
SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS

Sandro da Silva Fernandes
(1)
and Cleverson Maranhão Porto Marinho

(2)

(1)Instituto Tecnológico de Aeronáutica, São José dos Campos - 12228-900 - SP-Brazil, (+55)
(12) 3947-5953, sandro@ita.br

(2)Instituto Tecnológico de Aeronáutica, São José dos Campos - 12228-900 - SP-Brazil, (+55)
(12) 3947-5946, cmarinho@ita.br

Abstract: In the present work, the in�uence of the Sun on the fuel consumption of transfers
from circular low Earth orbits (LEOs) to circular low Moon orbits (LMOs) is investigated. The
class of two impulse trajectories is considered: a �rst accelerating velocity impulse tangential to
the space vehicle velocity relative to Earth is applied at a circular low Earth orbit and a second
braking velocity impulse tangential to the space vehicle velocity relative to Moon is applied
at a circular low Moon orbit. The fuel consumption is equivalent to the total characteristic
velocity which is de�ned by the arithmetic sum of velocity changes. Local optimal transfers
are calculated through two di�erent approaches: inner transfers and Belbruno-Miller transfers.
In both cases, the optimization problem is solved by means of an algorithm based on gradient
method in conjunction with Newton-Raphson method.

Keywords: Bicircular problem, local optimal trajectories, inner transfers, Belbruno-Miller
transfers.

1 Introduction

Since the remarkable success of the Hiten mission, Belbruno-Miller transfers have been
considered an e�cient way to explore the gravity of the Sun to reduce fuel consumption in
lunar missions [1]. Using these type of transfers it is possible to safe up to 25% of on-board
fuel when compared with Hohmann transfers, but at cost of a much higher time of �ight[2].

In this work, the dynamical model used is the planar bicircular restricted four-body problem
[4]. Local optimal transfers are calculated through two di�erent approaches: inner transfers
and Belbruno-Miller transfers. In both cases, the optimization problem is solved by means of
an algorithm based on gradient method (Miele et al. [6]) in conjunction with Newton-Raphson
method (Stoer and Bulirsch [7]).

Inner transfers and Belbruno-Miller transfers are compared in terms of fuel consumption and
time of �ight, considering several relative positions of the Sun with respect to the Earth-Moon
axis.

Finally, in comparison to optimal local trajectories calculated using the planar restricted
three-body problem (PCR3PB) it is shown that the inner transfers have a better performance
when the presence of the Sun is included in the dynamical model. Recall that Belbruno-Miller
transfers are designed only in the planar bicircular restricted four-body problem.

2 Problem formulation

Bicircular model

In the planar bicircular restricted four-body problem the Earth and the Moon revolve in
circular orbits around their center of mass, and the Earth-Moon barycenter moves in a circular
orbit around the center of mass of the Sun-Earth-Moon system [4]. A spacecraft of in�nitesimal
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mass moves under the gravitational attraction of the Earth, Moon, and Sun. The orbits of the
four bodies are in the same plane.

Let µE be the Earth gravitational parameter, µM the Moon gravitational parameter and
µS the Sun gravitational parameter. Let rP = (xP , yP ) be the position of the spacecraft with
respect to the barycenter (B) of the Earth-Moon system. The respective distance from B to
Earth, Moon and Sun are denoted by aE, aM and aS. The coordinates of Earth, Moon and
Sun with respect to B are:

xE = −aE cos(ωt+ θ0), xM = aM cos(ωt+ θ0), xS = aS cos(ωSt+ θS0),

yE = −aE sin(ωt+ θ0), yM = aM sin(ωt+ θ0), yS = aS sin(ωSt+ θS0),
(1)

where ω is the angular velocity of the Earth and Moon around B; θ0 is the respective initial
phase; ωS is the angular velocity of the Sun around B; θS0 is the initial phase of the Sun.

In the barycenter Earth-Moon reference frame, the equations of motion are given by:

ẍP = −µE
(xP − xE)

r3
EP

− µM
(xP − xM)

r3
MP

− µS
(xP − xS)

r3
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− µS
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S
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ÿP = −µE
(yP − yE)

r3
EP

− µM
(yP − yM)

r3
MP

− µS
(yP − yS)

r3
SP

− µS

a2
S

sin(ωSt+ θS0),

(2)

where rEP , rMP and rSP denote the distance from de spacecraft to Earth, Moon and Sun,
respectively. See Figure 1.

Figure 1: Bicircular model.

The initial conditions of the system of di�erential equations (2) correspond to the position
and velocity vectors of the space vehicle after the application of the �rst impulse. The initial
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conditions (t0 = 0) can be written as follows:

xP (0) = rEP (0) cos θEP (0) + xE(0),

yP (0) = rEP (0) sin θEP (0) + yE(0),

ẋP (0) = −
[√

µE

rEP (0)
+ ∆v1

]
sin θEP (0) + ẋE(0),

ẏP (0) =

[√
µE

rEP (0)
+ ∆v1

]
cos θEP (0) + ẏE(0),

(3)

where ∆v1 is the velocity change at the �rst impulse; θEP (t) is the angle which rP forms with
rE. It should be noted that rEP (0) and vEP (0) are orthogonal, because the impulse is applied
tangentially to LEO, assumed circular.

The �nal conditions of the system of di�erential equations (2) correspond to the position
and velocity vectors of the space vehicle before the application of the second impulse. The �nal
conditions (tf = T ) can be put in the form:

(xP (T )− xM(T ))2 + (yP (T )− yM(T ))2 = (rMP (T ))2,

(ẋP (T )− ẋM(T ))2 + (ẏP (T )− ẏM(T ))2 =

[√
µM

rMP (T )
+ ∆v2

]2

,

(xP (T )− xM(T ))(ẏP (T )− ẏM(T ))− (yP (T )− yM(T ))(ẋP (T )− ẋM(T ))

= ∓rMP (T )

[√
µM

rMP (T )
+ ∆v2

]
.

(4)

where ∆v2 is the velocity change at the second impulse. The upper sign refers to clockwise
arrival to LMO and the lower sign refers to counterclockwise to LMO.

Local optimal trajectories

Local optimal inner transfers and Belbruno-Miller transfers are designed as follows. For
a �xed θS0(0), the problem de�ned by equations (1)-(4) involves four unknowns ∆v1, ∆v2, T
and θEP (0) that must be determined in order to satisfy the three �nal conditions (4). So,
the problem has one degree of freedom and a minimization of the fuel consumption can be
made. The optimization problem can be formulated as follows: determine ∆v1, ∆v2, T and
θEP (0) which satisfy the �nal constraints (4) and minimize the total characteristic velocity
∆vTotal = ∆v1 + ∆v2.

A similar optimization problem, considering a simpli�ed model of the planar circular three
body problem, was solved by Miele and Mancuso [5] using the sequential gradient-restoration
algorithm for mathematical programming problems developed by Miele et al. [6]. In this paper,
the optimization problem described above is solved by means of an algorithm based on gradient
method [6] in conjunction with Newton-Raphson method [7]. The angle θEP (0) has been chosen
as the iteration variable in the gradient phase with ∆v1, ∆v2 and T calculated through Newton-
Raphson method.

Inner transfers

The initial guess to determine local optimal inner transfers using the bicircular model is
given by an optimized version of the patched-conic approximation [3], brie�y described in the
next paragraphs.

The well-known patched-conic approximation has two distinct phases: geocentric and se-
lenocentric trajectories. The geocentric phase corresponds to the portion of the trajectory which
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begins at the point of application of the �rst impulse and extends to the point of entering the
Moon's sphere of in�uence. The selenocentric phase corresponds to the portion of trajectory
in the Moon's sphere of in�uence and ends at the point of application of the second impulse.
In each one of these phases, the space vehicle is under the gravitational attraction of only one
body, Earth or Moon (see Fig. 2).

In the patched-conic approximation, an Earth-Moon trajectory is then completely speci�ed
by four quantities: r0 - radius of circular LEO; v0 - velocity of the space vehicle at the point
of application of the �rst impulse after the application of the impulse; ϕ0 - �ight path angle at
the point of application of the �rst impulse and γ0 - phase angle at departure. These quantities
must be determined such that the space vehicle is injected into a LMO with speci�ed altitude
after the application of the second impulse. It is particularly convenient to replace γ0 by the
angle λ1 which speci�es the point at which the geocentric trajectory crosses the Moon's sphere
of in�uence.

The optimization problem based on patched-conic approximation can be formulated as
follows: for speci�ed initial parameters r0 and ϕ0 = 0 (the impulse is applied tangentially to the
space vehicle velocity relative to Earth) determine v0 and λ1 to minimize the total characteristic
velocity ∆vTotal, such that the �nal condition rf = rMP is satis�ed. This problem is solved
using the same method described in the preceding section. The angle λ1 has been chosen as the
iteration variable in the gradient phase with v0 calculated through Newton-Raphson method.

(a) Geocentric phase. (b) Selenocentric phase.

Figure 2: Patched conic approximation.

Belbruno-Miller transfers

The initial guess to determine local optimal Belbruno-Miller transfers is described as follows.
For �xed θEP (0) and θS0, �nd the values of ∆v1, ∆v2, and T , such that solutions of the system
given by (1)-(2) satisty the boundary conditions (3)-(4), with an extra constraint: the spacecraft
is sent outside the Earth's sphere of in�uence. Given the initial conditions with respect to the
Earth, the Newton-Raphson method is used to perform a target search to the �nal desired LMO.
The �rst shoot to solve the boundary value problem comes from the elliptic approximation of
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the trajectory joining the LEO and the apogee where the spacecraft returns to the Earth-Moon
system (see Fig. 3). So, an impulse is applied to inject the spacecraft into a high eccentric
orbit which reaches an apogee between 1.0 and 1.5 million km. At this position the spacecraft
starts to fall back to the Earth-Moon system and is eventually captured by gravitational �eld
of the Moon.

Figure 3: Belbruno-Miller trajectory.

3 Results

The results for lunar missions using local optimal trajectories are presented in Tab. 1, for
three di�erent initial phase of the Sun, θS0. The major parameters are: ∆v1, ∆v2, ∆vTotal, T ,
θEP (0), EK and θS(0). EK is the spacecraft Keplerian energy with respect to the Moon at
t = T , before the application of the second impulse. For ∆v∗2 = 0.6765 km/s, EK = 0; i. e.,
the lunar approximation trajectory is parabolic. All missions consider counterclockwise LEO
and LMO. The following data are used:

RE = 6378 km (Earth radius);
RM = 1738 km (Moon radius);
µE = 3.986× 105 km3/s2;
µM = 4.903× 105 km3/s2;
µS = 1.327× 1011 km3/s2;
aE = 4.678× 103 km;
aM = 3.803× 105 km;
aS = 1.497× 108 km;
ω = 2.659× 10−6 rad/s;
ωS = 1.989× 10−7 rad/s;
hLEO = 167 km (LEO altitude);
hLMO = 100 km (LMO altitude);
θ0 = 0 deg.

For mS = 0, the equations (1)-(2) correspond to the classical planar circular restricted three
body problem (PCR3BP). In this case, inner transfers can be calculated using the same method
described previously. Belbruno-Miller maneuvers are not considered, since they are designed
considering the presence of the Sun. The results are presented in Tab. 2.

From the results in Tab. 1 and Tab. 2, it can be concluded that:
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Table 1: Lunar mission using the bicircular problem, major parameters.

Transfer ∆v1 ∆v2 ∆vTotal T θEP (0) EK θS(0)
(km/s) (km/s) (km/s) (days) (deg) (km2/s2) (deg)

3.2003 0.6576 3.8579 86.254 59.734 -0.0435 70.0
B-M 3.2002 0.6571 3.8573 87.254 70.897 -0.0446 80.0

3.2000 0.6662 3.8662 86.765 78.446 -0.0238 85.0

3.1383 0.8123 3.9506 4.578 -116.642 0.3228 70.0
3.1382 0.8050 3.9432 14.452 13.621 0.3050
3.1321 0.7714 3.9035 32.004 231.644 0.2236
3.1239 0.7264 3.8503 58.466 223.804 0.1164
3.1383 0.8118 3.9501 4.587 -116.560 0.3216 80.0

Inner 3.1382 0.8067 3.9449 14.440 13.523 0.3092
transfer 3.1322 0.7695 3.9017 32.004 232.251 0.2191

3.1240 0.7295 3.8535 58.463 224.237 0.1238
3.1384 0.8116 3.9500 4.591 -116.524 0.3211 85.0
3.1382 0.8076 3.9458 14.432 13.431 0.3114
3.1323 0.7692 3.9015 32.005 232.584 0.2184
3.1241 0.7318 3.8559 58.467 224.416 0.1292

Table 2: Lunar mission using the PCR3BP, major parameters.

Transfer ∆v1 ∆v2 ∆vTotal T θEP (0) EK

(km/s) (km/s) (km/s) (days) (deg) (km2/s2)

3.1386 0.8133 3.9519 4.579 -116.382 0.3253
Inner 3.1377 0.8096 3.9473 14.317 12.259 0.3162
transfer 3.1323 0.7852 3.9175 31.906 232.447 0.2569

3.1247 0.7504 3.8751 58.599 224.408 0.1734

1. All Belbruno-Miller transfers have quite similar �rst impulse and negative EK , corre-
sponding to ∆v2 < ∆v∗2. This means that the missions have elliptic lunar approximation
trajectories.

2. All inner transfers have positive EK , corresponding to ∆v2 > ∆v∗2. This means that the
missions have hyperbolic lunar approximation trajectories.

3. For inner transfers, the time of �ight depends mainly on θEP (0).

4. For inner transfers with time of �ight about 58.5 days, fuel can be saved in comparison
to Belbruno-Miller transfers.

5. The presence of the Sun causes a small perturbation on inner transfers with a better
performance in terms of fuel consumption for correspondent time of �ight.

The Figs. 4-7 illustrate some missions. Note that the Moon is represented at its �nal
position and there is no collision between the spacecraft and the Moon surface. All trajectories
are plotted with respect a reference frame centered in the Earth.
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(a) Earth-Moon trajectory. (b) LEO departure.

(c) LMO arrival.

Figure 4: B-M transfer, where ∆v1 = 3.2002 (km/s); ∆v2 = 0.6571 (km/s); T = 87.254 (days);
θEP (0) = 70.897 (deg); θS(0) = 80.0 (deg).
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(a) Earth-Moon trajectory. (b) LEO departure.

(c) LMO arrival.

Figure 5: Inner transfer, where ∆v1 = 3.1239 (km/s); ∆v2 = 0.7264 (km/s); T = 58.466 (days);
θEP (0) = 223.804 (deg); θS(0) = 70.0 (deg).
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(a) Earth-Moon trajectory. (b) LEO departure.

(c) LMO arrival.

Figure 6: Inner transfer, where ∆v1 = 3.1382 (km/s); ∆v2 = 0.8067 (km/s); T = 14.440 (days);
θEP (0) = 13.523 (deg); θS(0) = 80.0 (deg).
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(a) Earth-Moon trajectory. (b) LEO departure.

(c) LMO arrival.

Figure 7: Inner transfer, where ∆v1 = 3.1384 (km/s); ∆v2 = 0.8116 (km/s); T = 4.591 (days);
θEP (0) = −116.524 (deg); θS(0) = 85.0 (deg).
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4 Conclusions

In this work local optimal transfers are calculated for lunar missions and a comparison
between the performance of Belbruno-Miller transfers and inner transfers is presented. In
both approaches, the optimization problem has been calculated using a gradient algorithm in
conjunction with Newton-Raphson method. It was shown that inner transfers with time of
�ight about 58.5 days have a better performance in comparison to Belbruno-Miller transfers.
Finally, it is veri�ed that the presence of the Sun improves slightly the fuel consumption for
inner transfers with correspondent time of �ight.
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