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Abstract: In this work, the resonance problem in the artificial satellites motion is studied.
The development of the geopotential includes the zonal harmonics J20 and J40 and the tesseral
harmonics J22 and J42. Through successive Mathieu transformations, the order of dynamical
system is reduced and the final system is solved by numerical integration. In the simplified
dynamical model, two critical angles are studied, φ2201 and φ4211. Numerical results show the
time behavior of the semi-major axis and φ2 angle.
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1 Introduction

Synchronous satellites in circular or elliptical orbits have been extensively used for naviga-
tion, communication and military missions. This fact justifies the great attention that has been
given in literature to the study of resonant orbits characterizing the dynamics of these satelli-
tes since the 60’s [1-11]. For example, Molniya series satellites used by the old Soviet Union
for communication form a constellation of approximately 110 satellites, launched since 1965,
which have highly eccentric orbits with periods of 12 hours. Another example of missions
that use eccentric orbits, inclined and synchronous, include satellites to investigate the solar
magnetosphere, launched in the 90’s [12].

The orbits of synchronous satellites are very complex. The tesseral harmonics of the geopo-
tential produce multiple resonances which interact resulting significantly nonlinear motions,
when compared to non-resonant orbits. It has been found that the orbital elements show rel-
atively large oscillation amplitudes differing from neighboring trajectories, they are in fact
chaotic [11]. It should also be noted that the characteristics of several missions involving such
orbits require that they are kept to a minimum fuel consumption. Geographic requirements de-
termined by the missions and spatial maneuvers of minimum cost demand precise control of the
trajectories that are subjected to significant nonlinearities during the satellite lifetime.

In this paper, the 2:1 resonance is considered; in other words, the satellite completes two
revolutions while the Earth carries one.

2 The Resonance Problem

In this section, a simplified Hamiltonian describing the resonant problem is derived through
sucessive Mathieu transformations.



Consider Eqn. (1) to the Earth gravitational potential written in classical orbital elements
[13, 14]
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µ
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+
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−∞∑

q=+∞

µ
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(
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)l

JlmFlmp(I)Glpq(e)cos(φlmpq(M, ω, Ω, Θ)), (1)

where µ is the Gaussian constant, µ=3.986009 x 1014 m3/s2, a, e, I , Ω, ω, M are the classical
keplerian elements: a is the semi-major axis, e is the eccentricity, I is the inclination of the orbit
plane with the equator, Ω is the longitude of the ascending node, ω is the argument of pericentre
and M is the mean anomaly, respectively; ae is the Earth mean equatorial radius, ae=6378.140
km, Jlm is the spherical harmonic coefficient of degree l and order m, Flmp(I) and Glpq(e) are
Kaula’s inclination and eccentricity functions, respectively. The argument φlmpq(M,ω, Ω, Θ) is
defined by

φlmpq(M,ω, Ω, Θ) = qM + (l − 2p)ω + m(Ω−Θ− λlm) + (l −m)
π

2
,

where Θ is the Greenwich sidereal time and λlm is the corresponding reference longitude along
the equator.

In order to describe the problem in Hamiltonian form, Delaunay canonical variables are
introduced

L =
√

µa G =
√

µa(1− e2) H =
√

µa(1− e2)cos(I)

l = M g = ω h = Ω. (2)

Using the canonical variables, one gets the Hamiltonian F̂ ,

F̂ =
µ2

2L2
+

∞∑

l=2

l∑

m=0

Rlm , (3)

with the disturbing potential Rlm given by

Rlm =
l∑

p=0

+∞∑

q=−∞
Blmpq(L, G,H)cos(φlmpq(l, g, h, Θ)) . (4)

The argument φlmpq is defined by

φlmpq(l, g, h, Θ) = ql + (l − 2p)g + m(h−Θ− λlm) + (l −m)
π

2
, (5)

and the coefficient Blmpq(L,G, H) by

Blmpq =
∞∑
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l∑

m=0
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L2
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JlmFlmp(L,G, H)H−(l+1),(l−2p)
q (L, G). (6)
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The Hamiltonian F̂ depends explicitly on the time through the Greenwich sidereal time
Θ, where Θ = Ωet (Ωe is the Earth’s angular velocity and t is the time). A new variable θ,
conjugated to Θ, is introduced in order to extend the phase space. In the extended phase space,
the extended Hamiltonian Ĥ is given by

Ĥ = F̂ + ωeθ. (7)

For resonant orbits, it is convenient to use a new set of canonical variables. Consider the
canonical transformation of variables defined by the following relations

X = L Y = G− L Z = H −G Θ = Θ

x = l + g + h y = g + h z = h θ = θ , (8)

where X, Y, Z, Θ, x, y, z, θ are the modified Delaunay variables.
The new Hamiltonian Ĥ ′, resulting from the canonical transformation defined by Eqn (8),

is given by

Ĥ ′ =
µ2

2X2
+ ωeθ +

∞∑

l=2

l∑

m=0

R′
lm , (9)

where the disturbing potential R
′
lm is given by

R
′
lm =

l∑

p=0

+∞∑

q=−∞
B
′
lmpq(X, Y, Z)cos(φlmpq(x, y, z, Θ)). (10)

Consider the resonance to be studied in this work; that is, the commensurability between
the Earth rotation angular velocity Ωe and the mean motion n. This commensurability can be
expressed as

qn−mωe
∼= 0 (11)

considering q and m as integers. The commensurability of the resonance studied, q/m, is defined
by α. When this commensurability ocurrs, small divisors, associated to the tesseral harmonics,
arise in the integration of the equations of motion [9]. These terms are called resonants.

The short and long period terms can be eliminated from the Hamiltonian Ĥ ′ by applying an
averaging method. A reduced Hamiltonian Ĥr is obtained from the Hamiltonian Ĥ ′ when only
secular and resonant terms are considered. Several authors, [15], [16], [17], [18], [11] also use
this simplified Hamiltonian to study the resonance. The reduced Hamiltonian Ĥr is given by

Ĥr =
µ2

2X2
+ ωeθ +

∞∑

j=1

B
′
2j,0,j,0(X, Y, Z) +

+
∞∑

l=2

l∑

m=2

l∑

p=0

B
′
lmp(αm)(X,Y, Z)cos(φlmp(αm)(x, y, z, Θ)). (12)
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The canonical system of differential equations governed by Ĥr has the first integral

(
1− 1

α

)
X + Y + Z = C1 (13)

where C1 is an integration constant.
Using this first integral, a Mathieu transformation

(X,Y, Z, Θ, x, y, z, θ) → (X1, Y1, Z1, Θ1, x1, y1, z1, θ1)

can be defined.
This transformation is given by the following equations

X1 = X Y1 = Y Z1 =
(
1− 1

α

)
X + Y + Z Θ1 = Θ

x1 = x−
(
1− 1

α

)
z y1 = y − z z1 = z θ1 = θ. (14)

The subscript 1 denotes the new set of canonical variables. Note that Z1=C1 and the z1 is an
ignorable variable. So, the order of the dynamical system is reduced in one degree of freedom.

Substituting the new set of canonical variables, X1, Y1, Z1, Θ1, x1, y1, z1, θ1, in the reduced
Hamiltonian given by Equation (12), one gets the resonant Hamiltonian. The word "resonant"
is used to denote the Hamiltonian Ĥ1,rs which is valid for any resonance. The periodic terms in
this Hamiltonian are resonant terms. The Hamiltonian Ĥ1,rs is given by

Ĥ1,rs =
µ2

2X2
1

+ ωeθ1 +
∞∑

j=1

B1,2j,0,j,0(X1, Y1, Z1) +

+
∞∑

l=2

l∑

m=2

l∑

p=0

B1,lmp,(αm)(X1, Y1, Z1)cos(φ1,lmp(αm)(x1, y1, z1, Θ1)). (15)

The Hamiltonian Ĥ1,rs has all resonant frequencies, relative to the commensurability α,
where the φ1,lmp(αm) argument is given by

φ1,lmp(αm) = m(αx1 −Θ1) + (l − 2p− αm)y1 − φ1,lmp(αm)0 , (16)

with

φ1,lmp(αm)0 = mλlm − (l −m)
π

2
. (17)

The secular and resonant terms are given, respectively, by B1,2j,0,j,0(X1, Y1, Z1) and
B1,lmp(αm)(X1, Y1, Z1).

Each one of the frequencies contained in dx1

dt
, dy1

dt
, dΘ1

dt
is related, through the coefficients l,

m, to a tesseral harmonic Jlm. By varying the coefficients l, m, p and keeping q/m fixed, one
finds, all frequencies dφ1,lmp(αm)

dt
concerning to a specified resonance.

Now, consider a single frequency among the several resonant frequencies that can be ob-
tained from the expression
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φ1,lmp(αm)

dt
= m

(
α

dx1

dt
− dΘ1

dt

)
+ (l − 2p−mα)

dy1

dt
. (18)

The frequency φ̇1,lmp(αm) for the fixed coefficients m and (l − 2p−mα) will be the unique
resonant frequency considered in the resonant Hamiltonian Ĥ1,rs. This frequency will be called
"critical frequency".

A critical frequency can be, for example, the one that results in a smaller numerical value
for φ̇1,lmp(αm), implying a effect strengthening of the resonance considered. The frequencies of
the arguments Ω and ω can become more pronounced the presence of small divisors that arise
in the integration of the motion equations, this depend also on the eccentricity and inclination
of the orbit plane. The importance of the node and the pericentre frequencies is smaller when
compared to the mean anomaly and Greenwich sidereal time, however, they also have their con-
tribution in the resonance effect. As mentioned in preceding paragraphs, the coefficients l, m,
p can vary, producing different frequencies within the resonant cosines for the same resonance.
These frequencies are slightly different, with small variations around the commensurability
given by αẋ1-Θ̇1.

In the keplerian elements, the coefficient of frequency ω̇ assumes the values 2, 0, -2, and the
coefficient of frequency ẏ1 assumes the values 1, -1, -3.

According to Equation (16), the argument in the resonant Hamiltonian is given by
φ1,lmp(αm)(x1, y1, Θ1). To determine a critical frequency, one needs to fix all the coefficients of
the variable x1, y1, Θ1; in other words, one fixes α, m and (l-2p-mα).

The coefficient α is fixed, because the type of resonance is defined; in this paper 2:1. Once
the resonant angle has been chosen, the coefficients m and (l-2p-mα) must be fixed too.

By fixing the expression l − 2p instead of the coefficients l and p separately, one has the
possibility to vary l and p, considering that l − 2p is a certain fixed value k. Once this critical
frequency has been chosen among the possible resonant frequencies, the other periodic terms
of the Hamiltonian ˆH1,rs are taken as short period terms, with frequencies different from the
critical frequency.

Defining a single critical frequency, or, assuming the isolated study of each frequency, a
new Hamiltonian is obtained. This new Hamiltonian is given by

Ĥ1,c =
µ2

2X2
1

+ ωeθ1 +
∞∑

j=1

B1,2j,0,j,0(X1, Y1, C1) +

+
∞∑

l=2

l∑

p=0

B1,lmp,(αm)(X1, Y1, C1)cos(φ1,lmp(αm)(x1, y1, Θ1)). (19)

The coefficients k = l − 2p and m are fixed. This Hamiltonian contains secular and critical
terms only. Since k is a fixed value, Ĥ1,c can be put in the simplified form

Ĥ1,c =
µ2

2X2
1

+ ωeθ1 +
∞∑

j=1

B1,2j,0,j,0(X1, Y1, C1) +

+
∞∑

p=S

B1,lmp,(αm)(X1, Y1, C1)cos(φ1,lmp(αm)(x1, y1, Θ1)) , (20)

where µ2

2X2
1

+ ωeθ1 is the central part of the Hamiltonian,
∞∑

j=1
B1,2j,0,j,0(X1, Y1, C1) contains

only secular terms with the even zonal harmonics, and

5



∞∑
p=s

B1,(2p+k)mp(αm)(X1, Y1, C1)cosφ1,(2p+k)mp(αm)(x1, y1, Θ1)

represents the resonant terms that have the same critical frequency.
The canonical system of differential equations governed by the Hamiltonian Ĥ1,c has the

first integral

(k −mα)X1 −mαY1 = C2 , (21)

where C2 is an integration constant.
Using this integral, a new Mathieu transformation can be defined. This canonical transfor-

mation is given by the following equations

X2 = X1 Y2 = (k −mα)X1 −mαY1 Θ2 = Θ1

x2 = x1 +

(
k −mα

mα

)
y1 y2 = − 1

mα
y1 θ2 = θ1. (22)

The subscript 2 denotes the new set of canonical variables.
The Hamiltonian function is invariant with respect to this new Mathieu transformation.

Thus, from Eqns. (20) and (22), one gets the final Hamiltonian Ĥ2,f

Ĥ2,f =
µ2

2X2
2

+ ωeθ2 +
∞∑

j=1

B2,2j,0,j,0(X2, C1, C2) +

+
∞∑

p=S

B2,(2p+k)mp(αm)(X2, C1, C2)cos(φ2,(2p+k)mp(αm)(x2, Θ2)) , (23)

where
∞∑

j=1
B2,2j,0,j,0(X2, C1, C2) represents the secular terms and

∞∑
p=s

B2,(2p+k)mp(αm)(X2, C1, C2)cosφ1,(2p+k)mp(αm)(x2, Θ2)

represents the resonant terms with the same critical frequencies. Note that Y2 = C2 and y2 is an
ignorable variable.

The new angle φ2,(2p+k)mp(αm)(x2, Θ2) is given by

φ2,(2p+k)mp(αm)(x2, Θ2) = φ2 − φ2,(2p+k)mp(αm),0 , (24)

where φ2 = m(αx2 −Θ2), and

φ2,(2p+k)mp(α),0 = mλ(2p+k)m − (2p + k −m)
π

2
= φ1,lmp(αm)0 . (25)

Recall that k and m are two fixed coefficients determined by choosing a critical resonant
frequency, among the several possible resonant frequencies. The Hamiltonian Ĥ2,f has all
tesseral related to the chosen critical frequency.

6



For small eccentricities, the Hansen’s coefficients can be expressed in Newcomb’s polyno-
mials and Kaula’s eccentricity function [14]:

H−(2p+k+1),k
αm (e) = G(2p+k)p(αm)(e). (26)

Accordingly, the Hamiltonian Ĥ ′
2,f can be rewritten as

Ĥ ′
2,f =

µ2

2X2
2

+ ωeθ2 +
∞∑

j=1

B2,2j,0,j,0(X2, C1, C2) +

+
∞∑

p=S

B2,(2p+k)mp(αm)(X2, C1, C2)cos(φ2,(2p+k)mp(αm)(x2, Θ2)) , (27)

with

B2,(2p+k)mp(αm)(X2, C1, C2) =
µ2p+k+2

X4p+2k+2
a2p+k

e J(2p+k)m ×
×F(2p+k)mp(X2, C1, C2)G(2p+k)p(αm)(X2, C2) , (28)

where the function Glpq(e) is the Kaula’s eccentricity function. Prime denotes the simplified
Hamiltonian for small eccentricities.

The dynamical system generated by Hamiltonian Ĥ ′
2,f is

dX2

dt
= −mα

∞∑

p=S

B2,(2p+k)mp(αm)(X2, C1, C2)sen(φ2,(2p+k)mp(αm)) (29)

dφ2

dt
= mα

µ2

X3
2

−mωe −mα
∞∑

j=1

∂B2,2j,0,j,0(X2, C1, C2)

∂X2

−

−mα
∞∑

p=S

∂B2,(2p+k)mp(αm)(X2, C1, C2)

∂X2

cos(φ2,(2p+k)mp(αm)(x2, Θ2)) (30)

The Eqns. (29) and (30) represent the motion equations in a resonance of commensurability
α.

3 Results

Figures 1 to 8 show the time behavior of the semi-major axis and φ2 angle, according to the
numerical integration of the motion equations, (29) and (30). The initial conditions, in the Figs.
1 to 8, for inclinations are 100 and 550, and eccentricities, 0.001 and 0.01. The initial values of
semi-major axis are around the critical semi-major axis. Note that the circulation and libration
regions are differentiated by color.
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Figure 1: φ2 versus t, considering the tesseral harmonic J22. The initial conditions for inclination and
eccentricity are I = 10o and e=0.001, respectively.
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Figure 2: a versus t, considering the tesseral harmonic J22. The initial conditions for inclination and
eccentricity are I = 10o and e=0.001, respectively.

8



-1000

-500

 0

 500

 1000

 1500

 2000

 0  2000  4000  6000  8000  10000  12000  14000

φ 2
 (

de
gr

ee
s)

t (days)

libration
circulation

Figure 3: φ2 versus t, considering the tesseral harmonic J22. The initial conditions for inclination and
eccentricity are I = 55o and e=0.001, respectively.
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Figure 4: a versus t, considering the tesseral harmonic J22. The initial conditions for inclination and
eccentricity are I = 55o and e=0.001, respectively.
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Figure 5: φ2 versus t, considering the tesseral harmonic J22. The initial conditions for inclination and
eccentricity are I = 10o and e=0.01, respectively.
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Figure 6: a versus t, considering the tesseral harmonic J22. The initial conditions for inclination and
eccentricity are I = 10o and e=0.01, respectively.
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Figure 7: φ2 versus t, considering the tesseral harmonic J22. The initial conditions for inclination and
eccentricity are I = 55o and e=0.01, respectively.
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Figure 8: a versus t, considering the tesseral harmonic J22. The initial conditions for inclination and
eccentricity are I = 55o and e=0.01, respectively.

Figures 1 to 8 show that vibration amplitudes increasing when the inclination varies from
10o to 55o and when the eccentricity varies from 0.001 to 0.01. Figures 9 and 10 show the time
behavior of the semi-major axis and φ2 angle, considering the critical angle φ2201 associated to
tesseral harmonic J22 and the critical angle φ4211 associated to tesseral harmonic J42. The Table
1 show the resonant coefficients.
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Table 1: Resonant coefficients.
Degree (l) Order (m) p q

2 2 0 1
4 2 1 1
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Figure 9: a versus t, considering the tesseral harmonics J22 and J42. The initial conditions for inclina-
tion and eccentricity are I = 10o and e=0.01, respectively.
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Figure 10: φ2 versus t, considering the tesseral harmonic J22 and J42. The initial conditions for incli-
nation and eccentricity are I = 10o and e=0.01, respectively.
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Figures 9 and 10 show the difference in the time behavior of the semi-major axis and φ2

angle, with the addition of the tesseral harmonic J42. The tesseral harmonic J42 is ∼= O(10−6)
and it changes the value of the critical semi-major axis, in some centimeters, see the Table 2.
The Table 2 show the critical semi-major axis for different inclinations and eccentricities and it
shows the difference in the numerical value of the semi-major axis, when the tesseral harmonic
J42 is included. These critical values are obtained from the following condition

µ2

X3
2

− 2ωe −
∞∑

j=1

∂B2,2j,0,j,0(X2, C1, C2)

∂X2

= 0 . (31)

Table 2: Critical semi-major axis.
Eccentricity Inclination (o) Critical angle Semi-major axis (km)

0.001 10 φ2201 26557.05255
0.001 55 φ2201 26562.59742
0.01 10 φ2201 26557.05208
0.01 55 φ2201 26562.59758

0.001 10 φ2201+φ4211 26557.05194
0.001 55 φ2201+φ4211 26562.59767
0.01 10 φ2201+φ4211 26557.05148
0.01 55 φ2201+φ4211 26562.59783

4 Conclusions

In this work, the dynamical behavior of two critical angles associated to the 2:1 resonance
problem in the artificial satellites motion have been investigated. Through successive canonical
transformations, a simplified model describing the problem is derived. In the regular motion
region, one can study the dynamical system considering each critical angle separately.

The results show the time behavior of the semi-major axis and φ2 angle, considering two
inclinations, 100 and 550, and different eccentricities, 0.001 and 0.01. Two different regions are
observed in the numerical integration, libration and circulation regions.

Two critical angles are studied, φ2201 associated to J22 and φ4211 associated to J42. The
values of the critical semi-major axis show a difference of centimeters in the libration region,
when the tesseral harmonic J42 is added.

Inside the region where the resonances are found, the motion can be chaotic, because it
shows sensibility to initial conditions.
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