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Abstract: Linked Autonomous Interplanetary Satellite Orbit Navigation, or LiAISON, is a novel
satellite navigation technique where relative radiometric measurements between two or more
spacecraft in a constellation are processed to obtain the absolute state of all spacecraft. The method
leverages the asymmetry of the gravity field that the constellation exists in. This paper takes a
step forward in developing a high fidelity navigation simulation for the LiAISON concept in an
Earth-Moon constellation. In particular, we aim to process two-way Doppler measurements between
a satellite in GEO orbit and another in a halo orbit about the Earth-Moon L1 point.
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1. Introduction

Linked Autonomous Interplanetary Satellite Orbit Navigation, or LiAISON, is a novel satellite
navigation technique where relative radiometric measurements between two or more spacecraft in a
constellation are processed to obtain the absolute state of all spacecraft [1–5]. No ground-based
measurements are required. The method leverages the asymmetry of the gravity field that the
constellation exists in, allowing a unique configuration to exist. Previous research has focused on
lunar constellations with at least one satellite in an Earth-Moon libration point orbit; LiAISON,
however, is not confined to this particular set up, and could be of use in other navigation scenarios, as
suggested by Hill [1]. One scenario of interest is to apply LiAISON to GEO satellites as traditional
ground-based orbit determination in this orbit regime is often difficult due to a lack of relative
motion and conventional GPS receivers are ineffective at such high altitudes. This configuration
would extend a GPS-like navigation capability to any Earth orbiting satellite as well as those at the
Moon. Although the current work focuses on the tracking of a GEO satellite, it has implications for
other Earth or Moon orbits.

This paper takes a step forward in developing a high fidelity navigation simulation for the LiAISON
concept in an Earth-Moon constellation, with one satellite in GEO orbit and another in a halo orbit
about the Earth-Moon L1 point. In particular, we aim to process two-way Doppler measurements
modeled as a discrete change in the roundtrip light path length. Again, only relative measurements
between the two satellites are processed as observations. The overall structure of the paper is as
follows. First, the LiAISON concept and the observation / dynamical model employed in this paper
are introduced (Section 2.). As a baseline scenario, navigation results in the circular restricted
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three-body problem are discussed. Then, the details of the simulations run for this paper are
presented (Section 3.). An extended Kalman filter processes observations corrupted by noise and a
constant bias consistent with S- and X-band measurements. An initial state deviation and dynamical
modeling errors are also added to the problem. Finally, the navigation results are shown (Section
4.). LiAISON navigation succeeds in extracting absolute state information based on simulated
Doppler measurements, although including range-type measurements would further improve filter
convergence.

2. Background

In this section, we qualitatively introduce the LiAISON navigation concept through a baseline
simulation utilizing idealized dynamics. We then explain the measurement and dynamical models
implemented in the current paper. Refer to Parker, et al. and Leonard, et al. for a more detailed
treatment [4, 5].

2.1. LiAISON in the Earth-Moon System

Autonomous satellite-to-satellite tracking relies on an ability to estimate the absolute positions of a
spacecraft without the use of groundstation observations. To do so, the size, shape, and orientation
of the satellites orbit must be observable from the measurements available between the linked
spacecraft. The observability of the system depends on one of these satellites occupying a unique
trajectory. The determining factor in whether a unique trajectory can exist, and thus whether
LiAISON is possible, is the acceleration function acting on the orbiter. No unique orbits exist in a
symmetric acceleration field, one in which the function and its time derivative are symmetric. Even
in regions with desired asymmetric perturbations, uncertainties in the force model and observation
noise can counteract these effects in the accelerations and prevent satellite-to-satellite tracking
(SST) orbit determination. As a result, the asymmetric acceleration effects must be great enough to
outweigh the uncertainties and force model issues that arise.

Acceleration functions with sufficient asymmetry for LiAISON are provided by three-body systems
that give rise to libration point orbits (LPOs). Third-body perturbation of the Moon are sufficient to
provide the asymmetry necessary for locally unique trajectories to exist. Due to the effects of the
gravitational forces of the Moon and Earth, lunar LPOs can only have one orientation with respect
to this system. L1 LPOs are specifically well suited for LiAISON because they are locally unique
and reside in regions where the asymmetry of the accelerations is strong. Under these conditions a
spacecraft at L1 can uniquely and absolutely determine the state of a second satellite using crosslink
measurements without ground-based observations.

The scenario examined in this paper extends the concepts of LiAISON navigation beyond constel-
lations fixed at the Moon [1, 2, 6, 7]. This study considers placing one satellite in a GEO orbit,
since there is significant interest in improving the navigation of GEO satellites; future studies will
examine other orbits, including low Earth orbits, lunar transfers, and interplanetary trajectories. It
may be the case that NASA’s lunar development warrants a dedicated navigation satellite; this study
demonstrates that such a satellite may be able to offer substantial benefits to Earth-orbiting satellites
as well.
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Figure 1. Satellite constellation geometry for truth model simulations for LiAISON and ground-
tracking [5].

The effectiveness of the autonomous satellite tracking system is evaluated using orbit determination
solely composed of relative measurements between two participating spacecraft. A dedicated
navigation satellite anywhere near the Moon has an advantage over groundstations for tracking
GEO satellites using radiometric data. Figure 1 demonstrates the dynamic range measurements
between an example GEO satellite and a satellite traversing an LPO about the Earth-Moon L1 point
versus the range of a GEO orbit tracked by a groundstation. One can see clear signals in the data
that may be used to lock onto the position and velocity of both satellites.

As a baseline case, we present here LiAISON navigation results between one satellite in a lunar L1

LPO and another at GEO simulated in the circular restricted three-body problem (CRTBP). The
CRTBP models the motion of a massless particle, e.g., a spacecraft, in the presence of two massive
bodies, e.g., the Earth and the Moon, where the two massive bodies are in circular orbits about their
barycenter. The analysis presented here uses values for the gravitational parameters of the Earth
and Moon of 398,600.4415 km3/s2 and 4902.80 km3/s2, respectively. The initial state deviation
is 100 meters in position and 1 cm/s in velocity for both satellites. The a priori covariance is set
to correspond with the initial state deviation: it has been set to a diagonal matrix with values of
104 m2 in position and 10−2 (m/s)2 in velocity for both satellites. State noise compensation has been
implemented with a 1-σ value of 1× 10−13 m/s2 for the halo orbiter and 1× 10−14 m/s2 for the GEO
satellite on the diagonal of the a priori process noise covariance matrix. Simulated instantaneous
relative range and range-rate measurements with 1 meter and 1 cm/s 1-σ noise, respectively, were
processed every 100 seconds with an extended Kalman filter (EKF).

Figure 2 illustrates the time evolution of the position and velocity accuracy of the simulation as
the EKF processes the observations, namely, the difference between the truth trajectory and the
estimated trajectory over time. Figure 3 presents the components of the covariance matrix over time
on a logarithmic axis for clarity. One can see that the uncertainty of the position of either satellite
converges to about one meter within about eight days. The coordinates are represented in the
Earth-Moon rotating coordinate frame. The largest off-diagonal element in the variance-covariance
matrix after 9 days of processing has a value of approximately 1.1 × 10−17, illustrating that there is
no correlation in the state variables. The post-fit range residuals have an RMS of approximately
0.99519 meters.
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Figure 2. Time evolution of position (left) and velocity (right) accuracy (truth − estimate) plotted
with 3-σ covariance envelopes (dotted lines). Top plot is for the L1 halo orbiter and the bottom is
for the GEO satellite. The coordinates are given in the Earth-Moon synodic reference frame in the
CRTBP [4].

Figure 3. Time evolution of the position and velocity variance for the two satellites in the CRTBP [4].

2.2. Doppler Modeling

In this paper, we consider processing two-way Doppler measurements between the two constellation
satellites. We model Doppler as a discrete range-rate: at each observation epoch, the incremental
change in the roundtrip light path length (RTLPL) over a specified count time is divided by the
count time. We assume a Newtonian model of light propagation, and thus the RTLPL is directly
proportional to the roundtrip light time (RTLT) through the speed of light constant c. Given
the position of the two spacecraft r1(t), r2(t) at time t, the one-way light time LT12 for a signal
transmitted from spacecraft 1 to 2 at time t is found by solving the following equation

LT12(t) =
‖r1(t) − r2[t + LT12(t)]‖

c
, (1)

where ‖ · ‖ indicates the vector norm. In many scenarios, LT12 must be solved for recursively. The
simplest approach is to guess a value for LT12, substitute into (1), and use the resulting value as
the new guess to be substituted. Convergence is very good, with the solution changing by less
than the machine precision after ∼ 5 iterations. Furthermore, especially within a filter, numerically
integrating the dynamics to find r2[t + LT12(t)] becomes a large computational burden. For our
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problem, LT12 ≈ 1 second, so a linear extrapolation is sufficient

r2[t + LT12(t)] ≈ r2(t) + v2(t)LT12, (2)

where v2 is the velocity of spacecraft 2. The RTLPL at observation epoch t is expressed as

RTLPL(t) = c {LT12(t) + LT21[t + LT12(t)]} . (3)

Finally, the discrete range-rate observation g(t) at time t integrated over [t − Tc, t] plus observational
error ε(t) and bias ε̄(t) is

g(t) =
RTLPL(t) − RTLPL(t − Tc)

Tc
+ ε(t) + ε̄(t). (4)

The partial derivative H̃ of the observations with respect to the states X is obtained numerically via
a central difference approximation. That is, for some small h,

H̃ =
∂g
∂X
≈

g(X + h) − g(X − h)
2h

. (5)

Choosing h too small can introduce major numerical errors, whereas choosing h too large makes
this linear approximation of the derivative inaccurate. The approximate derivative should first be
solved for over a range of h and a h value chosen in the subset where the approximation is the most
stable.

2.3. Gravitational Perturbations in the Earth-Moon System

In the real solar system, the Lagrange points shift in position relative to the Earth and Moon on
account of the Moon’s non-circular orbit about the Earth and other perturbations in the solar system.
Given that the Earth-Moon three body system is chaotic, dynamical errors may cause the truth
trajectory to rapidly drift away from the filter reference orbit and degrade the estimate. In this
section, we discuss gravitational deviations of the Earth-Moon system from the CRTBP as well as
the mathematical models implemented in our simulation.

• n-body forces
n-body forces are caused by celestial bodies not included in the Earth-Moon three body
problem, such as the sun and other planets in the solar system. The acceleration r̈i of the
spacecraft due to the point-mass gravitation of body i is given as

r̈i = −µi

[
ri

r3i

+
Ri

R3
i

]
, (6)

where ri is a vector pointing from body i to the spacecraft and Ri is a vector pointing from the
Earth to body i [8]. The positions of celestial bodies are computed based on JPL’s DE 405
ephemerides and thus are no longer constrained to be in a circular orbit [9, 10].

5



• Non-spherical Earth gravity field
The Earth’s gravitational potential is given in terms of spherical harmonics as

U =
µ

r

1 − ∞∑
l=2

Jl

(
R

r

)l

Pl(sinϕgc) +

∞∑
l=2

l∑
m=1

(
R

r

)l

Pl,m(sin φgc)
{
Cl,m cos(mλ) + S l,m sin(mλ)

} , (7)

where R is the radius of the Earth, r is the distance between the spacecraft and the center
of the Earth, λ is the longitude of the satellite, φgc is the geocentric latitude of the satellite,
Pl are the Legendre polynomials, Pl,m are the associated Legendre polynomials of degree
l and order m, and Jl, Cl,m and S l,m are harmonic coefficients. In this paper, we use the
GRACE Gravity Model 02 constrained with terrestrial gravity information (GGM02C) for
these coefficients [11]. The acceleration r̈ due to the non-spherical central body is given
simply as r̈ = −∇U and is applied to the GEO satellite in place of the point-mass model
discussed above. The most notable effect of a non-spherical gravity model is the secular
precession of the orbital plane, but all orbital elements are also nominally affected in a periodic
fashion [12].

3. Method

In this section, we explain the details of our simulation setup, such as initial states, the a priori
state uncertainty, measurement errors, and filter parameters. We simulate a two satellite LiAISON
configuration with one satellite in an Earth-Moon L1 halo orbit and the other in a GEO orbit. For
all cases, a truth trajectory (without errors) is first generated using JPL’s MONTE software: initial
states and their associated a priori covariances for all cases are listed in Table 1. Based on this truth
trajectory, the Doppler data (simulated as discrete range-rate measurements) is generated according
to the model described in Section 2.2.. Additional observation parameters are listed in Table 2. Note
that decreasing the observation interval to 100 s as in the example in Section 2.1. does not improve
filter convergence or accuracy but increases computational burden significantly. The reference orbit
will include deviations in the initial conditions as listed in Table 3.

Table 1. Initial truth states for the two satellites and their associated a priori variance values (“1-σ”).
All a priori state correlations are assumed to be 0.

X0 [m] Y0 [m] Z0 [m] Ẋ0 [m/s] Ẏ0 [m/s] Ż0 [m/s]

L1 3.33321 × 108 −7.61342 × 107 −2.08739 × 107 2.57178 × 102 9.30274 × 102 3.46177 × 102

GEO 4.21600 × 107 0 0 0 3.07497 × 103 5.36683 × 10−1

1-σ 1.00000 × 104 1.00000 × 104 1.00000 × 104 1.00000 × 101 1.00000 × 101 1.00000 × 101

Table 2. Observation parameters for all simulations cases.

Epoch Interval [s] Arc length [days]

2020/01/01 1.00000 × 103 1.99957 × 101
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Table 3. Initial state deviation values common to all simulation cases.

x0 [m] y0 [m] z0 [m] Norm [m]

Halo 8.19032 × 101 5.67041 × 101 8.74653 × 100 1.00000 × 102

GEO 1.14857 × 101 7.07301 × 101 6.97518 × 101 1.00000 × 102

ẋ0 [m/s] ẏ0 [m/s] ż0 [m/s] Norm [km/s]

Halo 2.44876 × 10−3 4.80858 × 10−3 8.41909 × 10−3 1.00000 × 10−2

GEO 5.12723 × 10−3 8.45370 × 10−3 1.49881 × 10−3 1.00000 × 10−2

The observations were processed using an extended Kalman filter (EKF). The state vector X(t) at
time t is defined as

X(t) = [r1(t) v1(t) r2(t) v2(t) ε̄], (8)

where all variables are defined in Section 2.2.. Again, the bias is assumed to be constant in both the
filter model and the truth trajectory. To improve numerical stability, the Joseph covariance update is
implemented

P = (I − KkH̃k)P̄k(I − KkH̃k)T + KkRkKT
k , (9)

where the subscript indicates the observation number, P is the measurement updated covariance,
K is the Kalman gain, H̃ is the linear relationship between the state and the observations, and P̄
is the time updated covariance. Furthermore, state noise compensation (SNC) is implemented for
white Gaussian process noise on the accelerations with constant diffusion. If we assume that the
observations are dense enough such that the velocity is constant over an observation interval, the
covariance time update per spacecraft is modified as

P̄k+1 = Φ(tk+1, tk)PkΦ
T(tk+1, tk) + Γ(tk+1, tk)QΓT(tk+1, tk) (10)

Γ(tk+1, tk) = ∆t
[

∆t/2 · I3×3

I3×3

]
. (11)

SNC acts to inflate the covariance matrix so that, especially in the presence of unmodeled ac-
celerations, the filter does not saturate before a good state estimate is achieved [13]. We set
Q = 4 × 10−14 · I3×3 (m/s2)2 for this paper. A more thorough discussion on the filtering techniques
used can be found in Parker, et al. and Leonard, et al [4, 5].

The numerical integrator used is a variable step Runge-Kutta integrator that compares the results
of 7th and 8th order integrations to adjust the step size. The initial guess for the time step is 10−7

and the tolerance used to compare the 7th and 8th order results is 10−14. State transition matrices
are computed numerically along with the state parameters. All integrators, derivative functions for
the integrators, and implementation of the DE 405 ephemerides were provided by the TurboProp
software suite [14].

Based on Thornton and Border, we set the nominal Doppler error to 1 mm/s 1-σ and the bias to
a constant 0.2 mm/s to account for solar plasma fluctuations, solar plasma drift, and instrument
instabilities for an S-band signal. For X-band, the error is reduced to 0.1 mm/s 1-σ and the bias to
a constant 0.02 mm/s as the plasma effects are about an order of magnitude smaller [15]. In both
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cases, the error is modeled as white Gaussian noise and the filter variance input for the observation
noise was set at the 1-σ noise level for each transmission frequency. Occultation of the tracking
signal due to the Earth is considered. In addition, in order to improve filter stability, tracking is
deliberately turned off when the estimated absolute velocity in the x-direction of the GEO satellite is
less than 1.50000 × 103 m/s. Future work is to determine theoretically why such a singularity exists
when processing Doppler measurements but not instantaneous range and range-rate measurements.

To introduce dynamical modeling errors, in addition to the initial state errors, we consider the
following.

• The gravitational acceleration due to all planets in the solar system plus the sun is included
in the truth trajectory, whereas only the gravity due to the sun, the moon, and the Earth are
modeled in the filter

• A 20 × 20 gravity field is assumed for the truth trajectory, whereas the filter only implements
a 5 × 5 model

We expect these accelerations to be accounted for in the filter by the SNC algorithm described
previously. Although solar radiation pressure was not included in the current analysis, previous
work suggests that its effect on the state estimate accuracy is small; i.e. on the order of 101 ∼ 102

meters for an coefficient of reflectivity error of 20% [5].

4. Results

In this section, we discuss the navigation simulation results. In addition to the two transmission
frequencies, we test a case where we assume the L1 satellite’s state is well determined, for instance
through groundtracking, and thus is not estimated.

4.1. Two-Way S-Band Doppler Tracking

Figures 4–7 and Table 4 summarize the filtering result for the complete state estimation using
S-band Doppler tracking. Note that accuracy is defined as (truth) − (filtered). We find that the
variance of the states stabilize after approximately a week of tracking, which is comparable to the
results obtained in the CRTBP. Both the variance values after convergence and the state estimate
accuracy, however, are about 2 orders of magnitude worse than in the baseline CRTBP simulation.
This result is expected as range-rate is a weaker observation type than range [13]. In addition, the
accuracy after 20 days of measurement processing is better than the initial state deviation introduced.
Unlike the states, the estimate of the observation bias does not converge in a week. The closing of
the covariance bounds, however, suggests that information does exist in the observations and that a
longer data arc should result in a better estimate. We conclude that LiAISON is indeed effective in
processing the discrete change in relative RTLPL to improve the absolute state knowledge of both
satellites in the constellation.
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Figure 4. Position (left) and velocity (right) standard deviation history of both the L1 (top) and GEO
(bottom) satellites for S-band Doppler tracking. 1-σ values are shown for each cartesian direction.

Figure 5. Pre-fit (top) and post-fit (bottom) residual history for S-band Doppler tracking. RMS of
the post-fit residuals is 7.02350 × 10−4 m/s.

Table 4. Accuracy RMS values for the L1 (top) and GEO (bottom) satellites in each cartesian
direction of the last half of the filter run for S-band Doppler tracking. The “3D” value is the RMS
of the RMSs in the individual coordinates.

X Y Z 3D

L1 Pos [m] 1.18084 × 102 1.69900 × 102 2.07601 × 102 2.93100 × 102

L1 Vel [m/s] 8.70607 × 10−4 1.28107 × 10−3 1.39422 × 10−3 2.08398 × 10−3

X Y Z 3D

GEO Pos [m] 5.10852 × 101 5.21260 × 101 1.74052 × 101 7.50317 × 101

GEO Vel [m/s] 3.77122 × 10−3 3.72236 × 10−3 1.27867 × 10−3 5.45097 × 10−3
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Figure 6. Position (left) and velocity (right) estimation accuracy of both the L1 (top) and GEO
(bottom) satellites for S-band Doppler tracking. The 3-σ covariance bounds are plotted as dashed
lines.

Figure 7. Observation bias estimation accuracy for S-band Doppler tracking. The 3-σ covariance
bounds are plotted as dashed lines.
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Figure 8. Position (left) and velocity (right) standard deviation history of both the L1 (top) and GEO
(bottom) satellites for X-band Doppler tracking. 1-σ values are shown for each cartesian direction.

4.2. Two-Way X-Band Doppler Tracking

Figures 8–9 and Table 4 summarize the filtering result for the complete state estimation using
X-band Doppler tracking. The RMS of the post-fit residuals is 2.03368 × 10−5 m/s. Compared
to the S-band results, the covariance convergence is slightly better due to the tighter observation
variance bound R. The state estimate accuracy, however, is almost identical. Furthermore, since
the observation bias is so small, the effects of bias are comparable to the unmodeled accelerations
considered via SNC, and thus its observability is very limited. Regarding the simulation results
presented here, there is no distinct advantage in choosing X-band tracking over S-band.

Table 5. Accuracy RMS values for the L1 (top) and GEO (bottom) satellites in each cartesian
direction of the last half of the filter run for X-band Doppler tracking. The “3D” value is the RMS
of the RMSs in the individual coordinates.

X Y Z 3D

L1 Pos [m] 1.32688 × 102 1.78178 × 102 1.95075 × 102 2.95648 × 102

L1 Vel [m/s] 8.16778 × 10−4 1.34813 × 10−3 1.52667 × 10−3 2.19439 × 10−3

X Y Z 3D

GEO Pos [m] 5.35849 × 101 5.35001 × 101 2.31763 × 101 7.91881 × 101

GEO Vel [m/s] 3.88276 × 10−3 3.89408 × 10−3 1.69971 × 10−3 5.75576 × 10−3

4.3. Two-Way S-Band Doppler Tracking With Perfect L1 State Knowledge

By assuming perfect state knowledge of the L1 satellite, which can be achieved by simply reducing
the a priori covariance of these states to 0, we may use all of the information in the observations
to estimate the state of the GEO satellite. As such, we expect improved navigation performance.
Figures 10–11 and Table 6 summarize the filtering result. The state variances indeed collapse much
faster than the previous cases, stabilizing after only a couple of days of tracking. The covariance
bounds, however, are not any smaller, and neither is the state estimate accuracy any better. This
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Figure 9. Observation bias estimation accuracy for X-band Doppler tracking. The 3-σ covariance
bounds are plotted as dashed lines.

Table 6. Accuracy RMS values for the GEO satellite in each cartesian direction of the last half of
the filter run for S-band Doppler tracking with perfect state knowledge of the L1 satellite. The “3D”
value is the RMS of the RMSs in the individual coordinates.

X Y Z 3D

GEO Pos [m] 4.92068 × 101 5.16604 × 101 3.45135 × 101 7.92546 × 101

GEO Vel [m/s] 3.76825 × 10−3 3.54303 × 10−3 2.45439 × 10−3 5.72511 × 10−3

results suggests a fundamental limit to the amount of state information that can be extracted with
the current filter setup. Future work is to corroborate this finding via a Cramer-Rao analysis and to
consider other methods of processing Doppler observations such as treating it as an accumulated
range measurement [4]. Information regarding the observation bias, on the other hand, does increase
significantly with the perfect knowledge assumption. The estimate accuracy is poor only because
growing errors in the numerical integration are being imposed upon the bias in order to reduce
residuals. Therefore, observability of the bias may be improved by reducing the state uncertainty of
one of the satellites; e.g. combining groundtracks to this LiAISON configuration.

5. Conclusions

In this paper, simulation results of an autonomous navigation concept were presented, where the
absolute state of satellites are estimated via relative measurements only. The method leverages
asymmetry in the force model and thus is apt for applications that include libration point orbits.
Relative two-way Doppler measurements with errors corresponding to S- and X-band were simulated
as discrete range-rates over a specified count time. Although filter accuracy is worse than when
processing range data due to the inherent weakness of range-rate type observations, all filters
converge and provide state estimates with ∼ 102 meter level accuracy in position and ∼ 10−3
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Figure 10. Position (top) and velocity (bottom) standard deviation history of the GEO satellite for
S-band Doppler tracking with perfect state knowledge of the L1 satellite. 1-σ values are shown for
each cartesian direction.

Figure 11. Observation bias estimation accuracy for S-band Doppler tracking with perfect state
knowledge of the L1 satellite. The 3-σ covariance bounds are plotted as dashed lines.
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m/s accuracy in velocity. Future work is to determine theoretically the singularities unique to
processing range-rate-type measurements as well as investigating better ways of filtering the
Doppler information.

6. Acknowledgements

The research presented in this paper has been carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

7. References

[1] Hill, K. Autonomous Navigation in Libration Point Orbits. Ph.D. thesis, Graduate School of
the University of Colorado, 2007.

[2] Hill, K. and Born, G. H. “Autonomous Interplanetary Orbit Determination Using Satellite-to-
Satellite Tracking.” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 3, pp. 679–686,
2007.

[3] Villac, B., Chow, C., Lo, M., Hintz, G., and Nazari, Z. “Dynamic Optimization of Multi-
Spacecraft Relative Navigation Configurations in the Earth-Moon System.” 2010. Presented
at the George H. Born Symposium, Boulder, CO.

[4] Parker, J. S., Anderson, R. L., Born, G. H., and Fujimoto, K. “Navigation Between Geosyn-
chronous And Lunar L1 Orbiters.” 2012. Presented at the 2012 AIAA/AAS Astrodynamics
Specialist Conference, Minneapolis, MN.

[5] Leonard, J. M., McGranaghan, R. M., Fujimoto, K., Born, G. H., Parker, J. S., and Anderson,
R. L. “LiAISON-Supplemented Navigation For Geosynchronous and Lunar L1 Orbiters.”
2012. Presented at the 2012 AIAA/AAS Astrodynamics Specialist Conference, Minneapolis,
MN.

[6] Hill, K., Lo, M. W., and Born, G. H. “Linked, Autonomous, Interplanetary Satellite Orbit Nav-
igation (LiAISON).” 2005. Presented at the AAS/AIAA Astrodynamics Specialist Conference,
Lake Tahoe, CA. AAS 05-399.

[7] Hill, K., Parker, J. S., Born, G. H., and Demandante, N. “A Lunar L2 Navigation, Communica-
tion, and Gravity Mission.” 2006. Presented at the 2006 AIAA/AAS Astrodynamics Specialist
Conference, Keystone, Colorado, AIAA 2006-6662.

[8] Roy, A. E. Orbital Motion. Taylor & Francis Group, New York, NY, 2005.

[9] Standish, E. M. “JPL Planetary and Lunar Ephemerides, DE405/LE405.” Interoffice memo-
randum, Jet Propulsion Laboratory, 1998. IOM 312F-98-048.

[10] Hoffman, D. A. “A Set of C Utility Programs for Processing JPL Ephemeris Data.” Tech. rep.,
NASA Johnson Space Center, 1998.

14



[11] Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter, B., Kang, Z.,
Nagel, P., Pastor, R., Pekker, T., Poole, S., and Wang, F. “GGM02 - An improved Earth gravity
field model from GRACE.” Journal of Geodesy, 2005.

[12] Vallado, D. Fundamentals of Astrodyamics and Applications. Microcosm Press, Hawthorne,
CA, third edn., 2007.

[13] Tapley, B. D., Schutz, B. E., and Born, G. H. Statistical Orbit Determination. Elsevier
Academic Press, Burlington, MA, 2004. Pp. 159-284.

[14] Hill, K. and Jones, B. A. “TurboProp Version 4.0.” Tech. rep., Colorado Center for Astrody-
namics Research, 2009.

[15] Thornton, C. L. and Border, J. S. “Radiometric Tracking Techniques for Deep-Space Naviga-
tion.” Tech. rep., Jet Propulsion Laboratory, 2000. Monograph 1, Deep-Space Communications
And Navigation Series. JPL Publication 00-11.

15


	Introduction
	Background
	LiAISON in the Earth-Moon System
	Doppler Modeling
	Gravitational Perturbations in the Earth-Moon System

	Method
	Results
	Two-Way S-Band Doppler Tracking
	Two-Way X-Band Doppler Tracking
	Two-Way S-Band Doppler Tracking With Perfect L1 State Knowledge

	Conclusions
	Acknowledgements
	References

