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    ABSTRACT 

The term Weak Stability Boundary (WSB) is related to a region of stable motion around the second 
primary of a circular restricted three-body problem (CR3BP). Previous work on this subject has shown 
that, at a given energy level, the boundaries of such region are provided by the stable manifolds of  
central objects of the L1 and L2 libration points, i.e., the two planar Lyapunov orbits (PLOs). This 
offers a natural dynamical channel between the Earth's vicinity and the Sun-Earth libration points L1 
and L2. Furthermore, it has been shown (and successfully employed to design low-energy spacecraft 
lunar transfers) that the Sun-Earth L2 central unstable manifolds can be linked, through an heteroclinic 
connection, to the central stable manifolds of the L2 point in the Earth-Moon three-body problem. The 
aim of the present study is to clarify the relationship between the low-energy Earth-to-Moon transfers 
(LETs) and the dynamics of the phase space points that populate the WSB region around the Earth. The 
present work develops through an extensive and systematic exploration of the trajectories connecting 
planar Lyapunov orbits corresponding to all the possible combinations of two libration points in the 
Sun-Earth and Earth-Moon CR3BPs, kinematically coupled. The results of such exploration give us a 
deeper and more complete understanding of the dynamics and properties of such connections and 
constitute the basis for the next stage of the investigation, that is the study of the structure of the WSB 
around the Earth, its dynamical relationship first with the Sun-Earth libration points L1 and L2 and then 
with the Earth-Moon ones, in the bicircular four-body model. This investigation is part of a research 
work that will be the subject of a subsequent, more extended publication.     

KEYWORDS – three-body problem, four-body problem, libration points, periodic orbits, invariant 
manifolds, numerical integration. 

    1. INTRODUCTION 

The LETs consist in connecting trajectories belonging to the invariant manifolds of the central objects 
around the collinear libration points L1 and L2 of the Sun-Earth and Earth-Moon CR3BPs in such a way 
as to almost naturally reach the Moon’s vicinity from a low-Earth orbit. The mechanism that explains 
the LETs was first presented in [5]. Fig. 1 illustrates the idea for the planar case in the Sun-Earth 
barycentric synodical reference frame: a branch of a stable manifold of a planar Lyapunov orbit around 
LSE

2 (i.e., the Sun-Earth L2 point)  drives the spacecraft away from the Earth, then the unstable manifold 



of the same PLO redirects it to a region where also the stable manifold of a PLO of the LEM
2 (i.e., the 

Earth-Moon L2 point) point flows. There, the intersection in configuration space (trough a conveniently 
set Poincaré section) is sought. The difference in velocity between the two intersecting trajectories 
(which may be equal to zero if there is a heteroclinic connection) constitutes the cost of the transfer. 
The dynamical characteristics of the two CR3BPs and their kinematical relationship are such that low-
cost (and even zero cost) connections of the type LEM

2 -LSE
2 can easily be found. 

 

 

Fig. 1. A low-energy transfer from the Earth to the Moon through the L2 Lagrange points of the SE and 
EM systems as seen in the SE synodical barycentric reference frame (a) and its construction based on 
patching invariant manifolds of the SE and EM CR3BPs (b) ([5]). 

The concept of WSB was first introduced by [6] in connection with the rescue of the lunar spacecraft 
Hiten. As shown by [5], the rescue was possible due to the combined gravitational influences of the 
Earth, the Moon, and the Sun. Although the WSB region has not an analytic definition, there is an 
algorithmic one (see [1] and [4]) which distinguishes between stable and unstable points according to 
the dynamical evolution of initial two-body orbits around the second primary when the first primary is 
introduced: its gravitational influence may be such that the third body cannot complete one (or more) 
full revolution around the second primary without changing the sign of its total mechanical two-body 
energy or without first performing a full revolution around the first primary. When this is the case, the 
given initial condition is said to be unstable. More on the WSB regions in the Sun-Earth-Moon system 
can be found in [3] and [8], also in connection with the design of Earth-to-Moon trajectories. 

The aim of the present study is to unify the concepts of LET and WSB, or equivalently to show that the 
WSB points that reach the Moon’s vicinity are driven by the stable and unstable invariant manifolds of 
the two CR3BPs and are responsible for performing the heteroclinic connections between libration 
point orbits that constitute the framework of the low-energy transfers from the Earth to the Moon.   

The present study starts with the study of all the LEM
i -LSE

j (i,j=1,2) connections between the Earth-
Moon and the Sun-Earth systems: it consists in a full, systematic exploration of such transfers in the 
framework of a two-coupled CR3BPs, aiming at identifying the conditions under which zero-cost and 
low-cost connections are possible (Section 2). As a whole, these explorations form what we call the 
LSE

i-LEM
j connections. This will be followed by the characterization of the WSB regions of the Earth 

and the Moon in the framework of the CR3BP and their relationship with the invariant manifolds of the 



PLOs around L1 and L2 will be outlined (Section 3). Section 4 connects the two issues by following the 
motion of the unstable points of the Earth’s WSB at a given energy level through capture at LSE

1 or 
LSE

2 and until the Moon and its libration points are approached. This is accomplished from within the 
Bicircular Four-Body Problem (B4BP), in which the gravitational influence of all three primaries (i.e., 
Sun, Earth and Moon) is simultaneously taken into account. Section 5 concludes and illustrates the 
current stage and future developments of the present work.  

    2. LSE
i-LEM

j CONNECTIONS 

Following [5], the connections are computed in the framework of the coupled CR3BP in which the 
Sun-Earth (SE) and the Earth-Moon (EM) three-body problems are kinematically linked in inertial 
space through their orbital initial phases αSE

0  and αEM
0, respectively. Two are the critical parameters, 

i.e., the choice of the Poincaré section (PS) and the value of the initial (t=0) relative orbital phase α0 = 
αEM

0 - αSE
0 between the two CR3BPs. The PSs adopted in this study are two-dimensional planes of the 

type x = xp, where xp is an appropriately chosen value of the x coordinate in the SE CRTBP frame of 
reference, and the two dimensions of the plane are along y and yv . All computations concerning 

quantities pertaining to the SE problem are made in such reference frame, whereas those pertaining to 
the EM problem are carried out in the EM CR3BP frame of reference and then transformed into the 
other. The intersections of the manifolds with the given PS are approximated numerically by means of 
some iterative procedure like the bisection or Newton methods. As a result, each manifold generates 
one (closed) curve on the PS. If the two curves intersect (and under normal conditions this occurs in 
two points) a connection in configuration space (xy) is said to exist between the two given LPOs, i.e., it 
is possible to compute two pairs of trajectories that perform the connection through the two given 
intersection points. In velocity space, the vy components of the connecting trajectories are equal by 
construction, whereas in general SEEM v v xx ≠ . Their difference defines the cost vΔ of the given 

connection. Note that EM
xv and SE

xv are computed in the frame of reference of each CR3BP from the 
remaining components of the corresponding state vector, from the value of the Jacobi constant J and 
exploiting the definition of the latter, i.e.: 
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µ is the mass ratio of the given RTBP (SE or EM), r1 and r2 are the distances of the third body from the 
first and the second primary, respectively. Of the two VΔ ’s found, the lower is selected.    

    2.1 Simulations 

Starting from a database of initial conditions for 70 planar Lyapunov orbits in the SE CR3BP and 70 
planar Lyapunov orbits in the EM CR3BP around each of the two collinear Lagrange points L1 and L2, 
all the possible pairs of such orbits, one for each system, have been formed and the invariant manifold 
transfers of the kind described above have been sought for each such combination. The range of energy 
levels covered (expressed in terms Jacobi constant values) is [3.10, 3.20] for the Earth-Moon system 
and [3.00058,3.00090] for the Sun-Earth system. 72 values of the initial relative orbital phase α0 (i.e., 



oo 3600 0 ≤≤ α at steps o50 =Δα ) between the two CR3BP problems have been considered. Six PS 
positions have been considered at x = xp (p=1,6)  on the x-axis of the SE CR3BP frame of reference, 

 

(a)                                                                             (b) 

 

                                    (c)                                                                               (d) 

Fig. 2. Example of a low-cost connection of the type LSE
2 - LEM

2: view of the LPOs, their manifolds 
and the connecting trajectory in configuration space (SE synodical barycentric coordinates) (a), the 
intersection on the Poincaré section (b), the intersections on the PS when the initial relative orbital 
phase between the two systems is made to vary (c), the intersections on the PS when the x-coordinate  
of the PS is made to vary (d). 

placed between the Earth and the given SE PLO.  The numerical integration has been performed with a 
Runge-Kutta 7-8 method. The time required to accomplish a full transfer from a given SE PLO to a 
given EM PLO has been approximated with the difference between the time of flight on each trajectory 
and the time required to wind off/on the corresponding periodic orbit (until a distance to the orbit equal 
to 10-3 dimensionless units is reached).  

Here below we present examples of individual connections for each LSE
i-LEM

j combination and global 
results for each type. Figs. 2, 3, 4 and 5 illustrate cases of low- or zero-cost connections: in particular, 



the connection in the SE RTBP reference frame with the PLOs and their manifolds, the Jacobi constant 
values in the two problems, the time of flight and initial relative orbital phase are given. Then the view 
of the intersection of the two manifolds on the PS is provided. Figs. 6, 7, 8 and 9 are colour maps 
(respectively in 3D on the left and 2D on the right) of the cost required to transfer between specified 
energy levels (indicated respectively on the x- and y-axes of the plots for the SE and EM systems). The 
darkest areas represent the lowest-cost connections. 

 

(a)                                                                                 (b) 

 

(c)                                                                                    (d)          

Fig. 3. Example of a low-cost connection of the type LSE
1 - LEM

2: view of the LPOs, their manifolds 
and the connecting trajectory in configuration space (SE synodical barycentric coordinates) (a), the 
intersection on the Poincaré section (b), the intersections on the PS when the initial relative orbital 
phase between the two systems is made to vary (c), the intersections on the PS when the x-coordinate  
of the PS is made to vary (d). 



     

Fig. 4. Example of a connection of the type LSE
1 - LEM

1: view of the LPOs, their manifolds and the 
connecting trajectory in configuration space (SE synodical barycentric coordinates) (left) and the 
intersection on the Poincaré section (right). 

      

Fig. 5. Example of a connection of the type LSE
2 - LEM

1: view of the LPOs, their manifolds and the 
connecting trajectory in configuration space (SE synodical barycentric coordinates) (left) and the 
intersection on the Poincaré section (right). 

 
Inspection of Figs. 6 and 7 shows that the combinations LSE

2 - LEM
2 and LSE

1 - LEM
2 provide 

heteroclinic connections (i.e, zero-cost transfers) over a large range of energy values. In the remaining 
two cases, i.e., LSE

2 - LEM
1 and LSE

1 - LEM
1 (Figs. 8 and 9) this is no longer true. To obtain a connection 

between the manifolds of those Lyapunov orbits, a minimum ΔV at the Poincaré section of at least 250 
m/s is required. Our investigations suggest that the reason for this resides in the much higher velocities 
that characterize the Earth-Moon invariant manifolds associated to periodic orbits around the libration 
point LEM

1 after transformation into the Sun-Earth barycentric synodical reference frame, with respect 
to the values found for the invariant manifolds associated to LEM

2 : the latter, not only intersect the Sun-
Earth invariant manifolds in configuration coordinates, but also in velocity space, thus producing a 
wide number of  heteroclinic connections. 
 



 
Fig. 6.  3D (left) and 2D (right) color maps of minimum VΔ  for connections of type LSE

2 - LEM
2 as a 

function of the Jacobi constant of the two systems. 

  

Fig. 7. 3D (left) and 2D (right) color maps of minimum VΔ for connections of type LSE
1 - LEM

2 as a 
function of the Jacobi constant of the two systems. 

   

Fig. 8. 3D (left) and 2D (right) color maps of minimum VΔ  for connections of type LSE
2 - LEM

1 as a 
function of the Jacobi constant of the two systems. 



  

Fig. 9. 3D (left) and 2D (right) color maps of minimum VΔ  for connections of type LSE
1 - LEM

1 as a 
function of the Jacobi constant of the two systems. 

    3. WSB REGIONS AROUND THE EARTH AND THE MOON 

    3.1 Osculating Keplerian orbits around the second primary 

Let us consider a CR3BP composed by two primaries P1 and P2 of masses m1 and m2, respectively. 
Consider initial conditions corresponding to osculating Keplerian orbits around P2 at t=0 in a sidereal 
(i.e., inertial) reference frame centered on P2 and such that the lines of absides l(θ) of such ellipses form 
angles θ with the positive x-axis of the synodical barycentric frame of reference. Be r2 the pericenter 
distance, assumed to be the starting point of the motion.  If a, e and Ek respectively denote the semi-
major axis, the eccentricity and the total mechanical energy of such an osculating ellipse, then well-
known two-body formulas state that 

                                                           e) = a (1 - r2                                                                                  (2) 

                                                          
a

Ek 2
μ

−=                                                                                       (3) 

Under such circumstances, the initial sidereal velocity v, which is perpendicular to the position at the 
pericenter r2, can have two opposite directions, thus producing either osculating retrograde orbits (in 
the following indicated as endowed with positive velocity), or osculating direct orbits (with negative 
velocity). Introducing the first primary, and transforming (rotation of angle θ and shift of origin from 
the second primary to the barycentre of the system) the given motion in the synodical barycentric 
reference frame of the resulting CR3BP, provides the following set of initial conditions: 
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for positive velocity, and 
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for negative velocity. 

The expressions of the Jacobi constant J for the two cases are obtained by introducing Eqs. 4 and 5 into 
the definition 
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Recalling that v depends on pericenter distance and eccentricity, i.e., 
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one obtains:  
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where + or - precede the last term for positive and negative initial sidereal velocity, respectively. Note 
that ±J  is a function of e, r2 and θ. In particular, when ±J  is fixed and e and θ are given, Eq. (8) must  
be solved numerically for r2. In the present study, the bisection method has been adopted in order to 
approximate the smallest (i.e., closest to the primary) positive real root. Note, however, that when put 
in polynomial form, Eq. 8 becomes a twelfth-degree equation in r2 and all the roots of the associated 
polynomial can be numerically obtained via the method of Laguerre ([7]). 

    3.2 Stable and unstable motions 

According to the algorithmic definition given in [1], the motion of the third body P3 around P2 is said to 
be stable if, after leaving l(θ), P3 makes one full revolution about P2 without having first revolved 
around P1, and its orbit has negative Keplerian energy relative to P2 on return at l(θ). Whenever such 
condition is violated, the corresponding initial condition is said to be unstable. This includes 
trajectories which collide with either primary. In this study the stability criterion has also been applied 
with more than one revolution and even non integer numbers nR of revolutions around P2. nR can be 
viewed as a parameter of the problem and its values determine the instantaneous border of the stable 
region (i.e., the set of points in phase space of the CR3BP which represent initial conditions that satisfy 
the stability definition). In other words, the border of the stable region evolves with time, or better with 
nR.  

The analysis of the structure of a WSB region and the study of the dynamics of its points can be carried 
out in two alternative ways: 

• Mode 1: fixing ee =  and varying J: a grid of points is set up in phase space by varying the 
distance r2 from P2, and the angle θ within a two-dimensional grid; from each (r2, θ) pair and 
for a given choice of the direction of the initial velocity vector in sidereal coordinates (v>0 or 



v<0) the remaining relevant quantities are computed: the J of the trajectory (Eq. 8) and its initial 
conditions (Eqs. 4 or 5) in the CR3BP frame of reference. 

• Mode 2: fixing JJ =  and varying e: a grid of points is set up in phase space by varying the 
eccentricity e and the angle θ within a two-dimensional grid; from each (e, θ) pair and for a 
given choice of the direction of the initial velocity vector in sidereal coordinates (v>0 or v<0), 
the remaining relevant quantities are computed: the distance r2 from the second primary 
(solution of Eq. 8) and the initial conditions (Eqs. 4 or 5) in the CR3BP frame of reference. 
Note that the solution of Eq. 8 in r2 may not exist in the interval between the minimum allowed 
distance r2min from the second primary (i.e., typically its surface radius) and the maximum r2max 
set by the size of the problem (typically r2max << 1). In this investigation, the search has been 
limited to the smallest real solution of Eq. 8, found by bisection.   

 

    3.3 The Sun-Earth and the Earth-Moon systems 

Results concerning mode 1 can be found in [4] and [8] for the Earth-Moon CR3BP and will not be 
presented again here. We shall rather deal with simulations of mode 2 because these allow to 
investigate trajectories that correspond to fixed values of the Jacobi constant in the two systems, as in 
the low-energy transfers. 

Mode 2 simulations have been performed according to the parameters defined in Table 1. The unstable 
points of the WSB regions around the Earth have been computed up to nR = 1.5 revolutions around the 
second primary and the stability/instability criterion has been applied every 0.5 revolutions (ΔnR =0.5). 
Table 2 gives, for each of the two directions of the initial sidereal velocity, the number nU (in %) of 
unstable points as nR increases, and the final number nS of stable points left over at nR = 1.5. In the 
following, we shall consider the border of the weak stability boundary region between nR =1.0 and nR 
=1.5 and the corresponding stable and unstable points (column 4 and 5 of Table 2). Fig. 10 shows the 
location of the unstable points in configuration space in the interval between 1.0 and 1.5 revolutions 
around the Earth. 

Table 1. Grid of initial conditions for mode 2 ( JJ = ) for the SE CR3BP with SEJ = 3.000583. When 
not specified, units are meant as CR3BP normalized. The initial set of (θ,e) pairs (line three) produces, 
when the solution of the fifth-order equation in r2 falls in the range [r2min, r2max], a set of points (last 
line) that constitute the fundamental database of initial conditions for WSB computations. 

 
 SE, v>0 SE, v<0 
θ [0o, 360o[ [0o, 360o[ 
Δθ 1o 1o 
 E [0.0, 1.0[ [0.0, 1.0[ 
Δe 0.005 0.005 
No. of pairs 72000 72000 
[r2min, r2max] [5 ·10−5, 0.8] [5 ·10−5, 0.8] 
No. of points 49768  71830 

 



Table 2. Percentage of unstable points (nU) for increasing number of revolutions around the second 
primary (columns 2 to 4), percentage of points which are still stable (nS) after nR = 1.5 revolutions, total 
initial number of points (nT). Each row corresponds to a specific simulation type, i.e., each of the two 
opposite directions of the initial sidereal velocity, for constant J=  SEJ  = 3.00583. 
 

Sim. type nU (%) nS (%) nT 
 0 ≤ nR ≤ 0.5 0.5 ≤ nR ≤ 1.0 1.0 ≤ nR ≤ 1.5 nR = 1.5  
SE, v>0 54.0 36.0 9.0 1.0 49768 
SE, v<0 0.2 6.0 4.7 89.1 71830 

 

 

Fig. 10. Points which become unstable between 1.0 and 1.5 revolutions around P2 for SEJ = 3.000583 
and for the two opposite signs of the initial sidereal velocity vector: x- and y-coordinates of the position 
in the synodical frame of reference with origin at P2 (i.e., the Earth). 
 
    3.3 Earth WSB: capture around L1 and L2 

The unstable points can be subdivided according to the resulting motion. To this purpose, and with the 
final aim of studying the points which get close to the collinear libration points L1 and L2, a capture 
criterion has been defined. It identifies the unstable points that approach L1 or L2 and stay in their 
vicinity for an appreciable time. The criterion here adopted consists in defining for each Li (i=1,2) two 
circles (of radii rB1i and rB2i, i=1,2) centered on the second primary and three straight lines orthogonal 
to the x-axis (at x coordinates xai, xbi, and xci, respectively), and two time parameters, namely tmax and τ: 
the former is the maximum allowed time interval for a capture to begin, the latter is the minimum 
capture duration. The capture region is the area enclosed by the two circles and the straight line through 
xa and xb. The capture criterion rejects all trajectories which for max0 tt ≤≤  do any of the following: 

• enter and exit the region enclosed by the two circles, coming from P2; 
• cross the x=xci line in the direction of increasing distance from P2;      
• exit the larger of the two circles; 
• collide with one of the primaries. 



On the contrary, points which spend a time τ≥Δt inside the capture region and start such stay at 

max0 tt ≤≤ , are said to be captured in the vicinity of the given Li. Fig.11 defines the capture geometry 
in the SE system. The capture criterion also discriminates among points which enter one or both 
capture regions without performing capture and identifies which region is visited first. In brief, seven 
types of unstable points can be distinguished: rejected points, captured points around L1, captured 
points around L2, points visiting the capture region ar ound L1 only, points visiting the capture region 
of L2 only, points visiting first the region around L1 and then the region around L2, points visiting first 
the region around L2 and then the region around L1. Fig. 12 shows some trajectories that get 
temporarily captured around L1 and L2.  

   

Fig. 11. Geometry of the capture regions around L1 and L2 for the Sun-Earth (left) and the Earth-Moon 
(right) systems. Also shown are the two planar Lyapunov orbits of the given energy. 
 

 

Fig. 12. Some trajectories belonging to the unstable subset of points of the WSB region around the 
Earth that get captured around LSE

1 (left) and LSE
2 (right), according to the criterion defined in the text. 

Also shown are the corresponding planar Lyapunov orbits and their stable manifolds. 

With the aim of relating the invariant manifolds with the set of unstable points, Fig. 13 shows the 
points of the stable and unstable manifolds of  LSE

1 and LSE
2 which satisfy the orthogonality condition 



between the position vector and the velocity vector relative to the second primary (the Earth), in the 
and the points belonging to the WSB region of the Earth that become unstable between 1.0 and 1.5 
revolutions around the Earth. The agreement between the two sets of points is good, thus suggesting 
that a dynamical relationship between them does exist.

  

 

Fig. 13. Sun-Earth system: points (blue crosses) of the stable and unstable manifolds of the Lyapunov 

orbits around LSE
1 and LSE

2 with JSE=3.000583 which satisfy the orthogonality condition and WSB 

points (red dots) that become unstable after 1.0 and before 1.5 revolutions around the Earth and have 
the same energy level as the manifolds. The left plot shows the complete picture, whereas the right plot 

is an enlarged view of the region around the Earth. 

 

    4. WSB TRAJECTORIES IN THE BICIRCULAR FOUR-BODY PROBLEM 

The initial conditions corresponding to unstable points of the SE CR3BP with J = SEJ = 3.000583  and  
1.0 ≤ nR ≤ 1.5 that perform capture around LSE

1 or LSE
2 are integrated in the B4BP. Here, a second 

capture criterion is applied to check for subsequent capture around LEM
1 or LEM

2 (geometrically 
defined), with the aim at connecting the libration points of the two systems. This “second” capture at 
LEM

j is said to occur when the third body stays more than 0.5 days in the region enclosed by two circles 
centered on the Moon and the circle centered on the corresponding libration point and radius equal to 
its distance from the Moon (See Fig. 11 b).  



 

Fig. 14. Examples of trajectories that depart from the vicinity of the Earth, get captured around LSE
1 or 

LSE
2 and finally transit through the region of capture around LEM

1 (left) or LEM
2 (right). The red circles 

indicate the beginning of the capture, the blue asterisks the end of the numerical integration.  

Our current simulations show that several trajectories which are initially captured around LSE
1 or LSE

2 
pass through the second capture regions around LEM

1 or LEM
2 (Fig. 14), satisfying the capture criterion, 

but none of them gets into orbit around the Moon nor seems to be driven by stable manifolds associated 
to LEM

1 or LEM
2. This may be due to the need for varying the fundamental parameter linking the two 

systems, i.e., the initial relative orbital phase: the computation to which Fig. 13 refers has been made by 
assuming α0 = 0. 

    5. CONCLUSIONS 

In this paper we have investigated the connection between the unstable points of the WSB regions with 
the low-energy transfers from the Earth to the Moon. The first part of the study consisted in an 
exploration of all the possible low-energy LSE

i-LEM
j connections between the Sun-Earth and the Earth-

Moon CR3BPs. Such study is in course of refinement by considering the same transfers in the B4BP: a 
database containing the dynamical substitutes of the Lyapunov orbits and their invariant manifolds 
have been prepared and the exploration of the connections is being carried out.  

The investigation concerning the relationship between the WSB regions of the Earth and the Moon 
needs to be refined as far as the variation of the initial relative orbital phase between the Sun-Earth and 
the Earth-Moon systems is concerned. Besides, more simulations with different values of the Jacobi 
constant in the Sun-Earth CR3BP will help verifying the hypothesis that the low-energy transfers from 
the Earth to the Moon are made by the points that leave the WSB region of the Earth and that perform 
the sequence of the two captures. 

The computations performed in the CR3BP are based on the use of a Runge-Kutta 7-8 numerical 
integrator and the equations of motion are regularized in the vicinity of the primaries by means of the 
Levi-Civita method (see [9] and [2]). The simulations in the B4BP use a Taylor numerical integrator, 
instead, which is known to be more accurate when close approaches occur. Nevertheless, regularization 
will need to be implemented and this will be done either by considering some global regularization 



method or a strategy involving the Levi-Civita method and the reduction from four to three bodies 
during close encounters.  
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