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Abstract: The study presented in this paper deals with Geostationary Transfer Orbits (GTO) for 
which new French regulations (defined in the context of the French Space Act) will fully apply at 
the end of 2011. Geostationary Transfer Orbits are characterized by a low perigee (altitude of a 
few hundreds of kilometres) and a high apogee (altitude typically identical to that of geostationary 
satellites) among other features. The objective of the study is to analyze the dynamics of objects in 
geostationary transfer orbits in order to better understand what the lifetime (time during which the 
object remains in orbit) most depends on. Because of the high eccentricity, the orbit is strongly 
affected by the gravitational effects of the Sun and Moon. But because the perigee is low, drag has a 
strong impact too. The coupling of the two perturbations combined with the effects of the Earth 
potential (secular drifts mainly) makes the orbit’s evolution particularly sensitive to initial 
conditions and modelling errors. One key element is the initial position of the Sun (and to a lesser 
extent the Moon) which changes the mean altitude of the perigee, which translates into more or less 
drag, hence more or less decrease rate of the semi-major axis at the beginning of the lifetime. But 
when the semi-major axis reaches a value of around 15000km, the perigee altitude may increase or 
decrease strongly because the angle between the Sun and the line of apsides is then nearly constant. 
The paper attempts to explain all these aspects and discusses the possibility of limiting the lifetime 
of objects in Geostationary Transfer Orbits.   
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1 Introduction 

The amount of debris in orbit is a growing threat to operational satellites, as seen by the increasing 
number of avoidance manoeuvres performed each year. There is therefore a need for measures that 
will prevent this situation from becoming even worse. France has decided to take on an active role 
by implementing regulations (French Space Act), in line with IADC recommendations, in order to 
protect the most populated orbital regions (LEO, GEO...). 
The study presented in this paper deals with Geostationary Transfer Orbits (GTO) for which French 
regulations will fully apply at the end of 2011. Geostationary Transfer Orbits are mainly 
characterized by a low perigee (altitude of a few hundreds of kilometres), a high apogee (altitude 
typically identical to that of geostationary satellites), and a low inclination.  
At the end of their mission, objects in Geostationary Transfer Orbits will neither be allowed to cross 
the GEO region within one year nor to stay in orbit longer than 25 years if they cross the LEO 
region. No one will wait for that long to confirm that the actual lifetime has been less than 25 years. 
An reliable enough orbit prediction is of course necessary. 
It had been noticed in previous studies conducted at CNES that the selection of potentially 
hazardous objects in elliptical orbits (for instance objects that may pose a risk to populations) was 
not obvious and that no simple rule seemed to exist to easily select the objects that would re-enter in 
the coming months or years.  
Other analyses also conducted at CNES on GTO lifetime [1] have illustrated the complexity of the 
problem. Figure 1 shows the lifetime computed using DAS (Debris Assessment Software) as a 
function of day of year (x-axis) and time of day (y-axis). The red areas correspond to durations 
longer than 25 years, and the blue areas to durations shorter than 25 years.  



 
 

Figure 1: Lifetime results obtained with DAS  

 
The objective of the study is therefore to analyze the dynamics of geostationary transfer orbits. The 
main goal is to better understand what GTO lifetime most depends on, and how it is sensitive to 
various factors.   
 
In the first part of the paper, the main hypotheses of the study will be presented (model considered, 
initial orbital elements…). 
The second part will be devoted to the effects of the main perturbations.  
Finally we’ll show a few lifetime results, analyse their sensitivity and their predictability, and 
discuss the possibility of reducing the lifetime of objects in Geostationary Transfer Orbits.  
 

1 Hypotheses 

In this part we’ll give the main hypotheses used in the study, and detail a few elements regarding the 
perturbations and models used.  
As the objective of the study is more focussed on sensitivity than prediction accuracy, the model has 
been chosen as simple as possible.  
 
1.1 Orbit considered  

The orbit is described by its Keplerian orbital elements. Unless otherwise mentioned, the initial 
parameters considered are the following:  
Perigee altitude = 200 km (sometimes 250 km) 
Apogee altitude = 36000 km 
Inclination = 7 degrees 
Argument of perigee = 180 degrees 
 
1.2 Dynamics and perturbations 

1.2.1 Third body perturbation and models used 
The averaged effects (over one orbit) of the 3rd body perturbation can be approximated by the 
following equations (see [2]) :  

Credit:  Carine Leveau, CNES [I] 
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With:  
- a: semi-major axis, e: eccentricity, i: inclination, ω: argument of perigee, Ω: RAAN, M: mean 
anomaly 
- X,Y,Z: components of the unit vector directed from the centre of the Earth to the celestial body, in 
the (P,Q,W) frame, where: P=direction from the centre of the Earth to the perigee, Q=W^P, 
W=orbit angular momentum.  
- d: distance between the centre of the Earth and the body. 
- µ : gravitational constant of the body.  
- n: orbit mean motion. 

 dx/dt actually means: dM
dt
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∫
π

π

2

02

1
, with x=a, e, i, etc… 

The assumption here is that body and orbit are “fixed” during the time of one revolution of the 
satellite in its orbit, which is acceptable in our case.  
 
From these equations, we can deduce the directions of the celestial body (with respect to the orbit 
plane) that make the perigee altitude increase or decrease. The result, shown in Figure 2, is not very 
intuitive.  
  
  

 
The perigee altitude increases if the 
projection of the direction of celestial body 
onto the orbit plane is in quadrants 1 or 3. It 
decreases otherwise.  
The altitude is stable if the projection of the 
body is aligned with the x-axis (line of 
apsides) or y-axis (perpendicular to the line 
of apsides).   
 

Figure 2: Mean gravitational effect of a celestial body on the perigee altitude 

 
The decrease or increase rate also depends on the elevation of the body with respect to the orbit 
plane (function of cos2(elevation)). The decrease or increase rate is higher when the body is in the 
plane.  
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1.2.2 Atmospheric drag  
Drag is an essential factor as it makes the semi-major axis decrease until it becomes small enough 
for the satellite to burn in the atmosphere. But drag is also hardly predictable because of the effect 
of solar activity on atmospheric density (particularly over long periods of time).  
In this paper we’ll use a simple enough model in order to avoid part of that complexity.  We’ll care 
about the most important effects: change of density with altitude only.  
The following hypotheses are assumed:  
- Atmospheric model: us76 
- Aerodynamic coefficient: 2.2 
- Area to Mass ratio (A/M): 10-2 m2/kg 
 
We’ll compute the mean effect of drag over one orbit by averaging the derivatives da/dt and de/dt as 
given by the Gauss equations:  
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is any orbital element.  
In practice, the integral is evaluated using spline functions and a limited number of points in the 
orbit  equally distributed in true anomaly.  
  
Figure 3 shows the mean effect of drag over one orbit as a function of altitude of apogee for 
different choices of the altitude of the perigee.  

 
Figure 3: Drag effect on the semi-major axis 

 
We note that there is nearly a factor 10 between the perigee altitudes 200 km and 300 km (drift of 
semi-major axis around 3 km/day and 0.3 km/day respectively).  
The decrease rate of the altitude of the perigee is relatively small, about 10 times smaller than that 
of the altitude of the apogee. The main results are summarized in the table below:  

hp/ha (km) da/dt (km/day) dhp/dt (km/day) dha/dt (km/day) 
200/36000 -3.7 -0.6 -7.4 
300/36000 -0.33 -0.08 -0.67 

(hp: altitude of perigee, ha: altitude of apogee)  
  
1.2.3 Earth potential 
We’ll consider the secular effects due to the zonal terms of the potential only. As we are interested 
in explaining the phenomena rather than predicting the orbit accurately, we’ll limit the number of 
zonal terms to 1 (J2).  



For a GTO orbit, the terms J2
2 and J4 can generate a drift on the line of apsides of about 0.5 degree 

per year. It means that these terms should be taken into account in accurate comparisons with other 
results.  
Resonances originating in tesseral harmonics are considered to have negligible impacts as the long-
term oscillations induced on the orbital elements soon vanish as the semi-major decreases.  
Another point that is neglected is the effect of the short term perturbations (mainly caused by J2) on 
the orbit. Their amplitude is small enough (~4 km on the perigee altitude for a GTO) but increases 
as the semi-major decreases. The result is an underestimation of drag which is considered 
acceptable.  
  
1.2.4 Other forces 
Solar pressure has little impact (compared to the other forces) and will be neglected.    
 
1.3 Integration of the motion 

The motion of the satellite is obtained by integrating the averaged derivatives of the orbital 
elements.  
The integration method is a bit original as it is iterative (this had initially been designed for 
efficiency reasons, given the software used: Scilab).  
To compute the solution (i.e. the state vectorX ) over a given time range (say one year), the 

algorithm iterates over: ],[,))(,()()( 21111 TTTdttXtXTXTX
T

T nn ∈+= ∫+
&  starting from an initial 

guess (effect of J2 only), until 1+nX is close enough to nX . Once the process has converged, the 

solution at the last instant is used to initialize the process for the next time range.   

2 Analysis of the effects of the main perturbations 

2.1 Sun/Moon perturbation (effect on the mean perigee altitude) 

In this part, we’ll analyze the orbit’s evolution in absence of drag.   

2.1.1 Simulation results of the influence of the RAAN local time and day of year 
When integrating the equations defined in 1.2, considering the Sun, Moon and the secular effects 
due to J2 only, varying the initial ascending node mean local time (MLT), we obtain the graph 
shown in Figure 4.   

 
Figure 4: Evolution of the perigee altitude without drag 

The large amplitude oscillations are related to the motion of the perigee with respect to the Sun 
( sunωω −Ω+ && ≈ −0.6 deg/day), with a modulation mostly related to the declination of the Sun.   



Note: The initial mean local time of the ascending node is considered even if the “real” (and better 
defined) quantity that matters is the mean local time of the perigee (= RAAN mean local time + 12h 
as the argument of the perigee is (initially) 180 degrees).  
 
Eccentricity appears to be stable, as is inclination, as shown in Figure 5 (simulation over 100 years). 
Also note that the mean semi-major axis is not affected by the perturbations.  

 

 

Figure 5: Evolution of inclination without drag  

 
If the altitude of the perigee is averaged over a long period of time, we obtain a mean value that 
depends on the initial mean local time of the ascending node and the day of year.  

Figure 6 shows the result for a particular period of time. There may be some variations between 
years because of the orbit of the Moon that changes slightly from one year to the next.  

 

 
 
 
 
The initial perigee altitude is 250 
km 
Inclination is 7 degrees 
Model used : J2 + Sun + Moon  
Averaging is done over 4 years 
from 2008 

Figure 6: Mean altitude of perigee as function of RAAN local time and day of year 

 
Even if drag in not included in the propagation model, it is still possible to evaluate its potential 
effect on the orbit.   

Figure 7 shows the (virtual) mean drift of the semi-major axis as evaluated from the trajectory 
computed without drag.   
Higher values of the mean altitude of the perigee in Figure 6 correspond to lower values of the 
decrease rate of the semi-major axis in Figure 7 (so possibly to shorter lifetimes).  
 



 

 
 
 
 
Initial altitude is 250 km 
Inclination is 7 degrees 
Model used : J2 + Sun + Moon 
over 4 years from 2008 

Figure 7: Evaluation of semi-major axis mean drift   
 
The most favourable conditions for a short lifetime (or at least a strong initial decrease rate of the 
semi-major axis) are at the solstices with the orbit nearly perpendicular to the Sun direction (RAAN 
local time = 6h or 18h).  

 

 
 
 
 
Initial altitude here is 200 km 
Inclination is 7 degrees 
Model used : J2 + Sun + Moon 
over 4 years from 2008 

Figure 8: Evaluation of semi-major axis mean drift   
 
In the RAAN local time range [10h-14h] (see Figure 8), the equinoxes are more favourable, and the 
autumn equinox is a little more. This conclusion is consistent with the results shown in Figure 1.  
 
2.1.2 Explanations through simple modelling 
If we assume that inclination and drifts of argument of perigee and ascending node are constant over 
time, the equation describing the evolution of eccentricity can be integrated analytically.  
 
For simplification reasons, we’ll consider here that the orbits of the celestial body and the satellite 
are in the equatorial plane.  
 
We can then write:  
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Numerically, we have:  

ω4

K
= 3.8e-3 for the Sun, and 4.2e-4 for the Moon (about 10 times smaller).  
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is about 0.5, so that the maximum values found for )( 0eea − are close to: 46km for the 

Sun and 5.1 km for the Moon.  
 
Figure 9 shows the average value of the perigee altitude (as computed by the formula above) as a 
function of the initial phase (0φ ) for the Sun.    

 
Figure 9: Mean altitude of perigee as function of initial phase (simplified model) 

 
Similarly, the initial position of the Moon changes the mean value of the altitude of the perigee. 
Under the same simplified hypotheses as above, we can derive the impacts the Sun and Moon 
simultaneously have on the perigee altitude depending on their initial positions. This is illustrated in 
Figure 10.  

The maximum effect coming from the Moon on the mean altitude of the perigee is nearly the same 
whatever the initial phase of the Sun: around 5 km.  
The maximum altitude is obtained when the 2 bodies are aligned and for the initial phases = 0 or 
180 degrees (dark read areas).  
The minimum altitude is obtained when the 2 bodies are aligned and for the initial phases = 90 or 
270 degrees (dark blue areas).  
 



 

 
 
 

 
 
 
x-axis: initial phase of Body 1 (Sun) 
y-axis: initial phase of Body 2 (Moon) 

Figure 10: Impact of initial positions of Sun and Moon (simplified model) 
 
The equations are now made slightly more complex by considering a celestial body (the Sun) in a 30 
degree, circular, inclined orbit. The satellite’s orbit  is still in the equator.  

The mean altitude of the perigee that is obtained is plotted in Figure 11.  

 

 
 
 
 
x-axis : angle between the perigee 
and the projection of the Sun on the 
equator.  
 
y-axis: anomaly of the Sun from the 
ascending node of the Sun’s orbit  
(0 corresponds to the Spring 
equinox).  

Figure 11: Impact of the Sun declination (simplified model) 
 
We observe that these results are similar to those shown in Figure 6, except for a shift along the 
y-axis due to different choices for the origin of the axes: day of year in Figure 6 and Spring equinox 
in Figure 11.  
The same kind of effect would be obtained for the Moon, with variations from year to year coming 
from the changes in the Moon’s orbital elements.  
  
2.2 Influence of drag and coupled J2 / Sun perturbations effects 

The effect of the atmosphere on the orbit causes the semi-major axis to decrease, with a decrease 
rate depending on the perigee altitude (the perigee altitude decreases too, but more gently). We have 
seen in 2.1 (Figure 6 and Figure 7) how the mean value of the perigee altitude changes because of 
the effect of the Sun and Moon, which impacts drag.    

As the semi-major axis decreases (the eccentricity decreasing too), the mean local time of the 
perigee varies too: sunωω −Ω+ && starts at −0.6 deg/day, increases to 0 and changes sign.   



Figure 12 shows sunωω −Ω+ && computed using J2 only, as a function of altitude of perigee and 

semi-major axis.  

 

 
 

 
 
 
The inclination considered  
here is 7 degrees.  

Figure 12: Mean drift of the angle between the Sun and the perigee  
 
When sunωω −Ω+ && approaches 0 (the semi-major is then about 15000km), the gravitational effect 

of the Sun intensifies because the Sun is then nearly fixed with respect to the orbit plane. We have a 
situation close to that illustrated in Figure 2, with the perigee increasing or decreasing at a nearly 
constant rate.  
 
We will illustrate the effect of the Sun on eccentricity with a simple (theoretical) example.  
Here the inclination is 0 and the Sun’s orbit is in the equator. The orbit’s semi-major axis is 
supposed to decrease at a constant rate, and the altitude of the perigee is constant (in order to 
simplify the problem). The gravitational effect of the Sun is then evaluated on this “reference” orbit 
(but the Sun has no effect on the orbit). 
 

 

  
 
 
The cumulative effect on 
eccentricity is around 10-2 in the 
“worst” case (black curve).  
That corresponds to about 150 km 
on the perigee altitude (for a semi-
major axis = 15000km).  
 
Drift of the semi-major axis 
considered:  -4km/day.  
Initial perigee-Sun angles: 0 to 50 
degrees (every 10 degrees).  
 
 
  

Figure 13: Illustration of the effect of the Sun on eccentricity 

 



Various initial conditions (angles between the perigee and the Sun) are chosen. We see the 
cumulative effect on eccentricity (upper curve): the period of the oscillations increases until the drift 
of the perigee-Sun angle changes sign.   

The “worst” case (that makes eccentricity vary the most) is obtained for a situation where the 
derivative of eccentricity remains nearly constant at its maximum elongation (see arrow in middle 
graph). This corresponds to the perigee-Sun angle (Φ ) remaining close to the middle of a quadrant 
(45 degrees in the example, see lower graph).  
Thus, what particularly (but not only) matters is the value of the perigee-Sun angle when its 
derivative changes sign.  
For a given value of the perigee altitude, the perigee-Sun angle changes sign for a well defined 
value of the semi-major axis. But the value of the perigee-Sun angle at that moment depends on 
many factors and particularly drag. A rough evaluation  (based on a constant decrease rate of the 
semi-major axis and a constant perigee altitude) gives the following rule:  
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where degrees∆Φ : error in degrees on the perigee-Sun angle, %)(
a
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the drag coefficient), yearsT : duration (years) between initial time and time when the Sun-

synchronism condition is met (i.e. Φ&  = 0). For example only ±5% error on drag for 10 years gives 
an error on the angle of about ±60 degrees. The Sun gravitational effect is then completely changed.  

The previous example is very theoretical as the Sun gravitational effect doesn’t affect the orbit: the 
semi-major axis decreases at the same rate whatever the changes in eccentricity.  
In reality, these changes will make the drag suddenly increase or decrease, so that the orbit’s 
evolution from that moment will be completely modified. This will be shown later.  

3 GTO Lifetime 

3.1 Simulation of lifetime  

The effect described in 2.2 is clearly visible in the following simulation results.  
The simulations include the gravitation effects of the Sun and Moon, the secular effect of J2 and 
drag.  
The initial time of the simulation varies by steps of 10 days.  

 

 
 
 
Initial year: 2011 
Initial perigee/apogee altitudes: 
250/36000 km 
Inclination: 7 degrees 
RAAN local time : 6h 
 
 

Figure 14: Simulated evolution of semi-major axis 

We note that the lifetime is, in most cases, related to the initial mean drift rate of the semi-major 
axis.  There are however a few exceptions for which the semi-major axis remains constant at a value 
close to 15000km for a considerable amount of time (see arrow).  



The evolutions of the perigee altitude and mean local time corresponding to the “exotic” case are 
shown below.  

  
Figure 15: Evolution of perigee altitude and mean local time 

The altitude of the perigee jumps from 200 km to 700 km, much more than in Figure 13 
(corresponding to a semi-major axis decreasing at a constant rate).  

Here is what is happening (see also 4 for more details):  
- The semi-major axis decreases for about 4 years until is reaches a value of about 150000km (we 

can see in Figure 15 that the perigee altitude decreases too but moderately). sunωω −Ω+ && is then 

close to 0 and is about to become positive (see Figure 12).  
- As the angle between the perigee and the Sun is then nearly constant (local time of perigee 

between 18 and 24h), the eccentricity decreases, the semi-major axis being approximately 
constant (as drag vanishes). This causes the perigee altitude to increase. This situation is close to 
that represented in Figure 2, the Sun being in quadrant 3.   

- The increase of eccentricity impacts the drift of the angle between the perigee and the Sun. The 
value of sunωω −Ω+ && becomes negative again (see Figure 12). This extends the impact of the 

Sun as the angle remains nearly constant for a longer time. Eccentricity then continues to 
decrease (and the perigee altitude to increase).  

- As the angle between the perigee and the Sun travels through quadrant 3 and enters quadrant 4, 
the drift on eccentricity decreases in intensity and becomes positive. This causes the perigee 
altitude to start decreasing.  

 
This “resonant” case is also very sensitive to drag, as could be anticipated.  
The results below show how small variations in the drag coefficient (which can also reflect 
variations in solar activity that could be encountered in practice) impact the lifetime.  
  

 
 

Figure 16: Sensitivity of lifetime to drag 
  



A 4% change in the drag coefficient can make the lifetime change from 7 years to 32 years.  
Even a 0.2% change has an noticeable influence. But the impact may originate in the computation of 
drag itself (averaging over one orbit), which is not guaranteed more precise than a few 0.1%.  
 
But the conclusion holds whatever the reason: even the most accurate model would fail to predict 
the lifetime accurately (in some particular cases at least), for the main reason that solar activity 
cannot be predicted with a sufficient accuracy.  
 
3.2 Comparison with other results  

We now use the same propagation model as in 3.1 to compute lifetime as a function of RAAN mean 
local time (in the range [10h-13h] and day of year.  
These results can be compared with those obtained using DAS (see introduction), although the 
hypotheses are not exactly the same (not mentioning the propagation model).  
We note that some similarities exist between the 2 graphs: the shortest lifetime is obtained for the 
Autumn equinox in both cases.  
 

 
 
 
 
Cx.A/M = 2.2e-2 
Initial altitude = 200 km 
 
Around 300 computation points to generate 
the plot.  
 

Figure 17: Lifetime as function of day of year and RAAN mean local time 

4 Lifetime predictability 

The previous paragraphs have shown that the lifetime can be very sensitive  to modelling errors and 
initial conditions.  
In this paragraph we’ll try to be a bit more precise.   
    
We’ll assume again a simple model (“plane” model as in 2.1.2) where φ is the angle between the 
perigee and the Sun.  
If we neglect the effect of drag (which can be justified because we’re interested in situations where 
the perigee increases, so that drag vanishes), the evolution of eccentricity  is mainly governed by the 
combined effects of the Sun and J2 which can be described by the following equations:  
 

2

)2sin(
1 2 φ

eeKe −=&  

22
2

2

2

)1(2

3

e

Jn

a

Req
sunsun −

−=Ω−−= ωωωφ &&&  

 
In the above equations, K is constant, as is a (semi-major axis) and n (mean motion).  



 
We simulate (i.e. integrate) the system above using a Runge-Kutta method, starting from initial 
conditions defined by:  
- altitude of perigee = 300km 
- φ&  = 0  (Sun-synchronism condition) 
 
The two above conditions are equivalent to defining the initial values for the eccentricity and the 
semi-major axis. The value of φ  at initial time ( 0φ ) can be chosen arbitrarily.  

The evolution of eccentricity obtained for various values of 0φ  is shown in Figure 18.  

 

 
 
 
 
 
All the curves are periodic, but with a period 
and amplitude depending on the initial angle 
between the perigee and the Sun.  
 

Figure 18: Simulation of resonance 
 
We note that the perigee altitude can go up to around 700km, which is consistent which previous 
results (see Figure 15). We also note that it comes back to the initial value after a few years.  
The values of the perigee-Sun angle in the range [0.01, 20] degrees nearly give the same maximum 
value for the perigee altitude. But one major difference between the cases is the time at which the 
maximum value is reached : at initial time + 19 years for 0.01, at initial time + 15 years for 0.1, 
etc… 
A initial value of 0 would keep the perigee altitude constant. A slightly negative value would invert 
the evolution (the perigee would start by decreasing).  
Thus this situation is very instable (and therefore sensitive to initial conditions). Very little changes 
in the angle between the perigee and the Sun can make the altitude of the perigee remain constant, 
increase by several hundreds of km, or decrease by the same amount.  
  
This simple demonstration proves that it may be impossible predict GTO lifetime accurately,  at 
least in some particular cases. The key parameters are 0φ  and the uncertainty on 0φ . If 0φ is well 

chosen (so that it is in the right quadrant) and the uncertainty on 0φ  small enough, it's possible to 

guarantee a fast re-entry by avoiding the perigee to increase as in Figure 18. Another key parameter 
is the perigee altitude: if the perigee is low enough, drag will finally succeed in making the semi-
major axis decrease; the effect of the Sun can only delay the re-entry by 10-20 (or so) years in the 
worst cases.  
 
A sufficient (although strict) condition to limit the lifetime would be to guarantee that the effect of 
drag on the perigee altitude would always be greater than the maximum gravitational effect due to 
the Sun.  
The evaluation is done for orbits such that the perigee does not drift with respect to the Sun (Sun-
synchronism condition).  
  



The maximum effect on the perigee altitude due to the gravitational effect of the Sun is given by 
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hd p µ= and the effect due to drag is computed numerically.   

 

 
 
 
 
 
Inclination is here  
7 degrees.  

Figure 19: Drag compared to Sun gravitational effect 
 
Thus, the perigee altitude has to be very low (less than ~100 km) for drag to be stronger than the 
Sun gravitational effect when the Sun-synchronism condition is met (i.e. when the semi major axis 
is around 15000 km). The condition on initial altitude is not obvious at this point and should be 
finely analysed (effect of drag on the perigee, Sun/Moon perturbations causing oscillations...). 
However, the initial altitude is likely to be very low too.    
  
Less strict conditions may exist though to guarantee that the lifetime will not exceed some 
predefined threshold.  
The graph below gives the lifetime distribution for 3 different initial perigee altitudes (160km, 
180km, 200km).  

 
 
 
 
Model used: Sun, Moon, J2 and Drag.  
 
1000 draws for each perigee altitude case. 
 
Uniformly distributed RAAN MLT (0-
24h), initial time (interval of 18years), 
drag coefficient (maximum dispersion is 
5%) and even altitude of perigee 
(maximum dispersion is 500m).   
 
 

 
 

Figure 20: Lifetime distribution 

The probability to have the lifetime smaller than some threshold increases as the initial perigee 
altitude decreases, as shown in the table below.  
 



Initial perigee altitude (km) 160 km 180 km 200 km 
Probability (lifetime < 25 years) 0.995 0.99 0.94 
Probability (lifetime < 35 years) ~1 0.995 0.99 

 
But an error of only 5% was taken into account on the drag coefficient. The dispersion for real cases 
(considering a variable solar activity) could  be much bigger.  
 

5 Conclusion 

Thus, the paper has shown different results relative to geostationary transfer orbits long term 
evolution and lifetime.  

The models used in the study were simple enough, yet interesting results have been obtained.  

First, it was shown how some initial conditions (ascending node mean local time, day of year) affect 
the decrease rate of the semi-major axis through a change in the mean altitude of the perigee.  
But the lifetime is also strongly dependent on the gravitational effects due to the Sun at the time the 
Sun becomes nearly fixed with respect to the orbit’s line of apsides. This situation may lead to a 
rapid increase of the perigee altitude (by several hundreds of kilometres), thus reducing the drag and 
increasing the lifetime. The sensitivity to initial conditions and perturbations (and drag in particular) 
is high: a change in atmospheric density of only a few percent can lead to variations in the lifetime 
of tens of years.  

This has led to the conclusion that GTO long-term evolution may be hard to predict in practice, at 
least in some particular situations, as solar activity will never be predictable with sufficient 
accuracy. It is possible to find strategies that minimize the uncertainty on lifetime, but the 
uncertainty on drag has to be small enough, probably smaller than can be achieved in practice. An 
evaluation of a "safe" altitude has been done in the paper but leads to a very low value. However, 
less strict conditions may exist on the perigee altitude to guarantee that lifetime won't exceed some 
threshold; more remains to be done on this point.  

Statistical analyses as done in [3] for LEO are probably worthwhile for GTO as well. They have led 
to defining a “constant equivalent” solar activity level such that, if considered in calculations, the 
satellite has a 50% chance of re-entering the atmosphere in less than 25 years. This was considered 
acceptable because the dispersion on lifetime (when varying solar activity) is not excessive for LEO. 
For GTO, a low solar activity level would possibly lead to big lifetime values. So that the exact 
conditions that should be satisfied in order to meet the French Space Act regulations have to be 
defined adequately.  
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