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Abstract:

Nowadays, the mission design comprises the implementationof end-of-life disposal solutions to
preserve the space environment. These solutions must be conceived as feasible, sustainable and
not demanding from the point of view of the operations. In this work, the Earth’s re-entry is
presented as a promising disposal strategy to be adopted at the end-of-life of Libration Point Orbit
missions, following a recent ESA study. The analysis is performed selecting as test cases Herschel,
SOHO and Gaia. We first exploit the natural dynamics corresponding to the Circular Restricted
Three–Body Problem and then we develop, within a full dynamical model, a differential correction
procedure aimed at computing the precise maneuver which allows reaching the Earth. We pay
attention not only on the∆v−budget, but also to the re-entry angle, the time of flight and the
regions on the surface of the Earth affected by the re-entry.

Keywords: Disposal Strategy, Libration Point Orbits, Re-entry.

1. Introduction

Since the end of the 70’s, the neighborhood of the Sun–Earth libration pointsL1 andL2 has been
recognized as a vantage location for Sun’s observation and astrophysics purposes, respectively. It
is known that nominalL1/L2 either periodic or quasi-periodic orbits revolve around the Sun at a
distance of about 1.5×106 km with respect to the Earth and are designed, in a first approximation,
within the Circular Restricted Three–Body Problem (CR3BP)[1]. On one side the multi-body dy-
namics presents a wider range of bounded solutions comparedto the classical Keplerian approach;
on the other hand, the unstable character associated with these solutions allows relatively easy and
inexpensive transfers.

Recently, the final fate of this kind of missions has drawn theattention of NASA and ESA and
some disposal strategies have been implemented to preservethe space environment. Libration
Point Orbits (LPO) are not considered ‘protected regions’,like in the LEO and GEO cases, but it
is still a matter of concern their evolution after the achievement of the objectives of the mission.
The chaotic dynamics causes the spacecraft to move rapidly off the LPO and, if the trajectory is
not driven in a specific way, it may go back to Earth. As we will show here, this eventuality is not
necessarily to be avoided, but it should be accurately planned, especially because the spacecraft
involved are usually quite large and massive. So far, LPO missions have been either disposed on
a graveyard heliocentric orbit, this is the case of ISEE-3, Herschel and Planck, or transferred to
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different less exploited CR3BP orbits, like Back-Flip or Distant Prograde Orbits in order to obtain
the highest possible scientific return from the payload. In the case of WIND, in particular, this
policy permitted a mission extension up to 2067.

In this framework, we are carrying out an ESA study [2, 3] to provide effective decommissioning
strategies for some selected LPO missions, taking into account specific constraints and require-
ments. At the moment, no common end-of-life guidelines exist and one of the objective of the
study is to pave the way for future recommendations. As a general rule, the disposal concepts must
be conceived as feasible, sustainable and not demanding from the point of view of the operations.
Moreover, the solutions must be considered robust in terms of uncertainty on the initial conditions,
timing and maneuver application. In case of Earth’s re-entry, the collision risk within LEO and
GEO regions must be evaluated. The main constraints regard the available propellant on board and
the expected area-to-mass ratio at the end-of-life. Havingthis in mind, there exist three possible
disposal options, namely the Earth’s re-entry, the lunar impact (both directly and after a weak cap-
ture) and the injection into a heliocentric graveyard orbit. In the third case, the spacecraft must be
prevented from returning to Earth, as it just happened with ISEE-3, and to ensure that an additional
maneuver is mandatory to move the spacecraft on a safe energyregime.

In this work, we will present the analysis on the Earth’s re-entry strategy. In a first step, the
natural unstable dynamics of the LPO is exploited under the CR3BP assumptions and a differential
correction procedure is developed within a full dynamical model, aimed at computing the precise
maneuver which allows to reach the Earth. The simplified model is considered because it can
be handled with the tools of the dynamical system theory, providing a direct understanding on
how to achieve the transfer, together with any possible drawback. As Giuseppe Colombo used to
say: ‘Before computing an orbit, you have to see it.’. The outcome will be discussed in terms of
∆v−budget, operational effort and re-entry risk.

2. Dynamical Models

As just mentioned, two dynamical models are considered, theCR3BP and a high-fidelity one,
which accounts for the gravitational attraction of Sun, Moon and all the planets from Mercury to
Pluto, the solar radiation pressure, the atmospheric drag below an altitude of 2000 km and the
10×10 geopotential. In both cases, the numerical integration is done by means of a Runge-Kutta-
Fehlberg method of orders 7 and 8.

2.1. Circular Restricted Three–Body Problem

It is known that the CR3BP studies the behavior of a particle with negligible mass which is assumed
to move under the gravitational attraction of two primariesof massesm1 andm2, which revolve
around their common center of mass on circular orbits. In this work,m1 is the Sun,m2 the Earth–
Moon barycenter. To remove time dependence from the equations of motion, it is convenient to
introduce a synodic reference system{O,x,y,z}, which rotates around thez−axis with constant
angular velocity equal to the mean motion of the primaries. The origin of the reference frame is
set at the barycenter of the system and thex−axis on the line joining the primaries, oriented in the
direction of the smallest primary. In this waym1 andm2 result to be fixed on thex−axis.

2



Figure 1. The synodic reference system for the CR3BP and the equilibrium points (right).

The units are chosen to set the gravitational constant, the sum of the masses of the primaries, the
distance between them and the modulus of the angular velocity of the rotating frame equal to 1. In
the Sun–Earth+Moon system, the unit of distance equals 1 AU =1.49597870691×108 km and the
dimensionless mass of the Earth+Moon barycenter isµ = m2

m1+m2
= 3.0404234×10−6. In this way,

the most massive body is located at(−µ,0,0), the second one at(1−µ,0,0) (see Fig.1) and the
equations of motion read

ẍ−2ẏ = x−
(1−µ)

r3
1

(x+µ)−
µ
r3
2
(x−1+µ),

ÿ+2ẋ = y−
(1−µ)

r3
1

y−
µ
r3
2
y, (1)

z̈ = −
(1−µ)

r3
1

z−
µ
r3
2
z,

wherer1 = [(x+µ)2+y2+z2]
1
2 andr2 = [(x−1+µ)2+y2+z2]

1
2 are the distances between the

particle and the two primaries. This system of equations hasa first integral, the Jacobi integral,
which is given by

(x2+y2)+2
1−µ

r1
+2

µ
r2

+(1−µ)µ −
(

ẋ2+ ẏ2+ ż2
)

=CJ, (2)

whereCJ is the so called Jacobi constant.

In the synodic reference system, there exist five equilibrium (or libration) points (see Fig.1),
whose central dynamical behavior defines periodic and quasi-periodic orbits in their neighborhood,
namely the libration point orbits [4]. The collinear pointsL1,L2,L3 are also characterized by one
hyperbolic component and thus stable and unstable invariant manifolds arise from the correspond-
ing LPO [5, 6, 7]. Each manifold is characterized by two branches, one goingtowards the smallest
primary, the other on the opposite direction. They look liketubes of asymptotic trajectories tend-
ing to, or departing from, the corresponding orbit for positive time. In what follows, the design of
the re-entry is established on the unstable invariant manifold of the nominal LPO. The associated
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initial conditions are computed, in a first approximation, by moving off from the LPO along the
unstable eigendirection (see, for instance, [8]). The variational equations are implemented to this
end.

2.2. Full Ephemeris Model

The equations of motion of the full dynamical model are written in the geocentric equatorial refer-
ence system{O,ξ ,η,ζ} and physical units of distance, time and mass (AU, day and kg)are used.
The behavior of the spacecraft depends on different contributions listed in what follows.

The gravitational acceleration (subscriptg) exerted on the spacecraft by Sun, Moon and the planet
is modeled as

ξ̈g = −
11
∑

p=1

Gmp
(xE −xp+ξ )

r3
E p

− ẍE,

η̈g = −
11
∑

p=1

Gmp
(yE −yp+η)

r3
E p

− ÿE, (3)

ζ̈g = −
11
∑

p=1

Gmp
(zE −zp+ζ )

r3
E p

− z̈E,

where
• (xp,yp,zp, ẋp, ẏp, żp) is the state vector in the equatorial reference system centered at the

Solar System barycenter of the bodyP of massmp and it is evaluated, at a given instant of
time, from the JPL ephemeris DE405 [9];

• (xE,yE,zE, ẋE, ẏE, żE) is the Earth’s state vector in the equatorial reference system centered
at the Solar System barycenter and it is also given by the JPL ephemeris DE405 at each
instant of time;

• rE p=
√

(xE −xp+ξ )2+(yE −yp+η)2+(zE −zp+ζ )2.

The effect due to the solar radiation pressure (subscriptSRP) follows the so-called cannonball
model and can be seen as the effect due to a residual mass of theSun, namely,

ξ̈SRP = −CRP̄a2
⊙

A
m
(xE −xS+ξ )

r3
ES

η̈SRP = −CRP̄a2
⊙

A
m
(yE −yS+η)

r3
ES

, (4)

ζ̈SRP = −CRP̄a2
⊙

A
m
(zE −zS+ζ )

r3
ES

,

whereCR is the reflectivity coefficient,̄P= 4.51×10−6 N/m2 is the mean solar radiation pressure
at 1 AU,a⊙ = 1 AU is the mean distance between the Sun and the Earth,A/m is the ratio-to-mass
ratio and the subscriptSdenotes the Sun.

Whenever the spacecraft orbits below an altitude of 2000 km,the acceleration due to the atmo-

4



 1.008
 1.009

 1.01
 1.011

-0.005

-0.003

-0.001

 0.001

 0.003

 0.005

-0.0016

-0.0007

 0.0002

 0.0011

 0.002

 0.0029

z

HORIZONS
CR3BP initial condition

x

y

z

 0.989
 0.9895

 0.99
 0.9905

 0.991
 0.9915

-0.004-0.002 0 0.002 0.004
-0.0008

-0.0005

-0.0002

 0.0001

 0.0004

 0.0007

z

HORIZONS
CR3BP initial condition

x

y

z

Figure 2. The orbit provided by the JPL HORIZONS system together with the one used
in our simulations. Non dimensional units, synodic reference system centered at the Sun-
Earth+Moon barycenter. Left: Herschel. Right: SOHO.

spheric drag (subscriptATM) is taken into account, namely,

aATM =−
1
2
CDρ

A
m

v2
av̂a (5)

whereCD =2.2 is the drag coefficient,va is the relative satellite-atmosphere velocity, assuming that
the atmosphere rotates together with the Earth with angularvelocity of modulusw⊕ = 4.178×

10−3 deg/s, andρ is the atmospheric density, which is modeled by the static isotherm exponential
model [10].

Concerning the geopotential, we adopt the formulation in Cartesian body-fixed coordinates de-
scribed in [11]. The Earth’s rotation to obtain the acceleration in the inertial reference system
is given by the Software Routines from the IAU SOFA Collection [12] and the coefficients used
correspond to the EGM96 model.

In this model, the variational equations are implemented inview of the differential correction
procedure (see Sec.4.2.). They actually correspond to the central gravitational acceleration and
to the solar radiation pressure, but not to the other two effects considered. As we will see, the
maneuver is applied at an altitude where the latter can be considered as negligible.

3. Test Cases

The LPO missions selected for this work are Herschel, SOHO and Gaia. The nominal orbit of
Herschel is aL2 quasi-halo orbit with maximum out-of-plane amplitude of about 450000 km. It is
proposed as a reference mission, because it just ended and thus it gives the opportunity to compare
our disposal strategy with the solution selected by ESA. Thenominal orbit of SOHO is aL1 halo
orbit with maximum out-of-plane amplitude of about 120000 km. It is selected because it is cur-
rently orbiting aroundL1 and its expected end is in 2016. Finally, Gaia has just been launched on
aL2 Lissajous orbit with a small out-of-plane amplitude, about90000 km. It can pave the way for
new mission concepts by using a pre-planned disposal strategy.
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Table 1. Initial conditions chosen for simulating the behavior of Herschel and SOHO in the
CR3BP framework. Non dimensional units, synodic referencesystem centered at the Sun–
Earth+Moon barycenter. T is period of the orbit, CJ the Jacobi constant.

Mission LPO T x y z ẋ ẏ ż CJ

Herschel L2 Halo North 3.0947685 1.0111842 0 0.0028010 0 -0.0100059 0 3.0007831
SOHO L1 Halo South 3.0595858 0.9888381 0 -0.0008802 0 0.0089580 0 3.0008294

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  2  4  6  8  10

di
st

an
ce

 to
 th

e 
ne

xt
 p

oi
nt

 a
fte

r 
17

8 
da

ys
 (

km
)

years from J2000

-2e+06

-1.5e+06

-1e+06

-500000

 0

 500000

 1e+06

 1.5e+06

 2e+06-1.5e+06 -1e+06 -500000  0  500000  1e+06  1.5e+06  2e+06

-600000

-300000

 0

 300000

 600000
z (km)

HORIZONS 1/1/1999-1/1/2012
foreseen orbit

x (km)

y (km)

z (km)

Figure 3. Top: difference in position between points belonging to theactual orbit of SOHO
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Figure 4. Lissajous orbit considered to simulate the evolution of Gaia. Left: 3D represen-
tation. Right: y−z projection. Synodic reference system centered at the Sun–Earth+Moon
barycenter.

The period, initial conditions and energy level of the LPO corresponding to Herschel and SOHO,
used in the CR3BP framework, are reported in Tab.1. They were computed by comparison with
the actual orbit of the given spacecraft as provided by the JPL HORIZONS system (see Fig.2). In
the full model, the initial position and velocity for Herschel considered are the ones provided by
JPL HORIZONS in the time span going from August 31, 2012 at 18:00 to April 29, 2013 at 18:00
with one-day step. For SOHO, the latest available data from JPL HORIZONS were used, which
cover the time interval going from January 1, 2011 at 00:00 toJanuary 1, 2012 at 00:00. Also in
this case, the data were taken with one-day time step. These dates do not reflect the expected end-
of-life for SOHO, but they were used to simulate the future orbit of the mission until November 15,
2016 at 00:48 and then compute the final re-entry. To be precise, its orbit is assumed to be periodic
in the synodic CR3BP reference frame with period equal 178 days. This approximation turns out
to be a good initial guess for the future behaviour of the spacecraft. As a verification, Fig.3 (top)
shows the difference in position between points belonging to the actual orbit of SOHO distanced
by 178 days, from January 1, 1999 at 00:00 to July 8, 2011 at 00:00. Fig. 3 (bottom) represents,
in the geocentric equatorial reference system, the orbit ofSOHO as foreseen in the future with the
just mentioned assumption.

The nominal orbit assumed for Gaia is the one shown in Fig.4 in the synodic reference frame; this
is a Lissajous quasi-periodic orbit propagated for about 6 years. This value accounts for the 5.5
years of nominal duration of the mission, plus 6 months set asadditional time to start the re-entry
phase. The initial conditions considered are the ones provided by the CR3BP approximation, using
a Fourier series parametrization as explained in [13]. For the full model simulations, the orbit is
transformed into the equatorial geocentric reference frame. Two initial epochs for the first point
on the Lissajous orbit were assumed, namely December 24, 2013 at 00:00 and January 23, 2014
at 00:00. As a matter of fact, initially the launch was scheduled on November 20, 2013, but on
October 22, 2013 it was announced its postponement due to technical reasons. The time of flight to
the libration point orbit was expected to be of about 1 month.The re-entry can take place towards
the end of the mission; in the first case from the point on the orbit associated with March 28, 2018
at 00:00, in the second case about 1 month later.
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Table 2. Estimated constraints at the end-of-life.
Mission ∆v (m/s) A/m (m2/kg) CR

Herschel 180 0.0048 1.5
SOHO 143 0.0196 1.9
Gaia 10 0.0585 1.21

With respect to the constraints on∆v− budget,A/mand reflectivity coefficientCR at the end-of-life,
their values are reported in Tab.2. These data were derived after a thorough analysis on the initial
mass, propellant consumption, type of structures and relative reflectivity coefficients. We notice in
particular that Gaia will have almost no propellant left at the end-of-life.

4. Earth’s Re-entry

Due to the massive size of all the considered missions (between 2 and 4 tons), the final phase
of a re-entry trajectory should be at least semi-controlledwith known orbital parameters at the
atmosphere’s interface. In particular the re-entry velocity and re-entry angle should be targeted so
that the mass surviving the re-entry and the footprints of the fragments are both minimized. In this
work, the re-entry angleγ characterizing the final re-entry phase is computed as

tanγ =
esinν

1+ecosν
, (6)

wheree andν are respectively the eccentricity and the true anomaly of the osculating orbit with
respect to the Earth at 100 km.

A detailed literature review exists for re-entry from LEO, however very little work is available
on re-entry of spacecraft from LPO. In particular, from an analysis of the available literature per-
formed in [14], for LEO spacecraft of around 1000 kg mass, an optimal re-entry angle is found to
be -1◦. Such value represents a good compromise which minimizes the ground casualty risk, which
should be below the IADC accepted level of 10−4. While, as it will be shown, the re-entry velocity
is quite constant for LPO re-entry, when selecting the re-entry angle, the two safety requirements
are in contradiction because the mass surviving the re-entry is minimized if the magnitude of the
re-entry angle is small (i.e., shallow) as the spacecraft experiences a stronger interaction with the
atmosphere, but, on the other side, a small re-entry angle increases the footprint of the re-entry frag-
ments. This was shown in [14] in the case of Highly Elliptical Orbits (HEO), that presentvelocity
values comparable with the one of LPO. For HEO, the melting temperature for the spacecraft are
reached at lower altitude for steeper re-entry angle. Sincefragmentations at very low altitude are
expected to be dangerous, a less steep angle should be preferred.

4.1. CR3BP Design

Let us consider the unstable invariant manifolds associated with the nominal LPO of the selected
missions, see Tab.1. As it can be inferred from Fig.5, they provide a direct transfer to the Earth in
the case of Herschel and SOHO. For Gaia, instead, the minimumgeocentric distance attained by
these trajectories is about 37000 km. This is particularityof the small Lissajous orbits and applies
to other missions like Planck. Thus, in principle, only for Gaia an impulsive procedure is required.
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Figure 5.From top to bottom, unstable invariant manifold of the nominal orbit of Herschel,
SOHO and Gaia leading to Earth (blue). Non dimensional units, synodic reference system
centered at the Sun–Earth+Moon barycenter.
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Figure 6. According to the phase of departure and the type of trajectory, the angle of re-
entry changes, if the design is done within the CR3BP model. Top: two kinds of re-entry
trajectories for Herschel in the synodic Sun–Earth+Moon reference system (in purple the
initial condition). Bottom: The corresponding behavior of the angle of re-entry as a function
of the initial phase.

4.1.1. Herschel and SOHO

The no-cost transfers that can be designed for Herschel and SOHO by means of the unstable invari-
ant manifold can be either direct or not, in the sense that thespacecraft may achieve re-entry after
some revolutions at the Earth on highly elliptical orbits (see Figs.6 and7). Moreover, the values
of re-entry angleγ computed at 100 km of altitude range from−70◦ to 0◦ and for a given transfer
this is function of the initial phase of departure from the LPO and the shape of the trajectory, see
Figs.6 and7. For Herschel, the first opportunity to re-entry arises after 186 days and later on after
465 days since departure. For SOHO, the re-entry can take place either about 310 days of journey
from the nominal LPO or after traveling for 150 days further.The re-entry velocity is about 11.06
km/s at 100 km of altitude, value that can be associated with the Earth’s escape velocity. Indeed,
the trajectories on the unstable manifold belong to low-energy regimes and, because of that, the
re-entry path follows a parabolic orbit.
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4.1.2. Gaia

In the case of Gaia, a differential correction method was developed to figure out the∆v−budget
required as a function of its time of application. It can be sketched as follows (see Fig.8).

• Each initial condition corresponding to the proper branch of the unstable invariant manifold
of the Lissajous orbit is propagated for one year through theCR3BP equations of motion.

• A given trajectory generated in this way is discretized withone-day step.
• In correspondence of each of these nodes a tangential maneuver in the sidereal reference

system is applied in order to get to the Earth. The initial guess for this maneuver is given by
a Hohmann-like transfer, namely:

∆v=

√

2
GmE

r0
−Et −

√

2
GmE

r0
−E0, (7)

wherer0 is the distance between the center of the Earth and the point on the manifold where
the maneuver is applied,Et = −GmE/(r0 + rE) being rE = 6378.137 km the equatorial
radius of the Earth,E0 =−GmE/2a beinga the semi-major axis of the osculating ellipse of
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the point on the manifold.
• After the∆v burn, we look for the minimum of the relative distance between the spacecraft

and the Earth. If this does not occur atrE, then the maneuver is refined by means of the
Newton’s method.

Concerning the Newton’s method, we recall that the radius vector rsid ≡ (xsid,ysid,zsid) of the s/c
with respect to the secondary in the sidereal reference system at timet can be derived as







xsid

ysid

zsid





= R







x+µ −1
y
z





 , with R =







cos(t) −sin(t) 0
sin(t) cos(t) 0

0 0 1





 , (8)

and the velocity vector by deriving (8). If the time derivative of the relative s/c-Earth distanceis

g= ṙ2 =
(x−1+µ)ẋ+yẏ+zż

r2
, (9)

and the section given by the Earth’s sphere, that is, the constraint to match, is

G= r2
2− r2

E, (10)

then the equation to apply reads

∇G ·∆∆∆Xsid
0 ≡

[

∂G
∂X

· (Φ+F ·Dt)
∂X0

∂Xsid
0

]

·∆∆∆Xsid
0 =−G, (11)
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whereX ≡ (x,y,z, ẋ, ẏ, ż), ∆∆∆Xsid
0 is the correction we apply to the initial conditions in the sidereal

reference frame,Φ is the CR3BP variational matrix,F is the CR3BP vector field,Dt =−∇g·Φ
∇g·F , and

∂X0

∂Xsid
0

=





















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1





















.

We notice that, since both the position where the maneuver isapplied and the direction of the
maneuver are fixed, what Eq. (11) changes is just the value of∆v.
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This procedure is able to compute Earth’s re-entry trajectories both direct or not, as in the case of
Herschel or SOHO. In general, the closer the maneuver is applied at an osculating apogee (and thus
the longer the time of flight) the cheaper the transfer, as shown in Fig. 9, but the∆v requirement
tends to stay above 150 m/s. However, the approach revealed the existence of low-costsolutions
such that∆v < 10 m/s as the ones shown in Fig.10. In these situations, the s/c injects into the
unstable invariant manifold of different LPO and the whole trajectories were interpreted as either
heteroclinic or homoclinic orbits whose time of flight ranges between 100 and 150 days.

4.2. Full Model Design

When considering the full dynamical model, the presence of other forces apart from the gravita-
tional attractions of Sun and Earth+Moon causes the spacecraft to move naturally off the LPO onto
the unstable invariant manifold. As this manifold is actually composed by two branches, one lead-
ing toward the Earth, the other inward/outward (L1/L2) the Solar System, for Herschel and SOHO
it may be required to design a maneuver to drive the trajectory along the proper direction. For
Gaia, instead, the impulsive burn aims at changing the semi-major axis of a given trajectory on the
manifold to ensure the re-entry. This is why we distinguish between the two cases.

4.2.1. Herschel and SOHO

Let us consider the orbit of Herschel and SOHO provided by theJPL ephemeris, as described
in Sec. 3.. The differential correction procedure implemented looksfor the change in the initial
velocity such that the spacecraft joins the Earth-ward branch of the unstable invariant manifold.
The methodology is sketched in Fig.11. A given initial condition is transformed into the non
dimensional synodic Sun–Earth+Moon reference system and is propagated through the equations
of motion corresponding to the CR3BP for a given time interval, which is chosen between 1 and 30
days. At this point, the spacecraft is expected to inject into the unstable invariant manifold which
leads to re-entry. To this end the variational equations of the CR3BP are propagated together with
the equations of motion: a Newton’s method is applied to correct properly the initial velocity of
the LPO in the CR3BP frame. In turn, this results in changing the initial velocity of the LPO in
the real ephemerides model. The differential procedure targets the initial condition on the unstable
manifold (corresponding to the LPO in Tab.1) which minimizes such maneuver. In particular,
changing the time of flight to get to the manifold modifies boththe required maneuver and the point
reached on the manifold. In principle, another maneuver would be required to match the manifold
also in velocity, but in practice this is not needed. Indeed,the CR3BP allows understanding how
to move towards the Earth and, in a second stage, the new initial condition obtained through the
differential correction is propagated in the high-fidelitydynamical model.

Whenever an orbit gets to an altitude lower than 100 km in lessthan a year, the re-entry angle
γ is evaluated as explained before. In this way, several re-entry solutions are obtained for the
time interval covered by the missions. Among them we selected the ones associated with an
initial maneuver smaller than 150 m/s as suggested by Tab.2 and a re-entry angle in between 0
and -20 degrees. Higher (in absolute magnitude) re-entry angles are possible, but in those cases
it is expected that the spacecraft would fragment at a lower altitude, with a consequent higher
ground casualty risk [14]. We notice that when the re-entry is designed in the full model, the
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Figure 11. Scheme of the differential procedure implemented for Herschel and SOHO.

correspondence mentioned before between the initial departure phase and the re-entry angle is
broken. It looks like that two factors are responsible for that: the initial maneuver and the solar
radiation pressure, which indeed are able to modify significantly the trajectories.

The solutions which could be selected for Herschel re-entryare shown in Fig. 12 (left). We
notice that none of them take place in 2013 (the year of the actual disposal maneuver for Herschel)
because a lower limit of the re-entry angle was fixed to -20 degrees, following the considerations
drawn before. Figure13 (left) represents the ground-track of the six entry conditions (at 100 km)
for the solutions represented in Fig.12 (left). The points are colored based on the re-entry angle
(see Fig.14 left). All the solutions target equatorial latitudes, and some solutions present a re-entry
points over an oceanic area. This allows mitigating the ground causality risk. However, in a future
study the last phase of the re-entry, for altitude below 100 km, should be analyzed. We also notice
that five solutions correspond to direct re-entry (see Fig.15 left), while one trajectory transfers to
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Figure 12.Final solutions for Herschel and SOHO. The color bar refers to the time of flight
(days).

Figure 13.Ground-track of the entry conditions (at 100 km) for the solutions represented in
Fig. 12 for Herschel (left) and SOHO (right). The color bar reports the corresponding angle
of re-entry (deg).

a highly elliptical orbit before re-entering (see Fig.15 right).

The re-entry disposal trajectories starting from initial conditions generated in the time span be-
tween 2014 to the end of 2016 for SOHO are shown in Fig.12 (right). The higher number of
solutions displayed in this case is due to the larger time interval when the re-entry can occur. Also
in this case the ground-track of the entry conditions (at 100km) can be shown, colored based on
the re-entry angle (see Figs.13and14right). In the case of SOHO, not all the solutions target equa-
torial latitudes or oceanic areas and therefore a further selection of the solutions should be made,
based on the ground causality risk. Examples of direct re-entry and transfers to a highly-elliptical
orbit before re-entering are shown in Fig.16 for SOHO.
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Figure 14.Behavior of the re-entry angle as a function of the altitude for the solutions pro-
posed for Herschel (left) and SOHO (right). The color bar reports the final angle of re-entry
(deg).

Figure 15.Direct re-entry solutions (left) and re-entry through tran sferring on a highly ellip-
tical orbit (right) for Herschel. The color bar reports the a ngle of re-entry (deg).

4.2.2. Gaia

As seen before, Gaia cannot re-enter to the Earth naturally.Thus, the differential correction method
applied here does not aim at inserting into the unstable manifold but at computing the maneuver
which allows the re-entry. This is why the CR3BP dynamical model is not exploited (apart for
generating the initial conditions), but the equations of motion of the high-fidelity model and the
corresponding variational equations were used straight away. In principle, the same strategy could
be implemented also for Herschel and SOHO to look for zero-cost transfers. However, as the
solutions provided in those cases are really not expensive (especially in the case SOHO for which
most of the transfers require less than 10 m/s) we consider the two procedures equivalent.

The differential correction method developed is analogousto the one described in Sec.4.1.2., the
only difference is that now each initial condition on the Lissajous orbit is transformed into the
geocentric equatorial reference system at the beginning ofthe procedure and in Eq. (11) we do not
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Figure 16.Example of direct re-entry solutions (left) and re-entry through transferring on a
highly elliptical orbit (right) for SOHO. The color bar repo rts the angle of re-entry (deg).
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Figure 17.Optimal solutions found for Gaia re-entry in terms of re-entry cost (m/s) and re-
entry angle (deg), being the initial epoch on the LPO on December 24, 2013 at 00:00. The
color bar on the left reports the initial epoch of the re-entry trajectory (left) and the total
time of transfer in days (right).

need to distinguish between sidereal and synodical coordinates.

Figures17 and18 show the feasible solutions in terms of re-entry angle,∆v cost, time of flight
and initial epoch. We accept the solutions corresponding toapogee burning maneuver and the ones
deriving from either heteroclinic or homoclinic connections. In Fig.19we show the regions on the
Earth’s surface involved by the re-entry for all the low-cost trajectories no matter on the re-entry
angle, assuming as initial epoch on the LPO January 23, 2014 at 00:00.

5. Conclusions

Herschel’s science mission ended on April 29, 2013 due to thehelium coolant’s exhaustion. The
spacecraft was kept active until June 2013 to perform technology and operations tests and thus take
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Figure 18.Optimal solutions found for Gaia re-entry in terms of re-entry cost (m/s) and re-
entry angle (deg), being the initial epoch on the LPO on January 23, 2014 at 00:00. The color
bar on the left reports the initial epoch of the re-entry traj ectory (left) and the total time of
transfer in days (right).

Figure 19.Ground-track of the entry conditions (at 100 km) for the low-cost solutions (∆v<
10 m/s) obtained for Gaia, taking as initial epoch on the LPO January 23, 2014 at 00:00. The
color bar reports the corresponding angle of re-entry (deg).

the maximum return from the payload. In May 20131 a disposal maneuver, actually the main of a

1http://sci.esa.int/herschel/52797-herschel-status-report-05-2013/ last retrieval
April 21, 2014.
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series, of nominal magnitude of 113.732 m/s was performed to inject the s/c into a higher helio-
centric orbit such that no-return to Earth is expected in 300years at least. The alternative solutions
proposed in this work would have required less propellant, but, according to the constraint imposed
on the re-entry angle range, the disposal should have started earlier with thus a lower exploitation
of the mission also from the science perspective. However, by relaxing the accepted interval of
values forγ up to -40◦, there exist re-entry trajectories for Herschel that can beconsidered feasible
also in 2013 with respect to time of flight (not greater than 1 year) and∆v cost (less than 100 m/s).

Speaking more in general, following the outcome provided inthis study, an Earth’s re-entry can
be considered as a disposal option for Herschel and SOHO-like missions. The nominal LPO asso-
ciated with these cases allow almost no-cost transfers to Earth in a time of flight not demanding
from an operational point of view. This possibility is ensured by the type of LPO chosen, i.e. halo
or quasi-halo, rather than the out-of-plane amplitude. The∆v requirements are well below the
expected available propellant at the end-of-life both for Herschel and SOHO. For SOHO many
solutions presented have a cost less than 10 m/s. This means,in particular, that some propellant
could be used for the last leg of the re-entry phase, that is, to design a semi-controlled re-entry
which we propose to analyze in the future.

Concerning Gaia, the issue is more delicate, in the sense that they actually exist low-cost solu-
tions, also within the very limited∆v budget at the end-of-life of the mission, but they have to be
investigated in more detail. A systematic search of the optimal intersection position between tra-
jectories belonging to different hyperbolic manifolds must be carried out. Preliminary simulations
indicate that these connections join the unstable manifoldassociated with Gaia and the manifold
of quasi-halo orbits with small out-of-plane amplitude.

In all the cases, the collision probability within LEO and GEO region can be considered as neg-
ligible, because of the low number of excursions within the protected regions (the LEO region in
particular). Also, the re-entry option resembles the one leading to the Moon [2, 3] in terms of op-
erations complexity and propellant need. Our feeling is, however, that the latter should be applied
only if a significant extension of the scientific return is possible.

A future work will be focused on studying the last phase of theEarth re-entry, to describe the
interaction with the ticker stages of the atmosphere. Moreover, the direction of the re-entry maneu-
ver will be optimized to select the re-entry point on the Earth’s surface and minimize the ground
casualty risk.
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