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Abstract: A control method is developed for the solar sarhmal vector to trace a desired
circular coning trajectory at orbit rate. The comjrirajectory is defined in the local vertical

local horizontal (LVLH) frame and the coning occatsout an LVLH equilibrium sail attitude.
Past research has shown that sail attitude equdilexist in the LVLH frame under the influence
of aerodynamic, gravity gradient and solar torquesecession of the sail normal from these
equilibria causes sail normal coning about that éiguum attitude. If the coning happens at
orbit rate, wide variety of orbital effects canipeluced. This results in an inexpensive
spacecraft with a longer duration mission as conglatio other conventional efforts. A special
case of analyzing circular cones (at orbit rate i) reveals that desired orbital effects are
induced by employing the sail coning method. Tmrobmethod herein minimizes the angular
momentum error between the actual and desired angabmentum vectors at orbit rate. Since
angular momentum is a function of sail normal, dagmomentum error reduction raises hope
in reducing the sail normal error between the atad desired sail normal vectors as well.
Results for tracking a 1° circular cone about anLEVequilibrium point where maximum orbital
effects are induced is presented. The sail noreyabiced with an accuracy of 0.05°. The control
torques required to induce this circular orbit ratening are on the order of F0Nm (acceptable
on small sailcraft).
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1. Introduction

Solar sails are an attractive solution for expemsand massive space missions.
Traditional spacecraft must carry in-space propulduel that increases both launch mass and
cost. A sail exposed to solar radiation offers fed continuous propulsion by manipulating the
sail thrust vector direction relative to the Sungufe 1 illustrates a simple solar sail
configuration and Fig2 shows how the solar radiation thrust force isdus® propulsion.
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Figure 1. Solar sail configuration Figure 2. Solar radiation thrust force

A solar sail consists of a sailcraft bus that heube necessary electronics and hardware, a large,
reflective, gossamer sail and an attitude manimriatomponent (tip vanes, thrusters, reaction
wheels). The integrated effect of the reflectedtphs provides the propulsive thrust force. A
large sail area is required in order to interrdqy@ photon radiation and produce an appreciable
amount of thrust force. Since acceleration is isgr proportional to mass for a given thrust
force, the mass of the sailcraft must be kepti@r@amum. Thus, the sail and bus are designed to
provide a large area-to-mass ratio and maximizeptiopulsion acceleration. Incident rays of
sunlight reflect off of the sail (assume specuédtection from a perfectly flat sail) and produce
two force components: one in the direction of theident sunlight and another in the opposite
direction of the reflected rays. In the net foreztor, the components tangent to the sail surface
cancel and the components normal to the surfacaagddduce the thrust force approximately
in the sail normal direction. NASA’s CubeSail prjeised a perfectly reflective 40°raquare
sail in simulation to show that at 1 AU from then$0.03 N of solar radiation thrust force can be
produced [1]. Although this force is relatively dhr@mpared with other propulsion methods, it
is available continuously and hence can still bedu propel spacecraft for long distances
without carrying any propellant.

The free propulsion from solar radiation makes rotéel mission durations feasible with
reduced spacecraft mass and cost. A typical sciemssgion is expected to cost on the order of
one million dollars per kilogram of spacecraft mggs This leaves high potential for low-cost
science missions that have reduced spacecraft Massan example, results from a comet
rendezvous mission study to reach Comet 88P/Houshg chemical propulsion and solar
sailing are shown in Figure 3.
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Figure 3. Comet Rendezvous Mission Study Using Cimécal and Solar Sail Propulsion

Via traditional chemical propulsion, a Hohmann $&fa@n from the Earth to the comet required

400 kg of propellant mass, whereas the solar saipteted the same mission with a total

spacecraft mass of 3 kg (a factor of ~135 redugti@pacecraft mass). This translates into lower
launch costs to Earth escape velocity and reduegdlopment costs for the spacecraft [2]. The
transfer time for the high thrust approach usingnaical propulsion was 0.7 years as compared
with 10 years for the solar sail. Therefore, forssions where transfer time is not a critical

parameter, solar sail propulsion can result iniBgant fuel mass savings.

The significant solar thrust propulsion enables-Heplerian orbits for solar sails. With
this unique capability of solar sails, many spacerse missions can be achieved which are
difficult to implement using conventional (chemicgbropulsion techniques. Conventional
propulsion can only produce Keplerian orbits suelelipses, parabola and hyperbola (parts of a
conic section). However, non-Keplerian orbits can groduced with constant sail thrusting
through which orbit raising and precession candigexzed. One such mission is the study of the
Earth magnetotail for which non-Keplerian orbite aesired. This requires the spacecraft orbit
to continuously rotate to follow a Sun-synchrong@ash and also raise its orbit to explore the
entire magnetotail. Two mission scenarios usingveational and solar sail propulsion are

illustrated in Figure 4.

Figure 4. Exploring Earth Magnetotail Using Chemi@l and Solar Sail Propulsion



The chemical propulsion (purple line — rocket) withel enough for initial orbit injection
produces an elliptical orbit, which then stays fiadly fixed as the Earth (along with the
magnetotail) rotates about the Sun. Since the ntagglerotates with the Sun-Earth line, an
inertially fixed Keplerian orbit with spacecraft @gee inside the magnetotail provides less than
three months of science data. The spacecraft teltita for a limited time until the magnetotail
rotates away with the Earth. In contrast, the sshkilt propulsion system provides a unique
steering capability that enables long-term residenithin the magnetotail. In addition, the sail
orbit can also be raised to provide full coveraighe magnetotail. The solar sail propulsion
(yellow line — sail) allows the semi-major axistbé orbit to increase and precess with the Earth
rotation. With a continuous Sun-synchronous apse{iirecession to rotate and raise an elliptical
Earth orbit, at least two years of scientific datauld be returned [3]. Solar sail propulsion may
provide an optimum propulsion system over conveatichemical propulsion, at least in some
missions. It may also have advantages over elgatapulsion due to the ease in attaining non-
Keplerian orbits with reduced mission mass and st

1.1Solar Sail Attitude Dynamics and Control

Solar sail research on orbit analysis focuses odywing orbit raising/lowering and inducing
orbital effects using the sails. These effects yiaild otherwise expensive orbits such as Sun-
synchronous and halo types. Orbit changes resutt brienting the thrust vector, and in order to
achieve the desired orbital effects, the sail noypsrate at the required attitude to modulate the
solar thrust. Thus, orbit analysis has also maathe research work on sail attitude
manipulation. Sails typically contain a small spaeé bus in the midst of a large, gossamer
structure. Most sail work has addressed feasibitibyncerns related to orbit analysis and
structural sail dynamics. Due to this configuratisimgnificant solar, aerodynamic and gravity
gradient torques act on the sail and can distugls#il orientation (attitude) relative to the sun.
Accordingly, large control torques are needed tonteract these attitude disturbances, and an
understanding of sail attitude dynamics is requinedorder to design appropriate control
algorithms.

Recent studies have analyzed natural sail dynamiasler to maintain the desired thrust
vector pointing [5 and 6]. Generally, large extétoaques are required to maintain the desired
thrust vector pointing relative to the Sun. Lawmnet. al. have shown that specific kinds of
torques can be generated naturally under the infei@f solar, aerodynamic and gravity gradient
torques [5]. This reduces the need for expensidenaassive traditional attitude control
techniques (attitude jets or reaction wheels). Gdsc ideas to operate at the attitude equilibria
of the sail normal vector in the local verticaldbtorizontal (LVLH) frame. An extension of this
idea is to utilize a slight deviation of the sadirmal from these equilibria, which results in sail
normal coning about that equilibrium. McMahon,at.have shown that any desired orbit
changes can be obtained with sail normal coniraglat rate (circular cones) [6].
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Figure 5. Solar Normal Coning in Local Vertical Lacal Horizontal Frame

In Fig. 5, the sail normal cones about the LVLH ieguum attitude,I\AIE . With a slight

deviationg from the equilibrium attitude, the normal vectortraces a coning trajectory; @

the L-frame (defines natural sail coning). The ctvaeing should occur at orbit rate to attain
desired sail orbit changes. Swartwout, et. al.llsst@ering law also produces the desired orbital
effects, however with significant control torquedaapid maneuvers that can damage the sail
[7]. In contrast, McMahon'’s approach produces sim@ail rotation rates that avoid disturbing
the structural sail dynamics [6]. In his work, r@hges of the desired orbital effects can be
attained when the natural sail coning occurs at oate [6]. This work intends to build upon
these studies and explore the feasibility of desma control that can enable the sail normal to
trace a circular coning trajectory at orbit rate.

2. Solar Sail Coning Dynamics

In this section, the dynamics of the solar sal@nesented. With the sail dynamics, the
concept of sail attitude equilibrium in the localrtrcal local horizontal frame (L-frame) is
explained. The L-frame sail attitude equilibria leleasail normal coning in the inertial frame (A-
frame). A small perturbation from the sail attituebpiilibria induces L-frame coning of the sall
normal about those sail equilibria. This L-frameiog of the sail is discussed. Natural
environmental torques can cause sail precessioemalale L-frame sail coning.

Many orbital effects can be obtained due to tHealme coning of the sail normal about
the sail equilibria. However, the natural rate ahdpe of coning of the sail normal about the sail
equilibrium point does not yield the desired orbétiects. Control torques can be used to
enforce the desired rate and coning shape (circolaes). Results showing the coning of the sail
normal in the L-frame about the sail equilibriune aresented.

2.1. Reference Frames
In order to describe the sail dynamics in a cincaldit, the reference frames used are
given in Figure 6 [5].



|
| | ascending node

L=l
Y T |“““—-.._*__ :I:

Figure 6. Reference Frames used to Develop Sail mamics’

The A-frame[f(, Y, Z}is the inertial (fixed) frame. Theandy define the Earth equatorial frame
with X pointing along the vernal equinox. Thés normal to the equatorial frame. The local
vertical local horizontal or L-framéf,V,0} rotates along with the orbit at orbit rate. Fhints
along the orbit radial directioitjs in the direction of the sail velocity vector arid aligned with
the orbit angular momentum. The C-fra{ﬁef),d}is the sail body-fixed frame. Thigpoints
along the sail normal vector (normal to the plahéhe sail). Thed andgremain in the plane of

the sail. The B-fram{eﬁ,f, rh}is also a body frame except that it does not rotatte the sail in the

rotation aboufi. Thel andlie in the plane of the sail. Thus, the only diéiece between the B-
frame and C-frame is the rotation abOufThe B-frame is taken to be aligned with the Grfea
at the initial time epoch.

2.2. Description of Sail Equilibria in L-frame and Inertial Sail Normal Coning

Any fixed sail normafiin the L-frame describes the sail equilibrium ati& in the L-
frame. The sail attitude can be defined by thersaimal vectom because the sail is symmetric
abouthand the rotation abodoes not alter the forces on the sail. When tHensainal nis
fixed in the L-frame, but not aligned with, the sail rotates with the orbit and producestiaker
coning offat orbit rate.
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Figure 7. lllustration of Inertial Coning of the L -frame Fixed Sail Normal

In Figure 7, the sail normal remains fixed in th&rame (indicated by the constant angleand
causes inertial coning afat orbit rate. By choosing appropriately, the sail angular momentum
precesses to provide inertial coning with desirablet change effects. The angular momentum

precession, in turn, is caused by torques actindpesail. Fonto remain fixed in the L-frame
and enable inertial coning, the sail angular mommanust precess at a desired rate.

Al -
[hdesired:l = Trequired (1)

Whereﬁdesireaandrrequiredare the desired precession of the angular momeitegpuired torque to
attain this desired motion, respectively. Lawrergteal. [6] have shown that thig,,;.,can be

achieved with naturally induced environmental t@sgj(atmospheric, gravity gradient and solar)
acting on the sail.

2.3. L-frame Sail Normal Coning

The sail normahcan be described in the L-frame via a cone afigied a clock anglé.



Figure 8. Cone and Clock Angles of the Sail Normaklative to the L-frame®

From Figure 8 [5], the sail normalbecomes
A = —(sinBsing)F +(sinB cosg )i + (coss)d 2)
Lawrence, et. al. have shown that for the develgaglddynamics, a small sail normal

perturbation from the L-frame attitude equilibrimables the sail normal to cone about that
equilibrium point [5]. This constitutes sail nornz@ning in the L-frame illustrated in Figure 9.
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Figure 9. lllustration of the Sail Normal Coning in the L-frame

Thef, exhibits the sail equilibrium point ands the coning sail normal vector. The perturbation
is given by a small deviatio in the cone anglegd. The coning is defined such that the cone

need not be circular or have a fixed coning rateMdhon, et. al. have shown that desired orbital
effects can be induced when the L-frame coning iscatorbit rate such that one rotation

of haround, is completed in one orbital period and has a cicabning shape [6]. They state
that the greatest orbital effects can be induceenvthe sail normal is operated &35 and
¢ ‘=0 for 1 cones. This study is performed using these paramete



2.4. Natural Dynamics of Sail Normal Coning in L-fame using CubeSail Simulation

Lawrence, et. al. have created a MATLAB simulatfiona CubeSail (small solar sail
satellite) that propagates the sailcraft attitudeéear the influence of aerodynamic, solar pressure
and gravity gradient torques over a circular, Loavtk Orbit [5]. The sailcraft studied consists of
a solar sail and sailcraft bus, which is locatedaduhe sail plane. The sailcraft model used in
this study is shown in Figure 10.

Y
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Figure 10. Physical Components and Dimensions dig Sailcraft Model

The sail is assumed to be flat, rigid, uniform,aguwith a sailcraft bus located out of the sail
plane at a distance along the sail normaf,. Since the sail is symmetric and rotation

aboutidoes not alter any solar, aerodynamic, or gravigglignt forces, the sail attitude can be
described only by the sail normal vector when abersing these external effects. The bus is
located near the plane of the sail (0.22 m) as esetpwith the sail size (409nwhich enables
the sailcraft moment of inertia to be similar tattbf a flat plate [8]. A large, gossamer sail will
be non-rigid in space. It is argued that the ollgitament control applications using coning
motions produce smooth, low frequency environmewotaues, on the order of orbit frequency
and require closed loop settling times on the oodaeveral orbits. The disturbance frequencies
and control system bandwidths are on the ordef8fHz (for 700 km Low Earth Orbit),
whereas the lowest structural modes of the saiiratiee range of 18to 10% Hz [4]. This

suggests that the torque applications do not eko#tesail structural modes, thus justifying the
rigid body assumption from a control-structure rattion viewpoint. Non-uniform material
properties within the sail will cause imperfectasaleflections and variations in pressure-loading
on the sail. The varying pressure-loading issuedeflorm the sail and hence it will no longer
remain flat in orbit. A deformed sail will experiemndifferent torques as a function of attitude.
However, the varying pressure-loading issue iscarsgary effect and offers more insight on the
sailcraft torque as a function of attitude by dém@from the ideal case. This study focuses on
the ideal (flat) case. The case of a non-spinnailgsanalyzed in this work. The orbit and
sailcraft parameters used are shown in Table 1.



Table 1. Orbit and Sailcraft Parameters

Orbit Parameters

Altitude, a 700 km
Inclination, i 90°

Right ascension of ascending node, 180°

Orbit rate, w, 1.06 x 10’ rad/s
Right ascension of sum, 90°
Declination of sund, 0°

Solar flux at 1 AU,F, 1358 W/ni
Atmospheric densityp 5 x 10™ kg/n?’
Aerodynamic moment coefficient,,, 1.18 x 10° Nm
Solar moment coefficient;, 9.84 x 10° Nm
Gravity gradient moment coefficient,, 6.33 x 10° Nm
Sailcraft Parameters

Sail side lengthL 6.325m

Sail massm, 1.7 kg
Sailcraft bus massn, 1.3 kg
Distance to bus from sail planefidirection, r, 0.22m

Axial moment of inertia/ , 11.3 kgnd
Transverse moment of inertid, 5.7 kgnf

Sall reflectivity, < 0.9
Aerodynamic coefficient of drag;, 2.2

Specular reflectance fractiord, 0.7

The simulation is run for three orbital periods ahdws the results for the motion of the
sail normalfiin the L-frame.

10
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Figure 11. Sail Normal Coning in the L-frame aboutthe Equilibrium Point, [ =35°, $=0°]

The three-dimensional plot shows the motioniofthe L-frame. The two-dimensional plot gives
a time history of the cone and clock angles overciburse of several orbital periods. Tle®nes
about the equilibrium point in the L-frame. Howewvire coning does not occur at orbit rate (one
cone is traced in two orbits). In addition, the iogris not circular aBmoves in the vicinity of
the equilibrium point.

Since the natural motion is not orbit rate circwaning (desired for useful orbital
effects) control torques on the sailcraft are ne@gs The control torque induces the desired
coning and enforces orbit rate coning. The pathefcontrol torque used to induce the desired
coning (referred to as coning control torque) alidive sail normal to trace the desired shape of
the coning trajectory, whereas the other part efdtntrol torque enforcing orbit rate coning
(called as the rate control torque) allows the sarmal to trace the trajectory at the desired rate
The total control torque required to attain theirdeksorbit rate circular coning is a combination
of these two control torques. The next section eskls the type of control method that can be
used in order to enforce orbit rate circular corang analyzes its performance.

3. Control Method

A control method is developed to enable the sainab nto track the desired sail normal
. on the circular coning trajectory and provide brhate coning in the L-frame. The control law

must establish a relationship between the contmjue, 7., and sail motiomrelative to the
desiredf, that provides closed loop stability. Note that s angular momenturh,andr,, .,

inertial - -,
are related by the simple dynamics [h}:r. Thus, a control method is developed such

thath tracks the desired angular momenttﬁmn the coning trajectory at orbit rate. The control

law is used to reduce the error betweamdh,. Since sail angular momentum is a function of
sail normal/angular position or sail attitude (E4), the control law is created with the hope that

11



error reduction in angular momentum and thus tregkhe desired angular momentum at orbit
rate will also lead to tracking the desired sagw@ar position at orbit rate (enaliéo trackn, ).

This control method enables the sail angular moumamtectoﬁsto trace the sail angular

momentum vector on the desired circular coningettajry ﬁc at orbit rate. This in-turn can cause
the sail normal vectomto trace the desired normai,and hence yield the desired circular

coning at orbit rate. Heﬁgis the simplified notation for the angular momentugactor of the C-
frame as seen by the A-frame (giver?[ﬁg]c). Likewise,ﬁcis the simplified notation for the

desired angular momentum vector of the C-frameean by the A-frame (given QEECL). In

order to prescriblE:c the kinematics of the coning trajectory are cal@daFor a giveg,andg,,

the desired coning trajectory is illustrated inurig12.
E
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Figure 12. Desired Coning Trajectory

The desired trajectory traces a circular cone (¢@tie angley ) about nominal sail normaj at
orbit rater, . The cone lies in a plane perpendiculai,toThe sail normal position on the cone at
each time step is given By. The motion of the sail normail.is determined by rotating via a

time-varying rotation matri>®’which has rotation axisand rotation anglé. In order to
calculateE, a vectorElperpendicuIar t@, is defined in the L-frame components.
COS{ﬂo)'Sin(%)
él 1 rA‘o - [él]L il COE{,BO)- C05(¢0) (3)
sin(/%,)

A plane can be defined by two orthogonal vectoteng withéi, the plane of the cone is
determined by calculating another vecf%g,z Iél x A, . Now, the vectoE at each time step can
be expressed as a linear combinatioB,ahdE, in the plane of the cone.

12



E-= coga,t)- I21 +sin(wt)- Iéz (4)

With the rotation axis and defined rotation anglé, the rotation matrixg? is [9]

EQ* EQ-E(2) E@)-E@) 0 E@B -E@2
R® = co45)- |, + (1- cosd)- I%(l) I%(Z) ) I§(2)A2 é(%) E(3) |+sin(s)- —AE(S) 0 E(1) (5)
E@)-EQB) E(2)-E(3) E@3) E(2 -E@® o

and the sail normah, is given by, = R” - fi,. Using the definition of the sail normal in the L-
frame, the desired angular positiofi, Gndg, ) of the sail at each time step on the coning
trajectory can be computed as
—sin(g;)-sin(¢.)] B, =cos*(A,(3))
), =| sin(p.)-codg.) | =, _ tan-l[—frc(l)J ©
cod/.) ° A,(2)

Figure 13 presents an example of the desired ar@aning trajectory (half cone angte; 1°)
throughout one orbital period for a given sail éQuum point atg, = 35 andg, = 0°.

[¥5]
(3]

(5]
(5]
(5]

345 ofit, [n,], - sail equilibrium

Desired Cone Angle, [;‘,C, [deg]
)
(4]

desired cone
" 1 ~ M

[¥3]
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[=]
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— L-frame sail equilibrium

R i i i H 0 fd
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Figure 13. Desired Circular Coning Trajectory havng Half Cone Angle,6=1° about a
Nominal Sail Normal of $p=35°, ®¢=0° (One Orbital Period)

Desired Clock Angle, (N [deq]

The nominal sail normai, is rotated at each time step wifito yield the desired cone given
byn,. Thes,andg, of the coning motion (extracted fraip) exhibit sinusoidal behavior and can
be expressed as

13



B. = By + x-sin(w, -t),x= 5

N =,

From the desired angular position, the desired languosition rate . andg, ) is determined.
. =38-w,-codm, -t)

 — v -sin(o. _—1Mj ®)
d. =-y-w,-sin(w, -t),y = tan [ X
The rate also has sinusoidal motion. Along withdbsired angular positions and rates, the
desired angular velocitY@B*) is also required to derive the kinematics ofdbaing trajectory.
The rate of change @fin the L-frame is
L 42 B 42 ~

ddrlcz C:I[°+LCT)BxﬁC —)—d[gi]L =[L(?)B]L x[ﬁc]L ©)

since the sail normal is fixed in the B-frame. Byframe is defined such that the motiomaf

the L-frame only describes the sail tip and tilioegties (there is no rotation about the
direction). Hence, Eq. €an define only two velocity components uniquelgt the angular

velocity components ofo, in the L-frame be

[LE)B]L -

r

e 8

\

S

(o]

dlA.}

Now Tcan be expanded as

—sinf_ cosp.d, — cosp, sing, S, @, COSP, — w, Sin B, COSp,
=| —sinp._sing g, +cospB, cosp.f. |=| -, cosp, —w,sinp, sing, (10)
—sing_p. w, Sinf_ cosg, + w, Sin f_ sing,

d[ﬁc ]L
dt

and re-arranged to give
0 cosB, -sinp.cosp. | [w ] |-sinp, cosp.é, —cosp,sing.p.
—C0Sp, 0 —-sing.sing, || o, —sing,_ sing.g, + cc_)sﬂC cosg,. f3, (11)
sinfg, cosp, sing.sing, 0 o, —sing.p.

A

The A matrix is singular because its determinafbusid to be zero. One of the velocity
components is linearly dependent on the other twebhence multiple solutions foi, exist.
Figure 14 depicts the meaning of multiple solutionthis case.

14
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Figure 14. Multiple Angular Velocity Solutions

In Figure 14," @, is expressed in the B-frame components. All sohgtibave the san@ndm
components but differefittomponents because the use &f, x i_equation makes tifevelocity
component arbitrary (the kinematic Eq. 9 can omgatlibe two velocity components uniquely).
However, the B-frame is defined to have no compboéthe angular velocity in thedirection.
This requires thavelocity component to be zero. Thus, the uniquaiEmgelocity

solution, @, can be obtained by projecting one of 'thg solutions onto the plane defined
byn_such that no component of the angular velocity ccguthe sail normal direction.

LC?’B :(|3x3_ﬁc'ﬁc)'L5’B:L@B_(ﬁc'L@B)ﬁc (12)
The unique solution is obtained by removing anyeigy component in the direction. Now,

the simulation and desired angular momentum vectmsbe expressed as
hs = Iy(@1)- A+ 17 (@)1 + 17 (5)- (13)

A

I:ic = In(a)nc)'nc + IT '(a)o '(|3x3 _ﬁc 'ﬁc)'6+L5)B*)

(14)
wherew, , @, andw, are the B-frame components 0Ofdc , and onis the desired inertial sail spin
given by

A N (A= L B A A A A
Pde=h ("o + g+ Pac) =R "o =, 0,0 (15)
becauséi,-" @, =0and choosinga. =0 for no sail spin rate relative to the L-frame fanan-
spinning sail. The angular momentum error is tleemdé to be

AR, = —h,

AR ~ ~ A A A A A ) A L L= *
A hC = Ina)ln_ Ina)ncnc + IT @, '((|3x3 - n‘n)'o_(|3x3 - nc 'nc)'o)—l—\[lT ( g — Wy ):I (16)
An_term Aw_term

where the error term is decomposed into and ex@dess a function of sail normal angular
position and sail normal angular velocity composet order to determine a control
that reduces the angular momentum error, a Lyapstability approach will be

torquercontrol
used. First, a Lyapunov function candidate is dfin

15



1= =V(- =

V=§(h5—hc) (Rs - 7, ) 17
From Eq. 17 , the functio¥ is positive definite with respect to angular motaemerror. The
behavior of the derivative &f can then be used to infer the behavior of the angonomentum
error.

_ ~ \T . —~ \T
dd_\t/: Ld(hsdt—hc _(ﬁs_ﬁc): Ad(hsdt—hc) AwLX(ﬁS_ﬁc) '(ﬁs_ﬁ)

U (18)
Mg R ) (= -
= ( Sdt ) .(hS_hC)
Because the inertial derivative of angular momenyigtds torque, the derivative dfcan also
be expressed as

V o (ee-z.) (R

dt
Z-S = Z-Se + Tcontrol (19)
Te = Tee + Z-stay_cone

wherer ;andz, are total torques of the actyalmulation) and desired coning trajectory,
rs.andr are environmental torques of the simulation andreptrajectoryz ., .,n.aNdr g

are the additional torques required to stay ordd#sred cone and the control torque applied in
the simulation, respectively. The derivative of &bmes

v 52, (e - )

dt = (Tcontrol ~ Tstay cone

(20)
5z-e =Tse™ Tee

In order to ensure that the derivativeofemains negative definite with respect to the #&rgu

momentumz .., should be chosen as

Tcontrol = _kcontrol ’ (ﬁs - F‘l.C )+ Tstay_cone - 5Te (2 1)
which enables the derivative ¥fto be negative definite, as desired.
dv - =Y (-
E = _kcontrol(hs - hc) ’ (hS - hc) (22)

The stability analysis proves thnﬁﬁC decays to zero [9] and thus the control law enéﬁglﬁs

trackh,, for any positive control gaif,_,

Unfortunately, from examining the decomposed comegnbs within the angular
momentum error (Eqg. 16), the Lyapunov functionas positive definite with respect to the salil
normal becaus¥ can be zero even when sail normal is not (a coatioin of non-zero sail
normal angular position error and velocity erron eaableV to become zero). Thus, whether the
sail normal error i = A—RA,) decays to zero has not been proven. Since thdamgomentum

error is a function of sail normal angular posit{&g. 16), the control law reducimdﬁC is

implemented anyway (below) with the hope thét, — 0 can causeAdl — 0 and enablé to
track the desired, on the coning trajectory.
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The environmental torques act on the sail basatsattitude, and these attitudes differ
in the simulation and on the desired coning trajgctunless the simulation trajectory exactly

matches the desired coning motion. Since the agpit of control torque,,,,, is intended to

contro
enableAh — 0, and that may cause simulation sail attitiide desired cone sail attitudé, , it
may be reasonable to assume gts small. In this case
dv To(r o
E = (Tcontrol - z-stay_cone) : (hS - hC )

Tcontrol = _kcontrol ’ (hS - hC )+ Tstay_cone (23)

Ther can be given by

stay_cone

Tstay cone = e — 7T (24)
wherer,is the torque required to trace the desired coh&wis rather complicated to calculate

on-line (inertial derivative of the desired angutammentum, Eq. 14). The environmental torques
on the desired cone, involve many estimates of environmental factors @énus their analytical

predictions can become inaccurate. If possibld) satculations (variables involving many
unknowns) on a small sailcraft should be avoiddgeylcan be avoided with the idea that in
Toomrol» Keonto) 1S @ USEr-defined constant term and can be chasga énough such that its term in

Eqg. 23 dominates the effectf, ... With these simplifications, the Lyapunov
function and control torque are approximated by

C:j_\t/ = (Tcontrol )T : (HS - ﬁc)

control — _kcomrol (ﬁs - ﬁc)

C ce

(25)

T

4. Results

The sail dynamics under the influence of environtaletorques are presented for a non-
spinning sail. The result for the equilibrium poifP = 35,4 = 0°] is given. This equilibrium
point is selected because it induces the largégiabeffects [6]. The control method
performance in tracing the desired cone at orlt issexamined. The robustness of the control
method is tested by adding initial condition errarshe sail angular position (these simulate
errors in the sail attitude that emerge from distimces) and using larger coning cones (greater
orbital effects can be induced with cones larganth®). The control method is designed to
reduce the angular momentum error. The Lyapunoetiom indicates the performance of the
control method for reducing this error.
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Figure 15. Lyapunov Function, Its Approximated Deivative and A-frame Angular
Momentum Components for Coning Trajectory having Hdf Cone Angle,6=1° about a
Nominal Sail Normal of $,=35°, ®;=0°
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The Lyapunov functioW in Fig. 15, and thus the angular momentum erragnitade, is
significantly lower than the absolute sailcraft alag momentum (~1times lower). This
indicates that the control method is successfubttucing the angular momentum error. On the
other hand, even though the (approximate) derigadi\ is always negative, the functi®h

does not monotonically decrease. The derivativé whs approximated from

dd\t/ (TCOH'[I’O| Tstay_cone+ é‘TE)T ’ (HS h ) to dd\t/ (TCOHUO|)T ’ (HS - F]C) Wlth Slmpllfylng
assumptions eliminating,,,, ..,. and oz, as discussed earlier. In order to understand the
incompatible behavior betwe&hand its approximated derivative, the individuabjtee
components in the non-approximated derivative aaengned in Figure 16.
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Figure 16. Torques of the System in the B-frame

Ther ... 1S approximated usingk_ . (h ﬁc). The magnitude is on the order of®Ilm,

which is reasonably sized for a small sailcraft. &similar 3 kg and 40 fisolar sail, magnetic
control was used to enable inertial coning of @iérsormal at orbit rate and predicted maximum
control torques on the order of 18m [10]. In Figure 16, thér torque is ~16times lower in

magnitude than,,, andz g, ..ne, justifying the assumption of elimination, from Eq. 23

(o7.is negligible as compared with, .., andr )- Note, however, that the,,, .,..torque is

stay_cone

nearly identical (except for numerical noise) te#hy,,.,- Ther is determined numerically

stay_cone

by calculating the total torquerequired for precessing the angular momentum onléiseed
cone and deducting the environmental torqugsromz_(Egs. 24 and 26). The total torque on
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the desired cone, is the inertial derivative of the desired angulamentumh, . A numerical

solution forz can be obtained via a finite difference
h,-hy, Ah

T, = c2 cl _ c (26)
t,—t, At

whereAﬁcis the change in desired angular momentum overiagoef time At . TheﬁCl and

ﬁcz are calculated at timeandt + Atvia Eq. 14. The magnitude Afis decreased enough (with

machine limitations) to approximas¢ — 0. When the non-approximated derivativeas used
that includes the effects of,, .,..andr ., the Lyapunov function and its derivative correspo

to each other.
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Figure 17. Lyapunov Function and Its Derivative

The derivative is no longer always negative exptagjrwhyV does not decrease. Even thodgh
does not decrease, the oscillation¥ @fre bounded. This indicates that the momentumserro
within the system remain bounded and do not groth tuine. Sincé/ is a measure of the
angular momentum error, the control method thublesahe sail angular momentum to trace
the desired with some small, bounded error.
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In Figure 16, the,, ...torque is essentially identical to the control teg ., -
Observe that the actual torque on the system fhensimulationzgand total torque required to
stay on the desired coneare given by

Tg=T7

actual/sim — Tse +7

=TetT

control 270

4 stay_cone

c - Z-required

Whenor, is negligible, the environmental torquesand z.can be expressed as

0Ty =Tge—Toe > 0= 75, =7, =7, (28)

from which the total system and desired cone t@digeEome
Ts = Tactual/sim = Ce + T control (29)

Te = Trequired =Te + Tstay_cone

From these equations, in order to trace the deswad and induce the required angular

momentum precession rate, meisthave the total simulation torque,— the desired cone
torquez, . This explains the behavior in Figure 16, whege, is found to be identical
to Tstay_cone '

The corresponding behavior for the sail normahiswn in Figure 18.

v
'

ar

[n],: actual/sim n [rad] *

[nC]L: desired n [rad]

_________

Cone Angle, p, [deg]
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_ 2 r sail equilibrium
. 082 001 § :

=
0.815+ =
2
-------- e
o A L b LR T =
i=]
=

0.585 &g )
0575 0.57 565 0.56 Time, [orbit periods]
v
Figure 18. Sail Angular Positions for Coning Trajetory having Half Cone Angle,6=1°
about a Nominal Sail Normal ofpy=35°, ®,=0° in the L-frame

The three-dimensional plot indicates that the admtrethod enables the simulation salil
normalf to trace the desired circular cone. The simulatiod desired trajectories in this case
begin at the same initial conditions. In the cond elock angles plot, bohands complete one
cycle in one orbital period and repeat the samepain the next orbital period. Thus, the
control method also enables orbit rate coning. diners in the individual components of sail
normal in the coning tracing are shown in Figure 19
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Figure 19. Individual L-frame Components of Simuldaed and Desired Sail Normal with
Errors

As the cone is traced, Figure 19 shows that the emagnitudes of thé, Vv andé sail normal
components oscillate. Even though there are emdiee coning tracing, they appear to be
bounded. In addition, the error magnitudes areifsogmtly lower than the absolute component
magnitudes (1910° times lower). McMahon, et. al. assert that thepshaf the coning need not
be accurate as long as orbit rate coning is actieverder to yield the orbital effects [6]. Thus,
slight deviations from the circular coning are agpected to have significant deviations in the
averaged orbital effects induced over an entiré.orb
A sensitivity analysis is performed where the coingain k.. is varied to study the

maximum angular position error between the simdlated desired sail normal. The angular
position error definition is illustrated in Figug®.

Figure 20. Angular Position Error
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The angular difference between the desired andlatedisail normal is defined as the angular
position error. Thé_,, was varied over a range of 0-2 and the variatiamaximum angular

error (over one orbital period) was studied. Ineprd understand the results, the angular error
between the simulated and desired angular momeistafao shown.

max ee over k

control

****************** —— — max ee with Teone ||

Max. Angular Error between n. and nc , O [deg]

Max. Angular Momentum Error, |hg - h |, kgmzls

I(control

Figure 21. Sensitivity Analysis of Maximum AngularPosition and Momentum Error (for
One Orbital Period) to variations in Keonrol

The angular position erra?,decreases more rapidly with steadily increakjpg,, . As the
magnitude ok_,,, increases, the decreas@jbecomes less rapid, until the limitiégof 0.05° is
reached (indicated by the dashed line). Smhkller, magnitudes result in smaller control torque

magnitudes at each time step. With smaller combrgjue magnitudes, the simulated angular
momentum is not corrected to trace the desiredlanguomentum as rapidly. This means that
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the angular momentum error is larger for sm&ller,, magnitudes. Ak, increases, the
angular momentum is corrected more rapidly to ttheadesired. This results in a smaller error.
The angular momentum error decays rapidly witheasmdk.,,.,- Since the angular position
error is a function of angular momentum error, éhalso decays in a similar fashion. Ideally,
the error should decay to zero as increasing cotutrgue will enable the simulation to trace the
desired exactly. However, tigdecays to a limiting value and not zero. This isaus&, is
calculated using the simulated trajectory and ddsinalyticaltrajectory, whereas the control
torque is a function of simulated trajectory andiglnumericaltrajectory. This means that the

simulated trajectory traces the desineomericaltrajectory and naanalytical The difference
betweenanalyticalandnumericaldesired trajectories is shown in Figure 22.

. |
numerical | |

analytical

Figure 22. Numerical and Analytical Desired Coningl'rajectories having Half Cone Angle,
6=1° about a Nominal Sail Normal offf;=35°, ®,=0° (One Orbital Period)

The total torque on a coning trajectory (half cangles =1") for a given nominal
B, =35 andg, = 0° is calculated using Eq. 26 (calculatg. This torque was applied in the

simulation to yield th@umericalconing trajectory. Differences exist because tis¢éaintaneous
derivative of desired angular momentum is not aéd (r,is calculated numerically). The
maximum angular position error between #&malyticalandnumericalconing trajectories was
found to be 0.05°. Hence, thgn Figure 21 decays to the numerical desired ttajgand
reaches a limiting value of 0.05° (same as the mari angular position error between the
analyticalandnumericalconing trajectories).

The performance of the control method with thecexatial conditions has been
presented so far. Practically, internal/externsiudbances on the sailcraft causes initial
condition errors with the sail attitude. Thus, gegformance with initial condition errors should
also be analyzed. Figure 23 illustrates how intt@idition errors are added to the system.
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]

Figure 23. Initial Condition Error

The red dot represents the exact initial conditionghe system. The initial condition error is
obtained by adding an angular deviatibsuch that the initial angular position (and hemigall

angular velocity) contains errors with respecti® desired coning trajectory. The control
method performance for 1° and 10° deviations fodow

107 37 ;
r T T T T H [n] - actual/sim n [rad] | i
8 ‘ —— 0.8%(hgh Y hg-h,) [kams)] [n,], : desired n [rad]
H H H H *  sail equilibrium
. LB e Rk RER bbbk ReREER ] O deviated initial cond.
e #  exact initial cond.
final cond.
2 '
: : H H H sim/actual
0 0.5 1 15 2 4 sail equilibrium
Time, [orbit periods] T
= o 0.82
@
=
0 0.5 1 1.5 2
Time, [orbit periods] v

Figure 24. Control Method Performance in TrackingDesired Angular Momentum and
Sail Normal with Initial Condition Error of 1° (d=1 °), Zero Sail Spin

The Lyapunov function decreases to the levels #sma initial condition errors. This means that
the control method is able to track the desireduaxgnomentum vector even with the initial
condition error. The sail normal motion is conirgpat the sail equilibrium point, however the
desired normal is not traced as well as with ntaihcondition errors. The rate of coning has
also deviated slightly from orbit rate. The Lyapurionction levels drop to the expected levels

after one time step. This is clearly evident in$hé angular momentum vector motion shown in
Figure 25.
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Figure 25. Simulated and Desired Angular Momentundor Coning Trajectory with Initial
Condition Error, d=1°, K controi=1

As expected, as the control authority is decrez{lscggm, = 0.1), the simulation angular
momentum tracks the desired cone more gradualeyKggire 26).
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Figure 26. Simulated and Desired Angular Momentunior Coning Trajectory with Initial
Condition Error, d=1°, K ¢ontro=0.1

With decreased control authority, the control t@aqpplication is reduced which enables the sail
angular momentum to track the desired graduallieadsof after one time step. This behavior is
preferable in a small sailcraft to avoid any abrehminges to the attitude that can damage the sail.
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The result with a larger initial condition errdri®° is presented in Figure 27.
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Figure 27. Control Method Performance in TrackingDesired Angular Momentum and
Sail Normal with Initial Condition Error of 10° (d= 10°), Zero Sail Spin

The control method performance in tracing the @éelsangular momentum has deteriorated
slightly, which is indicated by the Lyapunov furaztimagnitude increase as compared with the
1° deviation case (~10 times increase). Howeveretisesignificant deterioration in tracing the
desired sail normal as compared with the 1° erasecThe sail normal appears to trace a larger
cone at a slightly different rate. This means #han though the control method performance did
not deteriorate noticeably in tracing the desinegudar momentum, the performance degraded
significantly in tracing the desired sail normal.

The control method robustness is further exambyednalyzing the results for tracing
larger cones (larger half-cone angles). The re$oitS® and 60° cones are presented below.
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Figure 28. Control Method Performance in TrackingDesired Angular Momentum and
Sail Normal with 5° cone, Zero Sail Spin

The errors from tracking the desired angular moomardre on the same order of magnitude as

for the 1° cone (Lyapunov function level has thensarder of magnitude). In addition, there are
no significant deviations from orbit rate coningtbé sail normal vector. The sail normal motion
tracks the desired 5° circular cone with no sigaifit differences as compared with the 1° cone

case.
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Figure 29. Control Method Performance in TrackingDesired Angular Momentum and
Sail Normal with 60° cone, Zero Sail Spin

However, the control performance has deterioratguifscantly for cones as large as 60°. The
sail normal does not cone around the equilibriunmipdhe angular momentum tracking also
has increased errors as compared with smaller ¢eri€stimes larger).

5. Conclusion

Sail attitude equilibria exist in the LVLH frame der the influence of gravity gradient,
aerodynamic and solar torques. When the sail nosyakcessed, the sail normal naturally
cones about that equilibrium point. However, thérsarmal coning has to follow a circular
coning trajectory at orbit rate to induce the das$iorbital effects. In this paper, a control method
is developed that enables sail normal coning (tarocones) about the LVLH attitude equilibria
at orbit rate. The control method is designed shahthe sail angular momentum tracks a
desired trajectory. The control method causesdl@sgular momentum to track the desired
angular momentum on the coning trajectory overrait and reduces the initial angular
momentum error. Since angular momentum is a funaifdhe sail angular position (sail
normal), a reduction in angular momentum erroraged to reduce the sail normal error between
the actual and desired sail normal vectors on dméng trajectory. The performance of the
angular momentum error reduction control methaghislyzed using a case where the salil
normal is tracking d°circular cone at orbit rate about an LVLH equiltbri point which induces
the maximum orbital effects.

At this equilibrium, the control method allows taetual sail normal to trace the desired
sail normal on the circular coning trajectory dtibrate with an accuracy of 0.05°. The coning is
at orbit rate (accurate coning rate), but theresarar's in the shape of the coning (inaccurate
circular coning). Even though there are errordindircular cone tracing (10 to°limes lower
than the absolute sail attitude), they are bounbhedddition, past work asserts that the shape of
coning need not be as accurate as long as orbitaating is achieved in order to attain the
desired orbital effects. Thus, slight deviatior@ircircular coning that cause these error
magnitudes in the cone tracing are within the aiat#e range. Studies are performed to analyze
the control method performance when the sail nopuoaition is deviated from the desired
coning trajectory and while tracking larger conBse performance of the control method
deteriorates (deviated from orbit rate coning aad imcreased circular cone tracing errors) when
the initial condition deviation was increased té 40d cones became as large as 60°. In
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summary, this control method functions well forckimg the desired angular position (sail
normal) at the chosen LVLH equilibrium point, fonall cones and small initial condition errors.

Past work analyzed orbit rate coning for circulaniag trajectories in order to induce the
desired orbital effects. The assumption for circalaning can be relaxed and induced orbital
effects for non-circular cones can be studied. A-aiocular cone alters the sail normal thrust
vector direction relative to the sun differentli3 produces different orbital changes whose
usefulness can be analyzed. This could relievedhé&ol method from the need to provide
perfectly circular cone tracing and only concemtra enabling orbit rate coning.

In this work, a flat, rigid sail model is used. #&de, gossamer sail is not perfectly flat or
rigid in space. This work can be further extendethtlude non-flat, non-rigid sail dynamics.
Finally, the practical implementation of the cohtarque required to enable the orbit rate
coning of the desired trajectory with the existiregdware can be studied (e.g. using reaction
wheels, tip vanes, or sailcraft bus deflection).
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