end of
each planning period (corresponding to the start of the next orbit). The oscillations in the in-track direction
could be suppressed by applying geometry constraints at regular intervals during each of the plans, or by
using error-boxes, like those discussed in Ref. [6].

Further Uses for the Controller

Although the two examples already presented demonstrate the basic functionality of the formation-wide
planner, they do not exhaust its possibilities. The initial condition optimization can be solved for formations
larger than four spacecraft; an example of a seven spacecraft simulation is shown in Figure 7, and solutions
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Table 2: Numerical data from the elliptical simulation. Position and Velocity columns are error values.

1st Orbit 2nd Orbit
Pos. (m) Vel. (mm/s) Fuel (mm/s) Pos. (m) Vel. (mm/s) Fuel (mm/s)

Leader 128.3244 15.6734 58.5065 18.2688 2.6505 6.0559
SC2 299.7792 36.3731 75.2726 50.4123 7.4583 9.0463
SC3 471.2018 57.0688 150.5417 82.5095 12.2580 18.0848
SC4 642.6396 77.7658 225.8022 114.6381 17.0617 27.1397

3rd Orbit 4th Orbit
Pos. (m) Vel. (mm/s) Fuel (mm/s) Pos. (m) Vel. (mm/s) Fuel (mm/s)

Leader 2.3007 0.3307 0.9258 1.4944 0.1718 0.724627
SC2 4.7470 0.7804 1.1612 2.2762 0.4906 0.454604
SC3 6.9262 1.2724 2.2395 2.0818 0.9388 0.480238
SC4 8.8307 1.7649 3.2489 1.3908 1.4090 0.377241

(a)

(b)

Fig.4: Fuel use of the formation for the elliptical case. A I indicates a replanning point.
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(a) (b)

Fig.5: The LVLH separation from the leader to the desired orbit for the elliptical case.

(a) (b)

(c) (d)

Fig. 6: The relative positions of the followers with respect to the leader for the elliptical case. Figure 6(d)
shows the trajectories of the spacecraft in the relative LVLH frame for the first four orbits (corresponding
to Table 2). A � represents a location at t0, and a � represents a location at the end of the fourth orbit.
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to problems with as many as 9 spacecraft have been obtained. As the formations grow, so does the solving
time. Likewise, as more coupling is introduced between the spacecraft, through relative geometry constraints
or otherwise, the computational difficulty increases. Eventually, the planner requires too large a fraction
of the planning period to implement real-time control. This problem was not encountered for any of the
simulations presented in this paper. Another possible application of the formation-wide planner is to design
plans that evenly distribute fuel use across the formation. This would help prevent a formation’s mission
from ending prematurely due to uneven fuel use.

(a)

(b)

Fig.7: An example reconfiguration maneuver for a seven spacecraft formation. The trajectory shown in 7(a)
is taken from part of a simulation that tested several different relative geometry constraints. The depicted
maneuver occurred between day 14 and 15, where the fuel use in 7(b) increases noticeably as the spacecraft
are repositioned. Breaks in the horizontal line above the graph indicate drift periods.

11 of 12

20th International Symposium on Space Flight Dynamics



V. CONCLUSIONS

This paper extended the linear optimization techniques that had been previously used for single spacecraft
to multi-spacecraft formations. This new algorithm enables the selection of the spacecraft initial conditions
(ICs) that minimize the global fuel use and drift, while considering fleet-wide performance objectives and
configuration constraints. The IC optimization was also used to perform closed-loop control for the fleet,
as demonstrated in a series of fully nonlinear simulations. In these simulations, the controller regulated
a four spacecraft formation to within 1% of the desired vehicle separations, both in circular and elliptical
orbits. Once established, these formations only required 1–3 mm/s of ∆V per orbit, even in the presence of
significant disturbances.
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