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Abstract:  This paper presents a new way to deal with transition matrices handling in  variational  
equations. While working simultaneously on several problems dealing with orbit propagation: low-
thrust  trajectories  and  orbit  determination,  we  implemented  a  feature  allowing  to  add  user  
equations to a propagator in order to solve the first  problem.  Then it appeared that this feature  
could be reused to deal with the second one. Indeed, the orbit determination problem is based on  
variational equations involving transition matrices, which  can also be considered as additional  
parameters, propagated at the  same  time as the original state vector. This method allows a very  
modular  implementation  of  both  problems,  with  looser  coupling  in  the  equations.  It  has  been  
successfully  integrated in the Orekit open-source library.
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1 Introducing the problem

High accuracy orbit propagation often involves solving Initial Value Problems (IVP) using the 
motion equations with various force models. However this is not sufficient to solve some specific 
problems like  low thrust  trajectory  optimization  with  boundary  constraints  which  involve  both 
solving an optimal control problem (the optimization part) and solving a Two Point Boundary Value 
Problems (TPBVP, the boundary constraints part). This is also not sufficient for orbit determination 
which involves computing the derivatives of the orbital state vector throughout the propagation time 
with respect to initial state and to models parameters.

For  the  first  problem  type,  the  optimal  control  problem,  in  addition  to  position-velocity 
parameters, extra parameters have to be integrated: the dual parameters of the Pontryagin principle. 
These  parameters  have  their  own  differential  equations  that  should  be  added  to  the  classical 
equations of motion.

For the second problem type, the Two Points Boundary Value Problem, initial parameters need to 
be adjusted in order to have the final state vector reach the desired boundary condition. This is done 
by solving a  non-linear  optimization problem. The best  algorithms dealing with such problems 
require computation of a Jacobian matrix (from worst to best algorithm: steepest descent, conjugate 
gradient,  Gauss-Newton,  and  Levenberg-Marquardt).  This  matrix  represents  the  final  state 
derivative with respect to the initial state.

For the third problem type, the orbit determination problem, initial parameters and force models 
parameters need to be adjusted as well, in order to have small residuals for all measurements. This  
is done by least squares problems solving or Kalman filtering.  These algorithms also need Jacobian 
matrices. They use the current state derivative with respect to the initial date and the current state 
derivative with respect to the force models parameters at each measurement time.

In the last two cases, Jacobians are computed either only at final states or during all propagation. 
These matrices are sometimes called transition matrices: Ψy(t) and Ψp(t). They make the connection 
between  the propagated state  and both initial state  and force models parameters.  They are time-
dependent matrices following orbit propagation: dy(t)/dy0 et dy(t)/dp,  where y stands for the state 
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vector,  y0 this  state  vector  initial  value  at  t0 and p  a  parameters  vector (for  example  drag 
coefficients).

2 Straightforward implementation

The spacecraft trajectory is computed by integrating the Ordinary Differential Equations (ODE) 
defined by:

dy t 
dt

= f t , y ⇒ y t =∫ f  , y d 

The common way to solve the TPBVP is to compute the Jacobian of the final state  Ψy(t)  and 
Ψp(t) and use them in an optimization algorithm to minimize ∥y t − y t ∥ where y t  is the 
expected final state.

The final state Jacobians are defined as:

y t =
∂ y t 
∂ y0t 

 pt =
∂ y t 
∂ p

The first way to compute these matrices is by finite differences. A first central trajectory y(t) is 
computed by a simple solver from an initial state y0(t), then this initial state is slightly shifted to get 
several close trajectories. The final states of all those trajectories are combined together to compute 
the Jacobian  matrix  Ψy(t)  and  Ψp(t)  by finite differences.  In the Ordinary Differential Equations 
(ODE) world, this is known as external differentiation.

It is well-known since more than 20 years (Hairer,  Wanner and Nørsett 1987) that numerical 
stability of external differentiation methods is  very poor  when using modern adaptive step size 
integration methods. This is due to the noise introduced when different initial states lead to different 
conditional branches used in the step size control. 

The following figure1 shows this behavior. The smooth lines are the exact derivatives and the 
noisy curves are the derivatives computed by external differentiation.

1 This figure is inspired by Hairer, Wanner and Nørsett own example



The  common  way  to  solve the orbit  determination  problem  is  to  compute the  differential 
equations that govern the evolution of the Jacobian matrices at the same time as the main problem is 
solved, thus preserving consistency. These equations are called variational equations dΨy(t)/dt and 
dΨp(t)/dt in which  Ψy(t)  and Ψp(t)  are the transition matrices  defined previously.  The variational 
equations are defined as follows:

where Ψy(t) is the matrix dy(t)/dy0 and Ψp(t) the matrix dy(t)/dp.

•
∂ f
∂ y

=J y is the partial derivatives of the time derivative f with respect to the state y;

•
∂ f
∂ p

=J p is the partial derivatives of the time derivative f with respect to the force models 

parameters p.

These  equations  show that  the  state  global  Jacobian  time  derivatives  is  linked  to  the  local 
Jacobian of the state time derivatives.



The Jacobian matrices Jy(t) and Jp(t) can be computed gradually throughout the propagation. 

The transition matrices initial values are the identity matrix for dy(t)/dy0 at t0 and the null matrix 
for dy(t)/dp at t0. From these initial values, the variational equations compute the values at any time. 
However, if one considers that the user propagates section by section from t0 to t1, then from t1 to t2 

and so on, he may want to have all his matrices computed with respect to the initial time t0.

This is typically what happens for orbit restitution: the initial time corresponds to the expected 
orbit adjustment time. It is thus necessary to have an option for setting the transition matrices to any 
initial value. In the case defined previously, the user will start each section by setting the matrices to 
the current value of the matrices obtained at the end of previous section. 

When these Jacobian matrices cannot be computed explicitly, finite differences are used, which 
is then called internal differentiation. 

This method has been implemented almost everywhere, it works well but has some drawbacks 
and  is  clearly  not  extensible.  One  of  the  problems  is  that  the  differentiation  process  is  fully 
embedded  in  the  core  propagation  equations.  Switching  from  one  force  model  to  another  or 
changing the ODE solver thus implies numerous adaptations and validations.  This is even more 
difficult for the optimal control problem as the equations for dual parameters are complex, problem-
dependent  and can almost  never be differentiated analytically.  That's  why common propagation 
solvers cannot be used for low thrust trajectories with boundary constraints, and very specific tools 
are usually developed.

3 A bypass resolution

3.1 Additional equations handling

The low-thrust trajectory problem can be solved by adding a set of extra parameters, the dual 
parameters, to the state vector. Via the corresponding differential equations, these parameters are 
then included in the propagation process. To allow that feature, it is only necessary to make a few 
changes in the ODE solver. These changes include handling an array of equations and extending the 
state vector to take these parameters into account.  This method is quite easy to implement and to 
validate.

As shown in the previous diagram, the additional equations for additional parameters evolution 
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dz
dt

=g t , y , z  can depend both on the original state vector y(t) and on the additional parameters 

z(t). On the contrary, the original equations for state vector evolution dy
dt

= f t , y only depend 

on the state vector y(t) itself and have no relations with the additional parameters.

In the orbit determination problem case

Adding equations is not merely extending the size of an array and providing one function to 
compute its derivatives.  There is  a fly in the ointment as  far as  adaptive step size is concerned. 
Adaptive step size is done by estimating a local error on the state vector. If the error exceeds a  
predefined threshold,  the step is  rejected,  a smaller step size is  computed and used for another 
attempt on the current step. As adding equations extends the state vector size, the extra parameters 
are  included  in  the  error  estimation.  It  is  often  very  difficult  to  specify  a  threshold  for  these 
parameters, as they have almost no physical meaning. From a propagation standpoint, there is also 
no real need for including these parameters into error estimation, which should be based on original 
position-velocity state only. 

Some  modern  solvers  provide  continuous  output  models  between  steps  using  dedicated 
interpolators.  In that case, the additional equations must be provided to the  integrator in order to 
propagate  the  whole  state  vector. This  allows  for  example  to  compute  residuals  in  orbit 
determination, we will see how in next section.

3.2  Application to the transition matrices problem

While working on both variational equations and low-thrust trajectories problem, it appeared that 
somehow, they were similar problems and could be solved using the same mechanism.  Basically, 
they fit in a single frame which consists in adding parameters to the state vector, and adding to the 
ODE solver the associated differential  equations to propagate them.  In that case,  the  additional 
parameters are the elements of the Ψy(t) and Ψp(t) matrices, and the corresponding equations are the 
variational equations defined previously :

That mechanism is very interesting for orbit determination, when applied to residuals estimation 
and model parameters estimation. Orbit determination is an iterative process, each iteration being a 
propagation initialized from the current estimated orbit. During propagation, at each integration step 
the local model from the ODE solver is used to compute both current state and partial derivatives at 
the current measurement time. These are used to update the normal equations, which are used by the 
upper optimizer to adjust the orbit estimation. Computing the partial derivatives Ψy(t) by additional 
equations mechanism allow looser coupling between the core propagator and the other components 
of the orbit determination system. Adding estimated model parameters is also very simple due to the 
modular structure of  the equations handling.

y(t)

z(t)  Ψy(t) , Ψp(t) 

Position-velocity 

Variational equations
dΨ y/ p

dt
=g t , y ,Ψ y / p

dy
dt

= f t , y



During orbit  propagation,  the evolution of the state  vector is  given by differential  equations 
coming from force  models.  Variational  equations  need local  Jacobians  of  the  state  vector  time 
derivatives (Jy and Jp matrices), which are computed from the force models Jacobians. If analytical 
equations  are  available,  these  Jacobians can  be  computed  directly,  otherwise  they  can  still  be 
computed by finite differences, for the original state vector as well as for additional parameters. 
Corresponding  steps  can  either  be  user-specified  or  computed  automatically.  During  a  single 
propagation, both cases can occur, as some force models are more complex than others.

All the matrices involved are computed with respect to Cartesian parameters, even if propagation 
is done in equinoctial parameters. In that case, a post-processing conversion is required.  

4 Conclusion

We have shown that low thrust trajectory problem could be handled by a classical propagator 
using a simple feature: the additional equations, which can also be applied to the partial derivatives 
computation in the orbit determination problem.

This method has been fully implemented in version 5.1 of the Orekit open-source library which 
release is scheduled in early 2011. 
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