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Abstract: This paper presents the design and flight implementation of shortest-time maneuvers on
the TRACE spacecraft. Shortest-time maneuvers (STM)s are spacecraft slew maneuvers, based on
optimal control theory, that enable spacecraft to be maneuvered more quickly than conventional
rotations. The STMs are obtained by constructing a minimum-time optimal control problem formu-
lation that can be rapidly solved using pseudospectral optimal control theory. To ensure each STM
trajectory is well within the capabilities of the spacecraft, the formulation of the optimal control
problem includes all of the relevant nonlinear dynamics of the reaction wheel satellite as well as
appropriate state and control constraints, such as the nonlinear actuator torque-momentum en-
velope. Flight test results for several maneuvers, all relevant to the operation of a typical Earth
imaging satellite, are presented in order to illustrate various aspects of the revolutionary STM
capability. The flight results demonstrate that STMs can notonly be implemented and reliably exe-
cuted on orbit, but that implementing STMs enables spacecraft imaging capability to be improved
simply by changing the commanded maneuver trajectories. Moreover, it is possible to implement
the idea without the need to modify the spacecraft attitude control system. This feature allows the
capabilities of existing Earth imaging and related spacecraft to be extended beyond their original
specifications in order to maximize mission performance.

Keywords: Minimum-time reorientation maneuvers, pseudospectral optimal control, flight experi-
ments, attitude dynamics and control, spacecraft maneuverdesign and optimization.

1. Introduction

Commercial Earth imaging satellites are used to acquire photographs and other specialized images
of specific areas of the earth using their onboard sensors. Since each acquired image equates to
a certain amount of revenue generation by the vehicle, therehas been great interest in developing
algorithms for managing the profitability of imaging satellites (see, for example, [1, 2] and the
references therein). The main problem addressed in this paper is how to execute the sequence of
image acquisitions that best utilizes the capabilities of the vehicle, while maximizing revenue.

A significant factor impacting the maneuver planning process is the amount of time that is needed
to slew the spacecraft between the possible image collection regions since there exists only a finite
time during which each region of interest is in the field of view of the imagining sensors. Thus, the
ability to transition between each imaging region as quickly as possible reduces “waste time” [3]
and increases the number of images that can be acquired during a given window. Because slew time
has a direct influence on the productivity of imaging satellites as well as other scientific missions,
time-optimal attitude maneuvers have been the subject of extensive study in the literature [4–10].
The main discovery arising from this research is the fact that conventional eigenaxis rotations,
which give the shortest angular path between two orientations, are slower than minimum-time
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maneuvers. This is because the axis of rotation is restricted to the eigenaxis, which inherently
limits the maximum spacecraft rotation rate. Time-optimalattitude maneuvering, on the other
hand, requires a careful choreography that synchronizes simultaneous rotations of the spacecraft
around all three axes of the body-fixed frame. By rotating about all axes simultaneously, the
spacecraft rotation rate can be increased far beyond the eigenaxis limit. The resulting shortest-
time attitude trajectory allows the spacecraft to be reoriented more quickly than by following the
eigenaxis path.

The objective of this paper is to present results, relevant to the operation of Earth imaging satellites,
obtained from the first ever flight demonstration of time-optimal maneuvering [11]. These shortest-
time maneuvers (STMs) are based on optimal control theory and were implemented onboard the
NASA Transition Region and Coronal Explorer (TRACE). In this paper, a variety of operationally
relevant STMs are presented that demonstrate rapid maneuvering capability on a real satellite with
a reaction wheel attitude control system. In order to designSTMs for this practical space system,
the underlying optimal control problem had to include all ofthe relevant nonlinear spacecraft
dynamics as well as complex state and control constraints, for example, the nonlinear reaction
wheel torque-momentum envelope. The STMs were solved usingpseudospectral (PS) optimal
control theory [12–14] implemented in the optimal control software DIDO [15]. The TRACE
flight demonstration is the second time PS optimal control theory has been used by NASA on orbit.
In fact, PS optimal control theory debuted in flight on November 5, 2006 when NASA used it to
implement Bedrossian’s zero-propellant (fuel-optimal) maneuver onboard the International Space
Station [16].

Several flight test results are presented to illustrate how the STM paradigm has the potential to
maximize spacecraft imaging capability. Although TRACE isa Sun pointing satellite rather than
an Earth pointing system, the maneuver scenarios performedonboard TRACE were designed to
closely emulate various activities that are relevant to imaging operations on an Earth imaging satel-
lite. In one experiment, a sequence of STMs that minimize thetime to slew through a sorted set of
static imaging points demonstrates how STMs can be used to improve data collection throughput
within a given imaging window. The results of a second experiment involving an emulated scan-
ning operation demonstrates how STMs can be utilized to quickly transition the spacecraft between
point collection and scanning tasks.

The successful implementation of these maneuvers illustrate that the STM paradigm can be reliably
executed on orbit and can significantly improve the agility of the spacecraft as compared to stan-
dard techniques. Moreover, the performance improvement can be realized through a simple change
in the commanded maneuver trajectories and without the needto perform costly modifications on
the existing spacecraft attitude control system. Thus, it is now possible to insert the revolutionary
approach for maximizing spacecraft imaging capability into normal mission operations and extend
the capabilities of existing Earth imaging satellites beyond their original design specifications.

2



2. The TRACE Spacecraft

2.1. Equations of Motion

Fig. 1 shows a photograph of the Transition Region and Coronal Explorer (TRACE) undergoing a
pre-launch checkout at NASA. TRACE is a reaction wheel spacecraft designed to perform small
angle slews, less than 1 deg, in order to document the fine scale magnetic features of the solar
surface and corona [17]. Although not part of the original mission objectives, thespacecraft is
capable of executing large angle eigenaxis maneuvers by using a nonlinear momentum control
logic that is implemented as part of the flight software.

Figure 1. TRACE undergoing a pre-launch checkout at NASA.

The rotational dynamics of the TRACE satellite can be derived by considering the angular momen-
tum of the reaction wheel satellite system

H = Iω +
4

∑

i=1

aihw,i (1)

whereH is the total angular momentum of the system with respect to the body-fixed frame. Matrix
I is the inertia tensor of the spacecraft with freely rotatingreaction wheels, and vectorω is the
angular rate of the spacecraft expressed in the body frame. Unit vectorsai give the orientation of
the spin axis of each reaction wheel with respect to the spacecraft coordinate system. Each product,
aihw,i , represents the transformation of the reaction wheel momentum from the actuator frame to
the body-fixed frame.

3



In the absence of any external torques acting on the spacecraft, the time rate of change of the
angular momentum in the inertial frame is

d
dt
(H)+ω ×H = 0 (2)

Equation (2) can be expanded and rearranged to give Euler’s equation

I ω̇ +
4

∑

i=1

ai ḣw,i +ω × (Iω +
4

∑

i=1

aihw,i) = 0 (3)

The angular momentum of each reaction wheel about its axis ofrotation is

hw,i = Iw,i(Ωw,i +aT
i ω) (4)

whereIw,i is the inertia of the reaction wheel about its spin axis, andΩw,i is the angular rate of the
reaction wheel relative to the satellite body. The rate of change of the reaction wheel momentum is
directly proportional to the torque,τw,i = ḣw,i , applied around the spin axis by the reaction wheel
speed control system. Thus, the equation describing the reaction wheel dynamics is obtained
simply, by differentiating (4).

Using (3) together with (4) and its derivative, the spacecraft rotational dynamics can be written in
the following matrix form

Γ











ω̇
Ω̇w,1

...
Ω̇w,4











=













−ω ×
(

Iω +
∑4

i=1ai Iw,iωw,i +ai Iw,iaT
i ω

)

τw,1
...

τw,4













(5)

where

Γ =











I +
∑4

i=1ai Iw,iaT
i a1Iw,1 · · · a4Iw,4

Iw,1aT
1 Iw,1 · · · 0

...
...

...
...

Iw,4aT
4 0 · · · Iw,4











(6)

To complete the mathematical model of the spacecraft dynamics, the attitude of the spacecraft is
described using quaternions parameterized as

q =
[

e1sin
(Φ

2

)

,e2sin
(Φ

2

)

,e3sin
(Φ

2

)

,cos
(Φ

2

)]T
(7)

wheree= [e1,e2,e3] is the Euler vector (eigenaxis) andΦ is the rotation angle around the eigenaxis.
The corresponding quaternion differential equation is [18]

q̇ = 1
2Q(ω)q (8)
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where the skew-symmetric matrixQ(ω) is given as

Q(ω) =









0 ω3 −ω2 ω1

−ω3 0 ω1 ω2
ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0









(9)

2.2. Attitude Control System

The TRACE spacecraft employs four reaction wheels arrangedin a tetrahedral array for primary
attitude control. This arrangement gives four for three redundancy and ensures that full control
capability is retained in the event of a failure of any singlewheel [19]. The spacecraft body rates
are measured using three dual-axis gyros. On board quaternion propagation is carried using the rate
gyros in conjunction with measurements from a three-axis fluxgate magnetometer and a Kalman
filter.

spacecraft

Figure 2. Block diagram of TRACE attitude control system.

A block diagram of the TRACE ACS is shown in Fig.2. Since the ACS was originally designed
to implement eigenaxis maneuvers, the first step in the control process is to determine the rotation
angle,Φ, and Euler axis,e, that zeros the attitude error with respect to the current target quater-
nion. The control logic then determines an appropriate spacecraft rate command, depending on the
magnitude of the computed rotation angle. In the flight experiments presented in this paper, the
rate command is proportional to the desired rotation angle

ωcmd= KpΦ (10)

The reaction wheel momentum command vector,hcmd, is computed by distributing the rate com-
mand computed from (10) along the eigenaxis and accounting for the spacecraft inertia to obtain
the commanded momentum in the spacecraft body frame. The momentum command is then trans-
formed to the individual reaction wheel frames by control allocation matrix,Ā. The reaction wheel
momentum command vector is (see Fig.2)

hcmd= ωcmdĀIe (11)
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The individual reaction wheel torques are then computed as

τcmd= KTq
(

hcmd+ATH +hbias−h
)

(12)

where parameterKTq is an adjustable slew motor torque gain that is varied in order to enforce con-
straints on the maximum reaction wheel speed and power consumption. In (12), A = [a1|a2|a3|a4]
is the column matrix of unit vectors relating the wheel spin axes to the spacecraft frame.

Prior to applying the commanded toques to the reaction wheelarray, they are filtered in order to
suppress excitation of the flexible modes inherent to the spacecraft structure. The torque command
filters can be written in the following linear time-invariant form

ẋf = Afxf +Bfτcmd,i

τw,i = Cfxf +Dfτcmd,i
(13)

wherexf is the vector of filter states andAf, Bf, Cf, andDf are the matrices of filter coefficients
with the appropriate dimensions.

3. Maximizing Attitude Control Capability

3.1. Spacecraft Agilitoid

The attitude control capability of a spacecraft can be visualized in terms of an “agilitoid” [14]. This
agilitoid is generated by mapping the available momentum-to-inertia ratio,

A(ξ ) =
h(ξ )
Iξ

(14)

over a 2π steradian, whereh(ξ ) is the angular momentum of the spacecraft about an arbitrary
axis,ξ , andIξ is the moment of inertia of the spacecraft alongξ . The agilitoid for the TRACE
spacecraft is shown in Fig.3. The agilitoid (Fig.3a) shows that the attitude control capability of
TRACE is highly non-uniform. This is a direct result of how the reaction wheel configuration
interacts with the spacecraft inertia ellipsoid. It is observed that the attitude control capability
is largest around thes2 (boresight) axis but is much smaller about thes1 and s3 axes. In fact,
given the momentum capacity of the reaction wheel array, it is theoretically possible to rotate the
TRACE spacecraft by more than 10-deg/sec about the boresight axis. In contrast, the maximum
rotation rate about the other body axes is approximately 60%of this value. Thus, the agility
of the spacecraft can be significantly improved by developing new, counterintuitive, reorientation
maneuvers that can exploit the nonspherical geometry of theagilitoid. Such maneuvers would tend
to deviate from the eigenaxis in favor of rotation about the boresight axis as a means of reducing
the overall reorientation time. The approach for designingthese new maneuvers is to formulate
this shortest-time maneuver paradigm in terms of an optimalcontrol problem.

Practical operation of the TRACE spacecraft is, however, severely limited by the per-axis software
saturation limit of the onboard rate gyros (ωsat= 0.5 deg/sec). The gyro saturation limits impose
a restricted operating envelope in the momentum space whichis significantly smaller than the
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capability of the reaction wheel array. This restricted operating envelope is shown in comparison
with the agilitoid in Fig.3b. The small size of the restricted operating envelope in conjunction
with the fact that the per axis spacecraft rotation rates areall limited to the same value seems
to imply that there is no real advantage to be gained by implementing shortest-time maneuvers in
lieu of conventional eigenaxis slews. This argument would indeed be true if the restricted operating
envelope were a sphere instead of a cube since for a sphere,ωmax=ωsat in any direction of rotation.
For a cube shaped operating envelope, however, a rotation rate ofωmax=

√
3ωsatcan be developed

about each of the cube diagonals. Shortest-time maneuvers will exploit this fact to reduce the
reorientation time between any two attitudes.

(a)

(b)
Figure 3. Attitude control capability of TRACE: (a) spacecraft agilitoid; (b) cutaway illustrating
a value ofA(ξ ) in the s1− s2 plane and the restricted region of operation arising due to gyro
saturation limits.

3.2. Optimal Control Formulation

An optimal control problem formulation was developed to design a variety of different STMs for
the TRACE spacecraft. To ensure that the maneuvers could be reliably executed on the orbiting
spacecraft, the minimum-time optimal control problem formulation incorporates all of the relevant
spacecraft actuator and sensor constraints in addition to adetailed description of the spacecraft
dynamics. The optimal control problem formulation is hereafter referred to as ProblemB and has
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the following formulation

B:
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
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
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
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







Minimize J = t f

Subject to ẋ(t) =



















1
2Q(ωB)q

Γ−1

[

−ωB ×
(

JωB +
∑4

i=1ai Iw,iωw,i +aiIw,iaT
i ωB

)

Cfxf +Dfτcmd

]

Afxf +Bfτcmd



















x(t0) =
[

e0sin( φ0
2 ),cos( φ0

2 ),ω0,Ω0,xf,0)
]T

x(t f ) =
[

ef sin(
φ f
2 ),cos(

φ f
2 ),ω f ,Ω f ,xf, f )

]T

||q(t)|| = 1
|ωi(t)| ≤ ωmax, i = 1, . . . ,3

|τcmd,i(t)| ≤ τcmd,max, i = 1, . . . ,4
|Iw,iΩw,i(t)| ≤ Iw,iΩmax, i = 1, . . . ,4

τL ≤ Iw,iΩ̇w,i(t)≤ τU , i = 1, . . . ,4

(15)

The solution to ProblemB gives the state-control function pair,t → (x,τcmd), that drives the
spacecraft from its initial orientation,q0 = [e0sin(Φ0

2 ), cos(Φ0
2 )]T , to the desired final attitude,

q f = [ef sin(
Φ f
2 ), cos(

Φ f
2 )]T , in the shortest time. In general, the resulting spacecraftattitude tra-

jectories between any two desired orientations will deviate significantly from the smallest-angle
(eigenaxis) trajectory between the same points.

In ProblemB, the state space model of the spacecraft dynamics includes the dynamics of the
reaction wheel torque command filters (13), as well as constraints on the commandable reaction
wheel torque and limits on the reaction wheel momentum. Nonlinear reaction wheel power limits
are incorporated by using the constraint,τL ≤ Iw,iΩ̇w,i(t) ≤ τU , to ensure that the commanded
torques always remain within the reaction wheel torque-momentum envelope. The absolute values
of the spacecraft body rates also have to be constrained to avoid hard saturation of the rate gyros,
a condition that would cause loss of control of the spacecraft. To ensure the spacecraft body rates
always remain within the restricted operating envelope (see Fig.3b), a software imposed rate limit
was incorporated into the STM design.

Obtaining a solution to the optimal control problem (15) is challenging for several reasons in-
cluding the high-dimensionality of the state space model (19 states and 4 controls), the nonlinear
characteristics of the quaternion dynamics, the coupled nature of Euler’s equations, and the need to
consider both linear and nonlinear state and control constraints. Furthermore, a purported solution
to the problem must be shown to satisfy the necessary conditions of optimality, which assert the
existence of covector functions,t → (λ ,µ ,ν) that satisfy certain conditions with respect to the
Lagrangian of the Hamiltonian, the endpoint Lagrangian, aswell as complementarity conditions
on the endpoint and path constraints [20]. The resulting “dualized” problem is a boundary value
problem of 38 differential equations with both differential and algebraic constraints. Despite these
traditional difficulties, it is possible to obtain solutions to problem (15) in a relatively straightfor-
ward fashion using PS optimal control theory.
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3.3. Pseudospectral Optimal Control

In simple terms, PS optimal control theory is founded on expressing the state trajectory,x(·) as an
infinite series expansion,

x(t) =
∞
∑

j=0

a jPj(t) (16)

wherePj(t) is a polynomial of degree,j. If Pj(t) is chosen to be a Legendre polynomial of degree
j, then it is called a Legendre PS method. Similarly, ifPj(t) is chosen to be thej − th degree
Chebyshev polynomial, then it is called a Chebyshev PS method. The most common choices in PS
optimal control theory are the Legendre and Chebyshev polynomials, although other polynomial
basis functions may be used [21].

The coefficientsa j in (16) are called the spectral coefficients [13]. A key principle in a PS approach
is that the spectral coefficients are computed “indirectly”by transforming (16) to the space of
Lagrange interpolating polynomials. Thus, (16) is written equivalently as

x(t) =
∞
∑

j=0

W(t)
W(t j)

φ j(t)x j (17)

wheret j , j = 0,1,2, . . . are discrete points in time associated with a specific choiceof Pj(t),W(t) is
a weight function that is also associated withPj(t) andφ j(t) is a Lagrange interpolating polynomial
that satisfies the Kronecker relationship

φ j(tk) = δ jk (18)

This property implies that

x(tk) =
∞
∑

j=0

W(tk)
W(t j)

φ j(tk)x j

= xk

(19)

It is this “sampling” property, which is absent in (16), that makes the PS approach distinct from the
direct use of (16). Equation (19) illustrates that the global information in (17) is used to examine
the local information att = tk. This is in sharp contrast to a Taylor series expansion,

x(t) =
∞
∑

j=0

t j

j!
x( j)(0) (20)

which uses local information (att = 0) to construct global phenomenon. Because optimal control
problems are fundamentally global (i.e. conditions at the final point affects the action taken at the
initial point), it can be argued that (17) is a more natural fit than (20) for solving solving optimal
control problems.

In practice, (17) cannot be implemented due to infinite summation (the same istrue of16 and20).
The best one can expect to achieve is a solution up to machine precision,εm > 0. In a series of
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theorems promulgated by Ross, Fahroo, Gong and Kang [12,14,22–27], it has been proven that, if
x∗(·) is the optimal solution, then there exists anN = Nε such that‖xNε (·)−x∗(·)‖ ≤ ε with xNε (t)
given by,

xNε (t) =
Nε
∑

j=0

W(t)
W(t j)

φ j(t)x j (21)

Although the practice of PS techniques requires thatε ≥ εm, the theory allowsε to go to zero in
the limit,

lim
Nε→∞

xNε (t) = x∗(t) for almost allt ∈ [t0, t f ] (22)

That is, an exact (or very high precision) computation of thesolution is possible provided the
following conditions are met:

1. W(t) ≡ 1, t j , j = 0,1, . . .Nε are the collection of Gauss-Lobatto points, and the horizonis
finite.

2. W(t)≡ 1− t, t j , j = 0,1, . . .Nε are the collection of Gauss-Radau points, and the horizon is
(semi-)infinite.

Note that these concepts are similar in spirit to the computation of non-polynomial analytic func-
tions such asex or lnx. This is why PS methods are regarded as a joint theoretical-computational
approach. Furthermore, under these conditions the PS approach satisfies the Covector Mapping
Principle:

Covector Mapping Principle Let the sequence of function pairs t7→ {xN
,uN}∞

N=0 converge to a
solution of Problem B. Then, there exist multipliers for Problem BN that map to the coefficients of
some interpolating functions that converge to covector functions that solve the dualized version of
Problem B.

ProblemBN in the Covector Mapping Principle is given by,
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Minimize J[x(πN),τcmd(πN), tN] = tN

Subject to ẋN(tk) =



















1
2Q(ω)q

Γ−1

[

−ω ×
(

Jω +
∑4

i=1ai Iw,iΩw,i +aiIw,iaT
i ω

)

Cxfilt +Dτcmd

]

Axfilt +Bτcmd






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









t=tk

x(t0) =
[

e0sin( φ0
2 ),cos( φ0

2 ),ω0,Ω0,xfilt ,0)
]T

x(tN) =
[

ef sin( φN
2 ),cos( φN

2 ),ωN,ΩN,xfilt ,N)
]T

||q(tk)|| = 1
|ωi(tk)| ≤ ωmax, i = 1, . . . ,3

|τcmd,i(tk)| ≤ τcmd,max, i = 1, . . . ,4
|Iw,iΩw,i(tk)| ≤ Iw,iΩmax, i = 1, . . . ,4

τL ≤ Iw,iΩ̇w,i(tk)≤ τU , i = 1, . . . ,4
k = 0,1, . . . ,N

(23)

whereπN = {t0, t1, . . . , tN} is a Gauss-Lobatto grid, ˙xN(tk) is the derivative ofxN(t) evaluated attk
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and is obtained quite simply by differentiating (21):

ẋN(tk) =
N
∑

j=0

φ̇ j(tk)x j (24)

Note that once the grid,πN is selected, the quantity,φ̇ j(tk), j,k= 0, . . . ,N, called the differentiation
matrix, is completely determined. That is, it does not depend upon the values of the function.

The Covector Mapping Principle provides the adjoint covector function via the expansion [14],

λ Nε (t) =
Nε
∑

j=0

W∗(t)
W∗(t j)

φ j(t)λ j (25)

whereW∗ is a dual weight function. The weight functions are of the simplest form when the
Legendre-Gauss-Lobatto grid is chosen. That is,W(t) ≡ W∗(t) ≡ 1 for the Legendre-Gauss-
Lobatto grid.

As a consequence of these fundamental concepts, Pontryagin’s Principle can now be applied quite
readily to verify and validate the resulting solution. The solution is obtained via a fast spectral algo-
rithm implemented in DIDO [15], an object-oriented MATLAB software package that is agnostic
to the details of the PS theory as experienced by the user. Thus, solving ProblemB is now raised
to the level of a technology wherein flight operations require verification, validation and pre-flight
checkouts designed to ensure the success of the mission.

3.4. Pre-Flight Checkout

Pre-flight checkout of solutions to Problem BN was carried out using a series of standard tests
that include continuous-time feasibility and discrete-time optimality checks [15]. The former are
carried out by propagating the optimal control trajectory through the system dynamic equations
and the latter are accomplished through the automatic application of the Covector Mapping Prin-
ciple to verify the necessary conditions on the optimality of each solution. Following the analysis
of each maneuver from the computational point of view, the ability of the TRACE spacecraft to
properly execute each STM was verified against a high-fidelity simulation model of the spacecraft
developed at the Naval Postgraduate School. Similar maneuver verification tests were performed
independently by flight software specialists at the NASA Goddard Space Flight Center. All of
these pre-flight checkout activities were mandatory because shortest-time maneuvers have never
been implemented on spacecraft prior to our first experiments on TRACE [11]. After all of the
necessary pre-flight checkout activities were successfully completed, the TRACE flight operations
team developed the necessary procedures for implementing the maneuvers on orbit. Although
STMs are non-eigenaxis maneuvers, the maneuvers were implemented without any modification
to the existing eigenaxis ACS. This was done by closely approximating the optimal attitude trajec-
tories as a series of high-frequency, small-angle, eigenaxis rotations compatible with the existing
ACS logic.
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4. Flight Test Results

This section presents the results of several flight experiments that demonstrate the new approach
to maximizing spacecraft imaging capability. The flight tests were carried out using the TRACE
spacecraft as a proof-of-concept testbed. Although TRACE is a Sun pointing rather than an Earth
pointing satellite, the maneuver scenarios performed onboard TRACE were designed to closely
emulate the various types of activities that are relevant toimaging operations on an Earth imaging
satellite. In the first test, a shortest-time reorientationmaneuver is performed to illustrate the typi-
cal improvement in maneuvering performance that can be achieved by implementing STMs in lieu
of conventional slews. The results of two additional flight tests are then presented to further demon-
strate STM capabilities relevant to the operation of an Earth imaging satellite. The operationally
relevantSTARmaneuver illustrates a sequence of STMs that minimize the time to slew through a
sorted set of static imaging points. A second operationallyrelevantSCANmaneuver demonstrates
how STMs are utilized to minimize the time to transition between two orthogonal imaging swaths.

4.1. Typical Shortest-Time Maneuver

To experimentally demonstrate the improvement in spacecraft agility that is possible by imple-
menting STMs, a large-angle reorientation maneuver was designed and implemented on TRACE.
In the experiment the spacecraft was rotated, in the shortest-time, from an initial attitude quater-
nion given asqo = [0.0,0.0,0.43,0.90]T to the final attitude,qf = [−0.31,0.07,−0.20,0.93]T. An
equivalent eigenaxis maneuver was also performed on orbit by rotating the spacecraft through an
angle ofΦ = 80 degrees around the Euler axis,e= [−0.39,0.30,−0.87]T. Some telemetry data
pertaining to these two flight tests is given in Fig.4. An ideal eigenaxis rotation is depicted by a
straight line in the projected quaternion space. Fig.4a clearly shows that for the STM, the plot of
q3 vs. q2 is far from a straight line. Thus, the instantaneous rotational axis of the STM deviates
significantly from the eigenaxis. On the other hand, the flight results for the eigenaxis maneuver
show the expected straight line behavior in the quaternion space. Fig.4a also suggests that the
shortest-time maneuver is the space analog of the classic Brachistochrone problem in which the
spacecraft executes a longer path than an eigenaxis maneuver but reaches the goal faster.

Fig. 4b shows the time-histories of the cumulative eigenangles for both the shortest-time and eige-
naxis maneuvers. The cumulative eigenangle is a measure of the length of the angular path that is
traced out by the spacecraft boresight as the spacecraft rotates between the initial and final attitudes.
Referring to Fig.4b, the angular path traced out by the STM is approximately 20 degrees longer
than the shortest angular path provided by the eigenaxis rotation. Despite this, the STM could
be completed approximately 36 seconds (21%) more quickly than the eigenaxis rotation. This
apparent contradiction to intuition is possible because the shortest-time solution finely balances
the tradeoff between the available control authority and the spacecraft inertia properties over the
entire maneuver. As a consequence, the STM builds body ratesaround all three spacecraft axes
simultaneously as predicted by the cube-shaped spacecraftagilitoid (see Fig.3b). This enables
the spacecraft to traverse the slightly longer shortest-time path more quickly than the eigenaxis
rotation.

The peak value of the spacecraft body rate magnitude computed from the available telemetry data
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was 0.86 deg/sec for the shortest-time maneuver. This valueis consistent with the maximum achiev-
able rate of

√
3ωmax= 0.87 deg/sec, which is obtained when all three body rates are maximized

along a diagonal of the agility cube defined by the rate gyro soft-limits, which incorporate a factor
of safety. In contrast, for the eigenaxis rotation, it was only possible to maximize the angular rate
around the spacecraftz-axis. Thus, the peak value of the body rate magnitude for theeigenaxis
maneuver was limited by the much smaller per-axis gyro limitωmax= 0.5 deg/sec. As a result, the
shorter eigenaxis path takes longer to traverse than the path associated with the STM.
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Figure 4. Flight data for shortest-time and eigenaxis maneuvers implemented on TRACE:
(a) spacecraft attitude in projected quaternion space; (b)maneuver cumulative eigenangles.

4.2. STAR Maneuver

To demonstrate the merit of shortest-time maneuvering capabilities in more realistic operational
scenarios, additional flight test experiments were performed. The first of these operationally rele-
vant flight experiments involved a series of shortest-time maneuvers between a presorted sequence
of static imaging points. In this experiment, STMs were utilized to re-point the boresight of the
spacecraft towards various Celestial targets as quickly aspossible. The objective was to reduce
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the slew time between each emulated imaging point. This experiment therefore demonstrates how
STMs can be used to improve imaging throughput within a givenimaging window.

The selected quaternions for the maneuver sequence are the vertices of a five-pointed star. Hence,
this maneuver is referred to as theSTARmaneuver. The five points of the star all constitute po-
tential locations for data collection. Maneuvering between any two points of the star requires the
spacecraft to be rotated around a several different eigenaxes. This allows the spacecraft to be ex-
ercised over a reasonably large envelope of operation so that a good representation of the overall
improvement in maneuvering performance can be obtained from a single flight test. The sequence
of desired spacecraft attitude quaternions for theSTARmaneuver is given in Table1, along with
the yaw-pitch-roll (YPR) Euler angles, relative to the starting quaternion. In order to implement
the flight experiment, shortest-time maneuvers were solvedbetween each desired orientation and
subsequently executed on the spacecraft. Once coming to rest at each desired orientation, a 30 sec
hold period was initiated in order to emulate the image collection activity. Immediately following
the hold period, the spacecraft was slewed to the next attitude by following the newly computed
shortest-time path. TheSTARmaneuver was also executed as a series of equivalent eigenaxis slews,
for performance comparison.

quaternions YPR Euler angles (deg)
maneuver q1 q2 q3 q4 ∆φ ∆θ ∆ψ

1→ 2 0.1302 0.0085 0.0648 0.989315.0 0.0 7.5
2→ 3 -0.1302 -0.0085 0.0648 0.9893-15.0 0.0 7.5
3→ 4 0.0648 -0.0085 -0.1302 0.9893 7.5 0.0 -15.0
4→ 5 0.0000 0.0000 0.1305 0.9914 0.0 0.0 15.0
5→ 6 -0.0648 0.0085 -0.1032 0.9893-7.5 0.0 -15.0
6→ 7 0.0000 0.0 000 0.0 000 1.0000 0.0 0.0 0.0

Table 1. Sequence of desired spacecraft attitudes for the operationally relevantSTARmaneuver.

Flight test results for theSTARmaneuver are shown in Fig.5. Fig. 5a shows the motion of the
imaging boresight (aligned with the spacecrafty-axis) as a projection onto the emulated imaging
plane. Each trace was reconstructed from telemetry data captured during the flight test experiment.
Time-histories of the yaw-pitch-roll Euler angles are shown in Fig.5b, for reference. The telemetry
data clearly shows that the motion of the imaging boresight deviates from the eigenaxis for each
shortest-time maneuver. Moreover, the spacecraft is observed to follow a slightly different shortest-
time path as it rotates between each desired orientation. This is because the shapes of the shortest-
time maneuver trajectories are dependent upon the maneuverboundary conditions in relation to the
spacecraft agilitoid (see Fig.3). Flight test results for the eigenaxisSTARmaneuver are given in
Fig.6. As expected, Fig.6a shows that the spacecraft slews along the shortest circular arcs (straight
line paths) between each of the desired orientations. Inspection of the time-histories of the Euler
angles for the eigenaxis maneuver (Fig.6b) confirms that the eigenaxisSTARmaneuver takes
longer to complete than the shortest-timeSTARmaneuver. The overall reduction in slew time for
the entireSTARmaneuver is approximately 10%. The range of individual slewtime improvements
varied between 2% and 24% depending on the initial and final attitude angles and their relation to
the spacecraft agilitoid.

The 10% overall improvement in slew performance may seem modest, but it is important to note
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that the TRACE spacecraft was never intended to perform large reorientation maneuvers, let alone
shortest-time maneuvers. Thus, the agility capability of the spacecraft was severely restricted by
the relatively small saturation limit of the onboard gyros.The improvement in slew performance
can, in fact, be much larger when STMs are developed for spacecraft specifically designed for
imaging operations. Our recent ground experiments on a CMG-actuated spacecraft simulator at
Honeywell have indicated that it is possible to decrease slew times by up to 50% through the im-
plementation of STMs [28]. As a consequence, the capability of an imaging spacecraftcan be
significantly improved simply by changing how the spacecraft is maneuvered from point to point.
Moreover, no change in the actuator hardware is necessary torealize the performance improve-
ment.
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4.3. Orthogonal SCAN Maneuver

The orthogonalSCANmaneuver represents another operational scenario relevant to the operation
of an imaging spacecraft. This maneuver emulates an imagingprocess in which the satellite sensor
collects data along a swath or scan-line. The objective in this case is to slew as quickly as possible
between transition points which mark the initiation and completion of each scanning operation.
Two orthogonal collection swaths, one parallel to and one perpendicular to the assumed ground
track, are included as part of the experiment in order to stress the spacecraft attitude control system
and demonstrate an ability to implement STMs having a variety of different non-zero boundary
conditions. This experiment illustrates how STMs can be utilized to quickly transition a spacecraft
between point collection and scanning operations.

Telemetry results for theSCANmaneuver test are shown in Fig.7. Fig.7a, shows the motion trace
of the imaging boresight. Referring to Fig.7a, the first STM starts from the home orientation and
ends when the spacecraft reaches a specified attitude at location A. At attitudeA, non-zero attitude
rates are maintained to perform the scanning maneuver (see Fig. 7b). To transition from the first
scan region to the second scan region (lying in a direction orthogonal to the first), a second STM
is performed between pointsB andC. Once the desired spacecraft orientation is reached as point
C, a second scan maneuver is performed by maintaining specified non-zero attitude rates between
attitudesC andD. TheSCANmaneuver is completed by a final STM between attitudeD and a static
imaging point (also located at the home position). An interesting feature of theSCANmaneuver
is the nonintuitive path traced out by the spacecraft boresight as the vehicle transitions between
the two scan regions. In particular, the spacecraft first moves away from and then overshoots point
C before initiating the second scan. This surprising and unexpected result emphasizes how the
proposed optimal control technique can be leveraged to enhance the imaging capability of Earth
imaging spacecraft beyond what is possible using conventional approaches for maneuver design.

5. Conclusion

This paper presented flight test results from a shortest-time maneuvering experiment carried out
on the NASA space telescope TRACE. Shortest-time maneuvers(STM)s are spacecraft slew ma-
neuvers, based on optimal control theory, that have the potential to revolutionize the operation of
imaging spacecraft by enabling spacecraft to be reorientedmore quickly than conventional maneu-
vers. In order to design each STM, a detailed model of the TRACE spacecraft and its reaction
wheel actuation system was first developed. The spacecraft model contained sufficient fidelity to
ensure that the designed maneuvers could be reliably executed by the orbiting spacecraft. The
spacecraft dynamic model was then embedded, along with the appropriate constraints, in an opti-
mal control problem formulation that was subsequently solved using the Legendre pseudospectral
method implemented in the object-oriented software package DIDO. The flight test results clearly
show that implementing STMs, in lieu of conventional maneuvers, can significantly improve the
agility of the spacecraft. Moreover, the improved performance can be realized simply by changing
the commanded maneuver trajectories and hence does not require the existing spacecraft attitude
control system to be otherwise modified. The successful flight demonstration of several opera-
tionally relevant maneuvers, each designed to emulate scenarios encountered as part of the daily
operation of an Earth imaging satellite, illustrate that itis now possible to insert the revolution-
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ary approach for maximizing spacecraft imaging capabilityinto normal mission operations. This
technology is currently being transitioned to industry.
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