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Abstract: The Multi-circle Elliptic Halo (ME-Halo) orbit is a kind of symmetric resonant period 

orbit only existing in Elliptic Restricted Three-Body Problem (ERTBP). Its remarkable features 

includes that it accepts the primary eccentricity e, has a long period and its stability property 

bifurcates. The author utilizes continuation methods together with optimization solvers to generate 

thousands of ME-Halo orbits, and then systematically investigated their stability property 

variation with parameters e and mass ratio  . Parameters show complex impacts on the stability. 

The orbit of some group can possess more than one eigenvalues greater than one. Continuation 

barriers are observed to be accompanied by a sudden change of the stability. The result in this 

paper is a pioneering research of periodic orbits with potential practical applications in ERTBP , 

and it helps understand the dynamic of ERTBP as well. 
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1. Introduction 

 

The Circular Restricted Three-Body Problem (CRTBP) has drawn much attentions and fruitful 

applications in space exploration have been yielded. Since the motion of planets in the solar 

system can be better described by Kepler’s elliptic orbits with eccentricity e ranging from 0.0086 

to 0.2488 [1], research priorities were turned to extending results under CRTBP to the Elliptic 

Restricted Three-Body Problem (ERTBP) model. The natural choice is to focus on the existence 

and stability of libration periodic orbits in ERTBP. Broucke had first systematically studied the 

stability of periodic orbits in planar ERTBP [2]. Three important properties of planar ERTBP is 

stated as: the absence of Jacobi integral; discrete periodic orbits and two system parameters the 

mass ratio   and the eccentricity e. But the study was limited to the planar situation and period 

orbits were mostly constructed in systems with 0.2  , which makes them less meaningful in 

solar system. Sarris continued a vertical Lyapunov orbit with period 2  in CRTBP to ERTBP 

along both   and e, then he studied their stability and divided the stability coefficients space into 

12 regions [3]. But the system he investigated is also with large   which can lead to larger period. 

His one important state is that the ERTBP model cannot have both axial and bilateral symmetry at 

the same time. Heppenheimer studied the out-of-plane motion in ERTBP utilizing Jacobi elliptic 

functions. He constructed linear solution of the out-of-plane motion and used Lindstedt-Poincare 

method to obtain a third order expansion [4]. He claimed that the eccentricity tended to decrease 

the period while the nonlinearity tended to increase the period. Recently Hou and Liu constructed 

analytical expansion of collinear libration point orbits in ERTBP by Lindstedt-Poincare method [5]. 

The result is really lengthy and complex since the appearance of eccentricity requires the 

expansion with one more parameter. Gurfil and Kasdin applied niching genetic algorithm to search 

practically stable geocentric orbits in ERTBP and discussed their applications [6]. These orbits 

remain finite motion for a long time but they revolve around the primary rather than libration 

points. Gurfil and Meltzer worked out an analytical approximation of the monodromy matrix of 

orbits in linearized ERTBP [7], which is helpful in station-keep problem but the study of the 
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stability requests full model monodromy matrix.  

 

Practical applications of ERTBP are also drawing great attentions, so periodic orbits with 

interesting properties different from CRTBP orbits are needed to be revealed and investigated, 

which is partially done is this paper. Hiday and Howell had studied the optimal transfer between 

libration point orbits in ERTBP since 1992 [8]. Multiple shooting method could also be used it to 

construct Lissajous orbits in ERTBP [9, 10]. Using the same method Mahajan and Pernicka 

recently investigated the construction of halo like orbits in asteroid ERTBP and proposed their 

applications [11]. But the stability is studied by one non-periodic circle of the orbit which actually 

only relectes local stability properties. Campagnola designed the gravitational capture of 

BepiColombo mission and found that the resulted trajectory shadowed the manifold of a halo like 

orbit in the Sun-Mercury ERTBP. He calculated elliptic halo orbit possessing commensurable 

period with primaries and found the stability bifurcation [12]. As an extension of the WSB theory, 

Hyeraci and Topputo numerically investigated the role of true anomaly in ballistic capture, and 

proposed a method to help design missions in planar ERTBP [13, 14]. Recently Qi and Xu et al. 

had studied the ballistic capture in Sun-Mercury ERTBP [15]. 

 

In this paper, the systematic study of the stability of Multi-Circle Elliptic Halo (ME-Halo) orbits in 

ERTBP is presented. First the construction of ME-Halo orbits are elaborated, where continuation 

and optimization method are used. ME-Halo orbits are continued along both   and e. Second the 

method to study their stability is given in detail where the monodromy matrix of ME-Halo orbits is 

derived. Then the stability result of different ME-Halo orbit groups including the Earth-Moon and 

the Sun-Mercury system are summarized and analyzed. Interesting features of ME-Halo orbit can 

provide novel nominal orbit and the understanding of their unique stability properties can help in 

future space mission design. The result demonstrated here can serve as a fresh supplement to the 

comprehensive understanding of the ERTBP. 

 

2. Dynamic Models 

 

The full three-body problem has no complete solution because there are 18 first order differential 

equations but only 10 general integrals. An intuitive approach is to study the restricted three-body 

problem (RTBP), where the mass of one body tends to zero and does not affect primaries’ motion. 

In RTBP the motion of the infinitesimal third body under the attraction of two primaries’ gravity 

fields is of interests. In this section a brief review of equations of motion for the spacecraft in 

CRTBP and ERTBP is given. In CRTBP primaries revolves each other on Keplerian circular orbit. 

Nechvile first employed a transform from the inertial coordinate frame to a synodic coordinate 

frame, with which the equations of motion is concise and there comes the Jacobi integral. As 

illustrated in Figure 1, the origin locates at the barycenter and the synodic rotating coordinate 

frame takes x-axis pointing from the larger primary 1m  to the smaller one 2m , where 1m  locates 

at 1x    and 2m  locates at 2 1x   . The z-axis is parallel with the primary angular 

momentum and the y-axis finishes the right-handed system. The eccentricity e of the primary orbit 

(dashed ellipse) is zero in CRTPB. Then the system is scaled by adopting distance between 

primaries 12r  as length unit, the total primary mass  1 2m m  as weight unit, and the reciprocal 

of angular velocity n as time unit. The scaled mass ratio of the smaller primary  2 1 2/ mm m    

is an important system parameter. In this way, equations of motion for CRTBP is given by [16] 
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Figure 1. Barycenter Inertial coordinate frame  , ,X Y Z  and Barycenter Synodic 

coordinate frame  , ,x y z . The z-axis finishes the right handed system point out of the 

paper. In CRTBP the primary orbit (dashed arc) is circular orbit and in ERTBP it is 

elliptical. 

 

In ERTBP primaries rotate each other on a Keplerian elliptic orbit (dashed ellipse in Figure 1). The 

distance between primaries 12r  is changing with true anomaly f, thus with time t, and is given as 
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where 12a  is the semimajor axis of primaries. The synodic coordinate frame is still utilized but is 

pulsating now. The system is instantaneously scaled by  12r f , the total primary mass  1 2m m  

and the reciprocal of the mean angular velocity n . So the synodic frame is not only pulsating but 

also non-uniformly rotating. Furthermore, the independent variable is transformed from time t to 

true anomaly f by the chain rule 
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In this way equations of motion of the infinitesimal body in ERTBP is given by [16] 
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where 
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Primes over x, y and z indicate the differential respect to true anomaly f. The same coordinate 

symbol will not cause confusion in the paper. The epoch when primaries are at their periapsis is set 

to be 0 0f   as illustrated in Figure 1. Eq. (1) and (4) shows identical form but in fact   differs 

from   greatly as shown by Eq. (6). It is worth noting that ERTBP implicitly depends on time t 

through Eq. (3). And because of the trigonometric introduced by Eq. (3), (5) and (6), ERTBP is a 

non-autonomous system with period 2 . Multiplied Eq. (4) by x , y  and z  respectively, add 

them up and integrate, we have 

 

  2 2 2 d d d2 x y zx y z x y z        (7) 

 

Since   depends also on the true anomaly f, the expression under the integral is not a total 

differential. Instead we have 
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Substitute it into Eq. (7) and we have 
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The term 2  is the amended potential of the third body in synodic frame. The integral term is 

caused by the pulsating of the system. The integral constant  0C f  depends on the initial 

anomaly f now. So there is no Jacobi constant in ERTBP anymore. When 0e   the integral term 
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vanishes and  0C f  degenerates to the traditional Jacobi integral C in CRTBP. 

 

3. ERTBP Periodic Orbits and the Stability 

 

The periodic orbit is the only type of orbits that we can ever hope to understand completely 

throughout their evolution from the distant past to the distant future since the entire course of their 

evolution is determined by knowledge over a finite time interval, i.e. the period [17]. Fix point can 

be viewed as a periodic orbit with zero or infinite period. The mostly investigated periodic orbits in 

CRTBP include planar and vertical Lyapunov orbit families, prograde and retrograde orbit families 

around small primary, halo orbit families at 
1,2L  and horseshoe-shape orbits around 

3,4L . But in 

ERTBP most of these orbits do not survive the perturbation of the eccentricity e because the 

libration point is also osculating with primaries now. Therefore a special kind of periodic resonant 

orbits in ERTBP is introduced in this section. 

 

3.1. ERTBP Libration Point Region 

 

Following the way similar with Euler and Lagrange utilized in CRTBP, libration points in ERTBP 

can be obtained. Letting the first and second order differential terms in Eq. (4) equal to zero, we 

have 

 

 0x zy      (8) 

 

The solution gives five libration points in the synodic frame which locates exactly at the same 

position as CRTBP in synodic coordinate frame. However they are only geometrically ones but not 

dynamical ones or equilibriums anymore, because the frame is pulsating thus collinear points are 

oscillating along the x-axis and triangular points are oscillating to maintain the central 

configuration with primaries [18]. In spite of this, the libration point region is still bounded, thus 

orbits can still revolve around the region. 

 

3.2. ME-Halo Orbits 

 

Despite libration points, generally periodic solutions in ERTBP are not easy to detect. The ERTBP 

is non-autonomous but periodic and it keeps the invariance under the map [3] 

 

    , , ; , , , , ,; , , ,f x y z X f x y z x yX x zy z        (9) 

 

which indicates symmetric with respect to x-z plane. In CRTBP the Lyapunov orbit family and the 

halo orbit family satisfy the map. According to the symmetry with respect to x-z plane, Moulton in 

1920 expressed [19] and Broucke in 1969 [2] cited the strong periodicity criterion for planar 

ERTBP as following, 

For an orbit to be periodic it is sufficient that it has two perpendicular crossings with the 

syzygy-axis, and that the crossings happen at moments when the two primaries are at an apse, 

(i.e., at maximum or minimum elongation, or apoapsis and periapsis). 

Campagnola expanded it to spatial problem and obtained a similar sufficient criterion [12], 

For an orbit to be periodic in the ERTBP, it is sufficient that it has two perpendicular crossing 
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with either the normal plane or the syzygy axis, or both of them, when the primaries are at 

apse. 

It is clear that because of the periodicity of the system, symmetric periodic orbits in ERTBP can 

only take period 
ET  commeasurable with the system period 2  

 

 ,2ET K K    (10) 

 

Compared with Lissajous orbits and quasi-halo orbits, halo orbits have precise period and are 

relatively easy to calculate. So halo orbits are chosen as study objects and are continued into 

ERTBP. At the beginning a proper orbit period 
ET  should be chosen. The period range of the halo 

orbit family with small   in CRTBP is too narrow to possess integer multiples of primary period 

2 . Therefore halo orbits revolving M circles while primaries revolving N circles are concerned 

and thus we have 

 

 , ,/2E CT M T N M NM     

 

This condition is referred to as commeasurable constrain hereinafter. Since there is no available 

analytical method that can provide halo orbits with precise period CT , the orbit is extracted from 

the whole halo orbit family numerically. First the period curve of the whole orbit family is 

generated to find out and choose a proper set of (M,N). Second the initial condition of the 

corresponding orbit is obtained by dichotomy. For example, in Figure 2 the period curve of 

Earth-Moon 1L  and 2L  halo orbit families are depicted. The vertical lines correspond to proper 

(M,N)s. There are infinite sets of (M,N)s although they distribute discretely. It is worth note that M 

grows faster than N, which will cause numerical difficulties as discussed later. 

 

 
Figure 2. The period curve of circular halo orbit families in Earth-Moon CRTBP model. 

 

After having got ET  for 0e  , increase the eccentricity e by step e , use the previously obtained 

periodic orbit as initial guess, then adjust initial condition to close up the periodic orbit by 

multi-segment optimization method as discussed in section 4.1. In this way a group of orbits 

parameterized by e can be obtained. In similarly way a group of orbits parameterized by the mass 
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ratio   can be obtained. Obtained orbits in Earth-Moon system are demonstrated in Figure 3 and 

Figure 4.  

 

These periodic orbits stay around the libration point region for such a long time, which is N times 

of the primary period. Since the emphases is paid on their multi-circle property in this paper, they 

are referred to as Multi-circle Elliptic Halo (ME-Halo) orbits hereinafter, and halo orbits in 

CRTBP are referred to as circular halo orbits for clarity. Campagnola had once constructed some 

ME-Halo orbits in Earth-Moon system and referred to them as Elliptic Halo Orbits [12].  

 

3.3. Four ME-Halo Orbit Groups 

 

In CRTBP the halo orbit family exists continuously, but in ERTBP ME-Halo orbits are discrete 

because of the commeasurable constrain. However they can be continuously parameterized by   

and e. For clarity the term orbit group rather than orbit family in CRTBP is used in the following 

discussion. 

 

According to the periodicity criterion, ME-Halo orbits perpendicularly cross the x-z plane twice 

and the two crosses can occur whether primaries are at periapsis or apoapsis. If M is odd, two 

crosses occur at two sides of ME-Halo and the orbit is different whether it starts at 0 0f   or 

0f  . Define Periapsis Group to start from either side at 0 0f   and Apoapsis Group to start at 

0f  . In Figure 3 the Earth-Moon 2L  periapsis group and apoapsis group ME-Halos with 

M5N2 are depicted. The most obvious difference between them is that the position where the 

perpendicular cross occurs, as marked by red small circle. For periapsis ME-Halo it occurs at the 

outer circle while for apoapsis at the inner circle as shown in y-z projection.  

 

 
Figure 3. Earth-Moon 2L  Periapsis (left plot) and Apoapsis (right plot) ME-Halo orbit 

with M5N2. 

 

If M is even, two crosses occur at the same side of ME-Halo and the orbit can be different whether 

the cross is on the left or right side as shown on the x-y projection in Figure 4. Define Left Group to 

start from the left side at 0 0f   and Right Group from the right side. The Earth-Moon 2L  left 

group and right group ME-Halo orbits with M2N1 are depicted. The most obvious difference is 

whether the position where the orbit bifurcate is at the top or the bottom. Besides, we have north 

and south circular halo orbits in CRTBP, therefore each group here possesses a north and a south 
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branch as well. In this paper the north branch is chosen as the study object. 

 

 
Figure 4. Earth-Moon 2L  Left (left plot) and Right (right plot) ME-Halo orbit with M2N1. 

 

3.4. Stability of ME-Halo and Stable Indices 

 

Given a periodic non-autonomous system 

 

      , ,, , , ng x t Tx t xg t g xx      (11) 

 

In order to determine the stability of a periodic solution  0,x t t , its nearby solutions should be 

considered. Assume  0,x t t  is perturbed to  0,x t t  by  0,x t t  as 

 

      0 0 0, , ,x t t tt x x t t  

 

Substitute it into Eq. (11), expand at x  and we have 

 

        2
, , D ,x x g x x t g x t g x t x O x           

 

Using the fact that  ,x g x t , it becomes 

 

    2
D ,x g x t x O x      

 

For stability questions, we are concerned with the behavior the solutions arbitrarily close to 

 0,x t t , so it is reasonable that we focus on the associated linearized system [17] 

 

  D ,x g x t x    (12) 

 

This is a linear periodic non-autonomous system. Applying Fluquet theory, Its state transition 

matrix  0,t t  consists of n  linearly independent solutions and satisfies 
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        0 0 0 0, , ,D , , nt t g x t t tt t I       (13) 

 

The monodromy matrix of  0,x t t  is defined as the transition matrix over one period 

   0 0 0,T tt t   . The periodic orbit is stable if and only if all eigenvalues of  0t  have 

modules smaller than one. Because eigenvalues of  0t  is invariant along the periodic orbit [20], 

it can be simply referred to as   without specifying the epoch at which it is evaluated.  
 

The stability of ME-Halo orbits is investigated through its monodromy matrix  . In CRTPB 

eigenvalues of the monodromy matrix of the circular halo orbit are a pair of unit eigenvalues, a pair 

of reciprocal real eigenvalues and a pair of reciprocal complex eigenvalues on unit circle [21]. But 

in ERTBP there are no unit eigenvalues anymore because of the appearance of eccentricity e [2]. 

The eigenvalues of ME-Halo orbits in ERTBP come in reciprocal pairs as 

 

 1 1 3 32 2,1/ , ,1/ , ,1/        

 

Following the notation of Broucke and Sarris, the stability index of ME-Halo is defined as 

 

 1/ , 1,2,3ii ik i      

 

This gives a simple criterion that the orbit is unstable if 2ik  . The only exception is that two pairs 

of reciprocal complex eigenvalues is conjugated but not on the unit circle, where they give 

complex 2,3k  but the orbit is still unstable. So the definition is modified to be  

 

  1/ if 1 22max , , ,3j jj j jk      . (14) 

 

The reciprocal complex eigenvalues will give 2jk   because at least one of them is out of the 

unit circle. In this way, the criterion is sufficient and necessary. Obviously this definition will cause 

discontinuity in the index curve as a function of   or e, but the discontinuity is helpful to detect 

sudden change of the stability which does not exists in CRTBP. 

 

4. Numerical Method 

 

In this section, the numerical method used to continue circular halo into ME-Halo and to integrate 

the monodromy matrix over such a long period are elaborated in detail.  

 

4.1. Multi-Segment Optimization in ERTBP 

 

The description of correcting a ME-Halo orbit as an optimization problem is presented in this 

section. Define the state vector of ERTBP as    
T

, ,, , ,X f x y z x y z . The initial state  0X f  of 

the ME-Halo orbit and half period state  0 / 2EX f T  obtained by integrating Eq. (4) are 

 

    
T

0 0 0 0 0,0, ,0, ,0X X f x z y   
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    
1

T

0 1 1 1 1 1/ ,,2 ,,,T Ef T yX X x z x y z     

 

where 
1 / 2ET T N   is the half period. According to the periodicity criteria of ERTBP, 

1TX  

should be perpendicular to the x-z plane, i.e. 
1 1 1

ˆˆ 0ˆy x z   . Hence the cost function is defined as 

 

        
2 22

0 1 1 1 1 1 1m ˆ ˆˆin y x zJ X x zy        

 

Where the hat over symbols indicate the target zero state. The differential constrains is given by Eq. 

(4). It is worthy to note that the independent variable is true anomaly f in ERTBP now. 

 

Even utilize optimization method, the algorithm costs too long time when M is large or the step 

e  or  is large. In this case, we borrow the idea of the multiple shooting method introduced by 

Howell and Pernicka for calculating Lissajous orbits in CRTBP [10]. The orbit is broken into n 

segments and constrained to be continuous and smooth as illustrated in Figure 5. Similar to the 

description above, the multi-segment optimization problem is described below as, 

 

 

 

     
1 1 1 1 1 1
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T T T T T

i

T

X f f f

y x x z z

J X X

y

 

    
  

 

with the same differential constrains given by Eq. (4) and linear constrains as 

 

 , , , 11i iX iX n     

 

where iX  and if  is the starting state and epoch of the (i+1)-th segment, iX   is the integration 

end of the i-th segment starting from 1iX  . 

 

 
Figure 5. Multi-segments optimization illustration. 

 

The convergence of the algorithm increases as n  increases, but the time cost increases as well. So 
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after a trial and error process, we choose / 2 2M n M   for e  continuation and 3n M  for 

  continuation. Compared with multiple shooting method, the optimization problem is easier to 

handle, program and extend. In this way ME-Halo orbits can be constructed relatively easily and 

more focus can be paid on their special stability properties. 

 

4.2. Monodromy Matrix 

 

In ERTBP, the monodromy matrix is calculated by numerically integrate the state transition matrix 

  for a whole period 
ET . Substitute equations of motion of ERTBP, i.e. Eq. (4), into Eq. (13) and 

we have  

 

        0 0 0 0 6, , ,   , ,E Xf f A f f f ff I       (15) 

 

where    , D ,EA fX f g X  is the Jacobian of the Eq. (4) 
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The monodromy matrix E  of ME-Halo is then obtained by propagating Eq. (4) together with Eq. 

(15) from 0f  to 0 Ef T . For Periapsis, Left and Right Group ME-Halo orbits 0 0f   is adopted 

and for Apoapsis Group 0f   is adopted. When the ME-Halo orbit is given by multi-segment 

optimization method, there will be always tiny state errors at the connection points. If we integrate 

E  directly from the first starting point for one period, these errors will be accumulated and 

exaggerated greatly. Notice that the Monodromy matrix is essentially a linear differential matrix 

equation, hence we have 
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Therefore E  can be calculated along each segment simultaneously and then multiplied up. In 

this way the exaggeration of errors can be suppressed. 

 

5. Results and Discussions 

 

In this paper the stability of different 1L  and 2L  ME-Halo orbits with various parameters   and 

e is studied. The parameter region analyzed here is spanned by [0.001,0.020]  and 

[0,0.210]e  with constant step sizes 0.001   and 0.001e  . In this region many choices 
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of (M,N) for each   are available , 
1L  Periapsis and Apoapsis ME-Halo orbits with M5N2 are 

chosen as study objects here. The ME-Halo orbit in the Earth-Moon system and the Sun-Mercury 

system are also investigated. During the computation orbits are firstly continued along   and 

then continued along e . Totally thousands of orbits are obtained by parallel computing and are 

organized in separated database. Then the eigenvalue database of monodromy matrix are 

calculated. The stability of orbits is analyzed by the stability indices of their monodromy matrixes 

and presented at the last. Computational precisions and other important parameters adopted during 

the calculation are listed in Tab. 1.  
 

Table 1. Computational precision and other important parameters adopted in this paper 

Name Value 

Integration tolerance 143 10  

Differential correction tolerance 91 10  

Optimization tolerance 91 10  

Optimization stop tolerance 71 10  

Monodromy differential stepsize 81 10  

Earth-Moon mass ratio   0.0122  

Earth-Moon eccentricity e 0.0554  

Sun-Mercury mass ratio   71.66 10  

Sun-Mercury eccentricity e 0.2056  

 

During the study, the mass ratio   is observed to have a greater impact than eccentricity e  on 

ME-Halo orbits. The ME-Halo orbit is needed to break into more than 32 segments to accomplish 

one step continuation by  , but only 8 to 12 segments for e . This can be explained by the fact 

that in the Legendre polynomial expansion of Eq. (4)   arises from the first-order term but e 

appears only from the second-order term. Unexpected, ME-Halo orbits cannot be continued to 

arbitrary eccentricity e in small mass ratio max
ˆ  . A closer look at their stability indices curve 

reveals that the stability changes before the failure of continuation. This also occurs in the 

Sun-Mercury system, but luckily the Earth-Moon system is found to be just above the separatrix. 

Other significant properties and details and are elaborated in the following discussion. 

 

5.1. Stability Bifurcation 

 

Campagnola once observed that the stability of left and right ME-Halo orbits in the Earth-Moon 

system bifurcates at 0e   [12]. More bifurcations and collisions of the eigenvalues of the 

monodromy matrix are observed. In Figure 6, all eigenvalue configuration types encountered 

during the study are depicted. In the center the circular halo orbit with e=0 is presented. In Type 3 

there is a pair of negative real eigenvalues and two pair of real ones. In Type 4 there are two pairs 

of reciprocal eigenvalues locating neither on the unit circle or the real axis. In all types except 3 the 

largest real eigenvalues persists and other two pairs of eigenvalues distribute differently. Only one 

or some Types appear for one certain group of ME-Halo orbits and they transform through 

bifurcation and collision. It is noteworthy that Type 3, 5 and 6 have two or three pairs of real 

eigenvalues associated with each point on ME-Halo orbits, which happens in real planet system as 

discussed in section 5.4. 
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Figure 6. Distribution types of eigenvalues of monodromy matrix of ME-Halo orbits 

obtained during the study in this paper. The plot in the center is the schematic of 

eigenvalues of circular halo orbit. 

 

5.2. Periapsis Group ME-Halo 

 

In this section the stability of 1L  periapsis group ME-Halo orbits with M5N2 is investigated. The 

evolution of stable indices ik  with respect to   and e is plotted separately in Figure 7, Figure 8 

and Figure 9. The Earth-Moon system parameter is represented by the dot (red) on the surface (the 

same in following figures). As revealed by the stability indices surfaces, the orbit is generally 

greatly unstable and the instability increases with   for fixed e. There is a great gap observed 

around ˆ 0.012   in all figures. The trend of the surface on two sides is different. When ˆ   

the instability decreases with e and when ˆ   the instability increases with e. Also the 

continuation along e stops earlier than expected when ˆ   but success for all e when ˆ  , as 

most clearly shown in Figure 7. 

 
Figure 7. 1k  with respect to both   and e (L1 Periapsis Group ME-Halo with M5N2). 

The Earth-Moon system parameter is represented by the dot (red) on the surface. 
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Figure 8. 

2k  with respect to both   and e (L1 Periapsis Group ME-Halo with M5N2) 

 

 
Figure 9. 3k  with respect to both   and e (L1 Periapsis Group ME-Halo with M5N2).  

 

Since the existence of the ̂  stops the continuation somehow, a detailed study and closer look of 

the effect of   on the curve  ik e  is presented in figures below. In Figure 10, there is a clear gap 

around the curve for ˆ 0.012  . The curve keeps increasing when ˆ   but decreases and 

stopped soon when ˆ  . In the zoon-in plot, the curve falls down to below zero, which means 

the 1k  enters the linearly stable region in a certain range of   and e. The end of the curve is 

nearly vertical and there seems to be infinite discontinuities point, which explains the failure of the 

continuation process. In Figure 11, when ˆ   2k   grows bigger than 2 and then suddenly falls 

down to the stable region, but when ˆ   2k  increases steadily and smoothly. In the zoon-in 

plot the different tendency is more clear. In Figure 12, 3k  keeps smaller than 2, and the zoon-in 

plot reveals that the 3k  curve for ˆ   reaches 2 and stopped. Judging from three indices 

curves, the bifurcation path of this ME-Halo group along with e is: for ˆ  : Type 2  Stable  

Type 3  Stop; for ˆ  : Type 2. Moreover, a more delicate study is needed to reveal what 

happens around ˆ 0.012  . 
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Figure 10. Stable index curve  1k e  (L1 Periapsis Group ME-Halo with M5N2) 

 

 
Figure 11. Stable index curve  2k e  (L1 Periapsis Group ME-Halo with M5N2) 

 

 
Figure 12. Stable index curve  3k e  (L1 Periapsis Group ME-Halo with M5N2) 

 

5.3. Apoapsis Group ME-Halo 

 

In this section the stability of 1L  apoapsis group ME-Halo orbits with M5N2 is investigated. 

Similarly surfaces and curves of ik  are depicted in figures below. In Figure 13, the surface of 

 1 ,k e   is smooth but the tendency of the surface has a gap at ̂ , ˆ0.010 0.011  . In the 

curve plot at left 1k  is found staying above the stable region though when ˆ   it falls down to 

as small as 500. This is a significant difference from previous Periapsis Group, and it guarantees 
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the successful continuation to 0.210e  . In Figure 14 
2k  (darker blue) and 

3k  (lighter green) 

are plotted together. The different tendency before and after ̂  still exists and the clear 

discontinuity here is caused by the definition of 
2k  and 

3k  in Eq. (14), which indicates there is a 

Type 4 configuration. These two indices curves coincide at middle part of curves, which 

corresponds to that eigenvalues collision at Type 1 and bifurcate to Type 4. Later they bifurcate 

again, which corresponds to that eigenvalues collision again, at unit circle when ˆ   and at real 

axis when ˆ  . Judging from these indices curves, the bifurcation path of this ME-Halo group 

along with e is: for ˆ  : Type 1  Type 4  Type 1  Type 8  Type 5  Type 8  Type 1; 

for ˆ  : Type 1  Type 4  Type 6. The evolution of eigenvalues is complexity. For some 

specific parameters there can be more than one pair of real eigenvalues. 

 

 
Figure 13. Surface and curves of 1k  with respect to both   and e (L1 Apoapsis Group 

ME-Halo with M5N2) 

 

 
Figure 14. 2k  (darker blue) and 3k  (lighter green) with respect to both   and e (L1 

Apoapsis Group ME-Halo with M5N2) 

 

5.4. ME-Halos in Planet System 

 

5.4.1. Earth-Moon System 

 

The period curve of the circular halo orbit family in CRTBP is demonstrated in Figure 2. ME-Halo 

orbits studied in this paper are demonstrated in Figure 3 and Figure 4. The Earth-Moon system 

parameter is represented by a small dot on the surface in previous discussions. Four Earth-Moon 

ME-Halo orbits are all greatly unstable. The 1L  Periapsis ME-Halo orbit with M5N2 has two 
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pairs of real eigenvalues and one pair of complex unit eigenvalues, which is significantly different 

from circular halo orbits. The 
1L  Apoapsis ME-Halo orbit has one pairs of real eigenvalues and 

two pairs of complex unit eigenvalues. 

 

5.4.2. Sun-Mercury System 

 

The mass ration 
S.M.  of the Sun-Mercury system is too small to be included in the previous 

figures. Circular halo orbit families at 
1,2L  are obtained by continuation and corresponding period 

curves are depicted in Figure 15. The appropriate period chosen in for ME-Halo orbits are M5N2 

and M7N3 as annotated in figures, whose N are not too big thus shorter integration time.  

 

 
 

Figure 15. The x-z projection view of Sun-Mercury 1L  (left) and 2L  (right) Circular Halo 

families and their corresponding period curves with respect to z-axis amplification zA  

 

However, in the following process the continuation of ME-Halo orbits with M5N2 stopped at 

around 0.023e  . According to the tendency of the stability of Periapsis ME-Halo discussed in 

section 5.2, the barrier occurs much earlier as   is much smaller now. On the other hand, the 

continuation of ME-Halo orbits with M7N3 successes. The obtained Sun-Mercury 1L  and 2L  

Periapsis and Apoapsis ME-Halos are presented in Figure 16 and Figure 17. The difference 

between then are similar to that of the Earth-Moon system as discussed before. But the stretch of 

the orbit along all axis directions are greater because the eccentricity is much greater now. 

 

 
Figure 16. Sun-Mercury L1 Periapsis (left) and Apoapsis (right) ME-Halo orbit with M7N3 
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Figure 17. Sun-Mercury L2 Periapsis (left) and Apoapsis (right) ME-Halo orbit with M7N3 

 

The accurate propagation of their monodromy matrices is achieved by the multi-segment product. 

But the extracting of its eigenvalues by simple Matlab command is beyond the machine precision. 

Because largest eigenvalues obtained is around 108 10 , thus the minimal eigenvalues should be 

of the order of 1010 . Only the largest eigenvalues is believed to be accurate and it is larger than 
108 10  in all groups. Redundant pairs of real eigenvalues of Periapsis ME-Halo orbits are also 

observed but not accurate enough. 
 

As a summary the ME-Halo orbit is generally instable, and its stability variation with system 

parameters is of great complexity. In this paper only one example of each group is studied, thus the 

result obtained should not be extended to the whole group rashly. But because the symmetry of 

ERTBP with respect to x-y plane, results should be correct to corresponding south ME-Halo orbits 

as well. Moreover, the method utilized in this paper is demonstrated to be effective and it can be 

easily extended to other situations.  

 

6. Conclusion 

 

In this paper the author constructed ME-Halo orbits and systematically studied their stability. The 

orbit is generated by continuing circular halo orbits to ERTBP model using mature optimization 

solver. Using this method 1L  Periapsis and Apoapsis Group of ME-Halo orbits are constructed in 

the region [0.001,0.020]  and [0,0.21]e . The variation of the stability with the system 

parameters   and e are demonstrated and analyzed by stability indices. During the stability 

investigation different eigenvalue configuration types are observed. Many ME-Halo orbits have 

more than one pair of real eigenvalues, which is significantly different from circular halo orbits in 

CRTBP. There are continuation barriers encountered for periapsis ME-Halo orbits. At the end the 

result of Earth-Moon and Sun-Mercury system is summarized. The interesting stability features of 

ME-Halo orbits can provide practical applications. The long period 2E CT M T N    of 

ME-Halo orbits indicates longer station-keeping maneuver intervals thus fewer fuel cost, which 

can provide a better nominal orbit for observation missions like JWST and TPF. Its multi-circle 

and time-dependent property permits settling N satellite on a ME-Halo at any given epoch to 

construct a nature formation fly with priori determined distances. And periapsis and apoapsis can 

be utilized together to get a 2N nature formation in ERTBP. Moreover, it is easier to choose an 

optimal orbit from discrete (M,N)s. 
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