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Abstract: Gravitational capture is an important characteristic of N-body (N≥3) dynamical 

systems. In this paper, the gravitational capture at Mercury is investigated under the frame of 

elliptic restricted three body problem (ER3BP). A new parameter k, the corrected ratio of the 

radial force, is proposed to analyze the influence of radial force on the capture eccentricity in 

the ER3BP. The parametric analysis elucidates the influences on the corrected ratio k and 

tangential force. The minimum capture eccentricity and the corrected minimum capture 

eccentricity are respectively introduced under the time-of-flight and corrected ratio. By 

numerical computation, we find the vicinity of perihelion is the optimal location for the 

gravitational capture, and the global minimum of two kinds of minimum capture eccentricity are 

both distributed on two special regions of the sphere of capture, which denote the optimal 

regions for gravitational capture. Finally, using the results presented, we design some capture 

trajectories for potential Mercury missions. 

 

Keywords: Gravitational Capture, Mercury Mission, Elliptic Restricted Three Body Problem, 

Trajectory Design. 

 

1. Introduction 

 

The gravitational capture is a useful phenomenon in the design of low energy transfer (LET) 

orbit and has been applied in some deep space missions. The first example was the rescue of the 

Japanese lunar probe Hiten in 1991 [1]. After that, SMART-1 achieved the capture at Moon via 

the gravitational capture [2]. Recently, NASA’s GRAIL mission exploited similar concept to 

reach the Moon [3]. For the interplanetary transfer, gravitational capture was also applied to 

design the trajectory of ESA’s BepiColombo mission [4], which was aimed to explore Mercury. 

 

Gravitational capture occurs, when the orbital eccentricity of motion around one celestial body is 

altered from greater than 1 to less than 1 without use of any propulsive system. Even though the 

gravitational capture is not permanent capture, it can effectively reduce the fuel consumption 

comparing with Hohmann transfer [5, 6, 7]. 

 

The first research in this field can trace back to 1987, when Belbruno proposed the Weak 

Stability Boundary (WSB) theory to achieve lunar capture without braking [5]. Further studies 

were conducted by Belbruno and Miller [8], Krish et al [9]. They all studied missions of the 

Earth-to-Moon LET and used this technique to save fuel during inserting a spacecraft into its 

final orbit around the Moon. After that, some studies considering the time requirement for this 

mailto:lushenqiyi@gmail.com


2 

transfer appeared in the literature [10, 11]. Considering the WSB, temporary capture and the 

LETs, Fantino et al. discussed the role played by the invariant manifolds in each of them [12]. As 

the research continued, more complicated models were investigated. The gravitational capture 

based on bicircular model (BCM) in restricted four body problem (R4BP) can be available in the 

literatures [11, 13]. The effect of planetary eccentricity on ballistic capture in the elliptic 

restricted three body problem (ER3BP) was also investigated [14, 15]. Using the concept of 

stable sets, Hyeraci and Topputo proposed a systematic method to design ballistic capture orbits 

upon planet arrival in interplanetary transfers in the ER3BP [16]. Those researches about ER3BP, 

however, just involved the planar capture problem, and the results could not be extended to the 

spatial situation of the capture directly. 

 

In this paper, several spatial issues of gravitational capture at Mercury in the ER3BP are studied. 

Firstly, the basic theories of the problem and the gravitational capture are introduced. Then, to 

derive capture eccentricity in the ER3BP, the corrected ratio of the radial force is proposed via 

the analysis of the mechanical characters in the space near Mercury. Numerical study displays 

the influences of different factors on the corrected ratio. Because of the importance of the 

eccentricity, the minimum capture eccentricity in the ER3BP is investigated. Finally, applying 

the results obtained in this paper, we construct some gravitational capture trajectories of Mercury. 

 

2. Basic Theory 

 

2.1. The Elliptic Restricted Three Body Problem 

 

The ER3BP is shown in Fig. 1. It is described in the inertial frame, in which 1m , 2m  and 3m  

represent the Sun, Mercury and spacecraft respectively. In the ER3BP, the mass of the spacecraft 

is supposed to be negligible, and only the effects of the two primary bodies are considered. 

Therefore the motion of the spacecraft is influenced by the attraction of the Sun and Mercury, 

but the motion of two primary bodies cannot be affected by the spacecraft. Besides, the ER3BP 

is built on the hypothesis that the motion of two primary bodies is restricted. Specifically, the 

Sun and Mercury are in elliptic motion about the Sun–Mercury barycenter (SMB). 
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Figure 1.  The ER3BP in the inertial frame 

 

In the Fig.1，the origin O is fixed at the SMB and IX  axis points to the perihelion. Mercury 

orbital plane coincides with I IX OY  plane. The vector r  points to Mercury from the Sun, and ρ  

is the position vector of spacecraft w.r.t the SMB.   is the angle between the IX  axis and the 
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vector r , that is Mercury true anomaly. The relative position vectors of the bodies can be 

expressed as 

 

 13  r ρ r  (1a) 

 
23 (1 )  r ρ r  (1b) 

 

where 2

1 2

m

m m
 


, is the ratio of Mercury's mass to the sum of masses of the Sun and Mercury. 

 

Under the inertial frame, the equation of motion of the spacecraft can be expressed as follows: 

 

 1 23 3

(1 )

(1 )
Gm Gm

 

 

  
  

  

ρ r ρ r
ρ

ρ r ρ r
 (2) 

 

where G is the universal gravitational constant. 

 

Utilizing the rotation matrix R

IC , the equations of motion can be transformed into the Sun-

Mercury rotating frame. The origin is fixed at the SMB. The x axis points to Mercury from the 

Sun. So we can obtain the expression of R

IC . 
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Substituting Eq. 3 into Eq. 2 yields 
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where the vectors R
r  and R

ρ  are denoted in the rotating frame R , so I R

RCr r , I R

RCρ ρ . 

 

To simplify the form of the equation, nondimensionalization is applied. The unit length Nl is set 

as r, the length of the vector r . The unit time Nt  is set as 
1 22 ( )

EMT a

G m m



, where a  and 

EMT  are the semi-major axis and the period of Sun-Mercury system respectively. As r is fixed in 

nondimensional rotating frame, then Eq. 4 becomes 
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where 
R

N

r


r
r , 

R
N

r

ρ

ρ . 

 

Besides, we can derive 
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Since the motion of two primaries is considered elliptic, then the following relation can be used:  
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 2
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 1

r
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 2

2

r
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where e is the eccentricity of Mercury orbit and equal to 0.20563, and 
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To simplify the form of the equation, we substitute the vectors r  and ρ  for the vector N
r  and 

N
ρ . Using Eqs. 5 ~ 8 and the definition of 3 , 

 

 3 2

1
1

1 cose
 


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
 (9) 

 

The final equation of motion of spacecraft in the nondimensional Sun-Mercury rotating frame is 

expressed as 
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Figure 2.  The ER3BP in nondimensional rotating frame 

 

For details we can see Fig. 2, where the vectors ρ  and r  will be ( , , )Tx y zρ , (1,0,0)Tr , 

respectively. 

 

2.2. Gravitational Capture 

 

In two-body model, the energy E of spacecraft or the eccentricity ce of the capture orbit 

determines the shape of orbit. If 0E   or 1ce  , the orbit is an open hyperbolic orbit. If =0E  or 

=1ce , the orbit is an open parabolic orbit. If 0E   or 1ce  , the orbit is a closed elliptical orbit. 

E can be written as: 2 2E V d  , where d and V are the distance and the velocity of the 

spacecraft with respect to the celestial body, respectively, and   is the gravitational parameter of 

the celestial body. In the ER3BP, if the spacecraft is in the vicinity of one primary body, the 

gravitation of that body is dominant, while the influences from other bodies are relatively less 

important. Therefore the concept of energy E and the eccentricity e can still be used to study the 

orbital character in the ER3BP. Different from that in two-body model, E and ce  are time-
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varying in the ER3BP. Hence the energy E can be alternated from positive to negative, or the 

orbital eccentricity ce  can be alternated from greater than 1 to less than 1, which both means that 

the transient orbit can be alternated from open orbit to closed orbit. This phenomenon is called 

the gravitational capture. Of particular note is that the gravitational capture is temporary capture, 

but if spacecraft is braked properly during this temporary capture, a permanent capture will be 

accomplished with less fuel consumption [5, 6, 7]. 

 

The gravitational capture at Mercury is shown in Fig. 3. The spacecraft is captured temporarily at 

the capture point after it enters the region of influence from outside. The distance from the 

capture point to the barycenter of Mercury is d, and the velocity of the spacecraft is V. Existing 

literatures defined the region of the influence in different ways, such as the SOI [17] and Hill 

sphere [18]. In this paper, we adopt the definition of the SOI proposed by Jehn et al. [4], which 

consider the radius of the SOI is 300000 km. 

 

The sphere 

of influence

Capture 

pointMercury

To the Sun

V

d

Entrance point

 

Figure 3.  The gravitational capture at Mercury 

 

If the direction of the velocity vector of the spacecraft is perpendicular to the line that links the 

spacecraft to the barycenter of Mercury, there is a relationship in two-body model as follows 

 

 (1 )m
cv e

d


   (11) 

 

where v  is the velocity of the spacecraft at capture point, d is the distance from the capture point 

to the barycenter of Mercury, ce  is the eccentricity of the capture orbit, and m  is the 

gravitational parameter of Mercury. If 0 1ce  , the capture point is periherm, and if 0ce  , the 

capture point is apoherm. 

 

3. Mechanics Analysis in the Space near Mercury 
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3.1. Radial Force and Tangential Force 

 

Adequate knowledge about the mechanical property of the space near Mercury can help us 

understand the gravitational capture at Mercury. In the Sun-Mercury rotating frame, acceleration 

decomposition is applied to analyze the dynamics of spacecraft as follows, 

 

 r a e c  a a a a  (12) 

 

where ra  is the relative acceleration of spacecraft in the rotating frame, aa  is the absolute 

acceleration, ea  is the translational acceleration, and ca  is the Coriolis acceleration. Same as 

Sect.2.1, we apply nondimensionalization to the mechanical quantity in analysis. And the 

definition of the length unit and the time unit is also same as that in Sect.2.1. The unit length is 

time-varying because the eccentricity e  of Mercury orbit is not 0. This influence will be coupled 

to each accelerations in Eq. 12. Using Eq. 10, we can obtain the expression of ra  in the 

nondimensional Sun-Mercury rotating frame. 
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ρ r ρ r
a

ρ r ρ r
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where the terms in the first square bracket are the expansion of aa , including the gravity 

acceleration of the Sun and Mercury, respectively. The terms in the second bracket is the 

centrifugal acceleration, ea . The terms in the last bracket is the Coriolis acceleration, ca . As we 

can see from Eq. 13, a r , 1  and 2  are the coupling terms of e. 

 

On the other hand, from Eq. 13, the position ρ  of spacecraft only affects the terms in the first 

two brackets, the velocity ρ  of spacecraft only affects the terms in the last bracket. But the 

influences of   appear in all terms in Eq. 13. 

 

We define the direction from the spacecraft to the barycenter of Mercury and the direction of the 

spacecraft’s velocity as the radial direction and the tangential direction, respectively. To 

investigate the capture in the space near Mercury, the acceleration ra  is decomposed along the 

radial direction and the tangential direction. Then we obtain the radial acceleration r

ra  and the 

tangential acceleration t

ra . The radial acceleration r

ra  in the ER3BP is equivalent to the 

gravitational acceleration in two-body model, so it is directly related to the gravitational capture. 

And the greater the radial acceleration is, the easier the gravitational capture will be. The 

tangential acceleration t

ra  is considered to affect the braking at the capture point. The velocity 

increment v  caused by the tangential acceleration has the following expression 

 

 t

r t  v a  (14) 
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where t  is braking time. Apparently, the tangential acceleration t

ra  in the opposite direction to 

the velocity v facilitates capture. 

 

According to the mechanics analysis shown above, we find except the gravity acceleration of 

Mercury, that all kinds of force could have component in the tangential direction, even the 

Coriolis force. But for the radial direction, each kinds of force could have component. Hence the 

mechanical circumstance in the ER3BP is more complex than that in two-body model, where 

only the radial acceleration of the Mercury gravity exists. 

 

3.2. Corrected Ratio of the Radial Force 

 

In this paper, we suppose the capture point is periherm. If the velocity of spacecraft at capture 

point is pv  and the distance from the capture point to the barycenter of Mercury is pr . Eq. 11 in 

Sect.2.2 can be rewritten as 

 

 (1 )m
p c

p

v e
r


   (15) 

 

Eq. 15 is established in two-body model, but not applicable in the ER3BP. To solve this problem, 

we propose a new parameter k, the corrected ratio of the radial force. It describes the proportion 

of the radial force in two-body model to that in the ER3BP:  

 

 *( )mercury mercury other m mk F F F      (16) 

 

where mercuryF  represents the gravity of Mercury, otherF  represents the radial components arising 

from other forces, and *

m  denotes the gravitational parameter in the ER3BP. 

 

Then in the ER3BP the orbital eccentricity *

ce  is given by 

 

 

2

*

*
1

p p

c

m

v r
e




   (17) 

 

From Eqs. 15 ~ 17, the relationship between *

ce  and ce  is  

 

 * 1 ( 1)c ce k e    (18) 

 

The reason why we establish the relationship between *

ce  and ce  is that capture eccentricity is 

important to capture. Small capture eccentricity represents a higher capture quality, because it 

implies small capture velocity and transient capture orbit closer to the circular orbit. Therefore 

the capture eccentricity can be used as an effective index to evaluate the quality of the 

gravitational capture. 
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Figure 4 shows the relationship between *

ce  and ce  for different k. The discussion about Eq. 18 is 

as follows. 
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Figure 4.  The relational graph between *

c
e  and 

c
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Figure 4 shows some useful information: 

 

If k=1, *

ce  is equal to ce . In this case the radial force from other forces 0otherF  . 

 

If k>1, *

ce  is greater than ce  (the red region in Fig. 4), therefore, the capture effect in the ER3BP 

is inferior to that in two-body model. Especially let k=2, if 0< ce <1, *

ce  is greater than 1, which 

means that the capture condition satisfied in two-body model cannot be satisfied in the ER3BP. 

This situation, of course, should be avoided. However, this situation is available for the 

gravitational escape. If k continues to increase, it is meaningless for the research in the ER3BP. 

Therefore, k=2 is an upper bound, and in this case 2other mercuryF F  . 

 

If 0<k<1, *

ce  is less than ce  ( the green region in Fig. 4). The capture effect in the ER3BP is 

superior to that in two-body model. For example, let k=1/2, if ce <1, *

ce  is less than 0, which 

means that the capture point is apoherm; if 1< ce <3, apparently the capture cannot be achieved in 

two-body model, whereas in the ER3BP *

ce  is less than 1, which can satisfy the criteria of the 

capture. In addition, the less k the better effect on the capture. However, k has a lower bound 0. 

Numerical methodology can help us to understand k and t

ra  more clearly. And some description 

about this methodology should be stated before computation.  

 

In the mercury-centric rotating frame, the position p  and the velocity v  of any capture point can 

be determined by six orbital elements of transient capture orbit. Considering the capture point is 

periherm, if the orbital eccentricity ce  and the distance from periherm to the barycenter of 

Mercury pr  are given, in fact we just need the longitude of ascending node  , the orbit 

inclination i  and the argument of periherm   to describe the state of any capture point (see Fig. 
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5). When pr  is fixed, the spherical surface in Fig. 5 is called the sphere of capture, which 

consists of the capture points. The position p  and the velocity v  of capture point are given by 

 

 

cos cos sin cos sin sin cos cos cos sin sin sin

cos sin +sin cos cos sin sin +cos cos cos sin cos 0

sin sin cos sin cos 0

pi i i r

i i i

i i i
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 
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       
   
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p (19a) 
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 

        
   

       
   
      

v (19b) 

 

where pv  can be obtained from Eq. 15. The ranges of  , i  and   are from o0  to o360 , from 

o0  to o180  and from o0  to o360 , respectively. 
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Figure 5.  The sphere of capture described by the orbital elements in the mercury-centric 

rotating frame 

 

Furthermore, even the longitude of ascending node   is given, the position p  of any capture 

point can still be determined uniquely by the orbit inclination i  and the argument of periherm  . 

However, the variation of   will affect the direction of the capture velocity. 

 

By these three orbital elements shown above, we obtain the position p  and the velocity v  of the 

capture point. Then we need to transform them into the Sun-Mercury nondimensional rotating 

frame in which they can be expressed as 

 

 0 (1 )
r

  
p

ρ r  (20a) 

 0 1
Nt

r r
 

p
ρ v  (20b) 

 

where Nt  is the unit time. 
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Then the Eq. 16 can be used to implement the numerical computation in the ER3BP. Figure 6 

shows k on the sphere of capture described by i  and  , where pr =2640 km (the height of 

periherm is 200 km), 0.97ce  , o90  and o0  . Notice that the sphere of capture in Fig. 6 

is described in the mercury-centric rotating frame. 

 

 
Figure 6.  k on the sphere of capture where o0   and o90  

 

From Fig. 6, we find k on the sphere of capture is very close to 1 (the magnitude of the difference 

is about 10
-3

). This result is in accordance with the fact that the gravitation of Mercury is 

dominant in the space near Mercury. However, k is variable slightly at different capture point. 

Figure 6 shows that the direct orbits ( o o0 90i  ) possess the larger k and the retrograde orbits 

( o o90 180i  ) possess the smaller k. This phenomenon will explain some results obtained in 

Sect. 4. 

 

Suppose that the height and the velocity magnitude of the capture point are given, i.e., pr  and ce  

are fixed, then the influence parameters involved in the numerical computation only include the 

Mercury true anomaly   and the longitude of ascending node  . From the analysis presented 

above, we know that   affects the velocity direction of capture point and the influences of   

appear in all of the parts. The detailed parameter analysis is shown in next subsection. 

 

3.3. Parameter Analysis 

 

Using the mechanics analysis in Sect.3.1, the parameter k can be defined as follows 

 

 
mercury mercury

mercury other mercury sun centrifugal coriolis

F F
k

F F F F F F
 

   
 （21） 
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where 
sunF , centrifugalF  and 

coriolisF  represent the radial force from the Sun, the centrifugal force and 

the Coriolis force, respectively. The radical forces related to the position of the capture point 

include mercuryF , sunF  and centrifugalF . coriolisF  is directly related to the velocity of the capture point. 

Considering otherF  as small quantity compared with mercuryF  and neglecting the higher order terms, 

Eq. 21 can be expanded by 

 

 

1

1 1 1
sun centrifugalother other coriolis

mercury mercury mercury mercury

F FF F F
k

F F F F



   
            
   

 （22） 

 

where coriolis mercuryF F  indicates the influence of   and the influences of   are manifested in all 

terms of Eq. 22.  

 

Considering pr =2640 km, capture eccentricity 0.97ce  , we study the effect of   and   on k 

on the sphere of capture. 

 

Firstly we demonstrate the influence of   on k. Figure 7 shows maxk  and mink , the maximum and 

the minimum of k, with different   and  . From Fig. 7, we find that maxk  and mink  are mainly 

affected by the Mercury anomaly  . Besides the magnitude of their variations is 10
-3

, which is 

same as the magnitude of the difference of k (see Fig. 6). Therefore, we conclude that the 

influence of   on the distribution of k on the sphere of capture cannot be negligible. 
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Figure 7.  

max
k  and 

min
k  with different   and   

Secondly we demonstrate the influence of  . As pr  is fixed, mercuryF  is invariable. According to 

Eq. 13, we can calculate the maximum and minimum variations of coriolis mercuryF F . Figure 8 

shows max( )coriolis mercuryF F  and min( )coriolis mercuryF F  with different   and  . It is showed that the 

app:ds:centrifugal%20force
app:ds:distribution
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variations of coriolis mercuryF F  possess the same magnitude of the difference k on the sphere of 

capture. According to Eq. 22, we conclude that the function of coriolis mercuryF F  is significant, i.e., 

the influence of   on the distribution of k on the sphere of capture also cannot be negligible. 
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Figure 8.  ( )
coriolis mercury max

F F  and 
min

( )
coriolis mercury

F F  with different   and   

 

At last, we analyze the influence of tangential force on the gravitational capture. Figure 9 shows 

the maximum and minimum of tangential acceleration t

ra  with different   and  . Because the 

surfaces of the maximum and minimum of t

ra  are very close, they look like one surface. Figure 9 

sheds light on t

ra  is mainly influenced by  . Of particular concern is that no matter whether the 

maximum or the minimum, t

ra  is less than 0 where o o0 180  , while t

ra  is greater than 0 

where o o180 360  . Therefore, we conclude that the tangential force is always the resistance 

when o o0 180  , and the tangential force is always the thrust when o o180 360  . 

 

However, we find from Fig. 9, the magnitude of t

ra  is 210 . Considering the braking time t  is 

also very small, the velocity increment t

rv a t    (a product of two small quantity) caused by 

the tangential acceleration is quite small. Therefore the effect of the tangential acceleration on 

the gravitational capture point is negligible. 
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Figure 9.  The maximum and minimum of t

ra  with different   and   

 

4. Capture Eccentricity 

 

Considering the request of the actual space mission, the time of flight cannot be too long. 

Because the longer the time of flight is, the more disturbances the spacecraft will suffer. 

Meanwhile the orbit control will become more complex and difficult. Therefore, we adopt the 

criteria of the gravitational capture: for the spacecraft, the time of flight from the boundary of the 

SOI (radius is 300000 km) to the capture point is restricted to 60 days. In this paper we regard 

the capture points ( pr =2640 km) as the initial values, the trajectories are numerically integrated 

backward in time in the ER3BP. If the spacecraft cannot reach the boundary of SOI within 60 

days, we deem the gravitational capture cannot be achieved. 

 

4.1. Minimum Capture Eccentricity 

 

As we have analyzed in Sect 3.2, the less capture eccentricity ce , the higher quality of the 

gravitational capture. Within the restriction of the time-of-flight, the state (includes the position 

and velocity direction) of each capture point has the unique minimum capture eccentricity mine  

correspondingly. And mine  can help us evaluate the state of the capture point. 

 

Numerical calculation for mine  is as follows and the description of the methodology is same as 

Sect 3.2. Figure 10 displays the distribution of the minimum capture eccentricity mine  on the 

sphere of capture, where o90   and o0  . 
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Figure 10.  The minimum capture eccentricity 

mine  on the sphere of capture 

 

Because the radius of capture point pr  is fixed, there are only two parameters that can affect the 

distribution of mine , i.e.   and  . We firstly discuss the effect of  . By comparing numerical 

results, we find that the effect of   on the distribution of mine  is significant. Limited by space, 

here only a part of numerical results is demonstrated. Let  = o90 , Fig.11 shows the distribution 

of the minimum capture eccentricity mine  in i   coordinate system, if   are o0 , o90 , o180  and 

o270 , respectively. 

 

 
Figure 11.  The minimum capture eccentricity mine  in i   coordinate system 

 

Figure 11 sheds light on the influence of   on the distribution of mine . Of particular concern are 

the dark blue regions in Fig.11. Those special regions represent the global minimum mine , which 

app:ds:of%20particular%20concern%20is
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means the optimal effect of the gravitational capture. As we can see from Fig. 11, if   is o0 , the 

dark blue regions are large and complete; if   is o180 , the dark blue regions are small and 

fragmented; the situations of o90  and o270  are intermediate. Therefore, when Mercury is at the 

vicinity of perihelion, the gravitational capture is easier. On the contrary, the condition of 

aphelion is more detrimental to the gravitational capture. In order to detect the influence of   

more clearly, we plot mine  with different   (see Fig. 12). We choose the capture points from the 

dark blue regions in Fig. 11 as the initial values, and suppose   is set as o270 . 
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Figure 12.  mine  with different   and i  

 

As we can see from Fig.12, no matter what i  is chosen as, when   is near o0 , mine  becomes 

smaller; when   is near o180 , mine  becomes greater. The situation of o0i   is the most 

significant among the curves, because mine  is the lowest in that case. Actually if i  is equal to o0 , 

Figure 12 illustrates o0  is not the optimal for  . When   is about o30 ~ o40 , the corresponding 

mine  is minimal, which is a little less than the situation of o0  . 

 

Figure 11 shows the dark blue regions are distributed on where 
o o0 45i  , and   is about o70  

or o250 . Those, in fact, are the near-Sun side and far-Sun side on the sphere of capture along the 

x axis. Figure 10 likewise reflects the near-Sun region and far-Sun region exist the global 

minimum mine . As a consequence we will focus on those two special regions (see Fig. 13). 
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Figure 13.  The special regions on the sphere of capture 

 

Figure 13 shows two special regions, i.e. the near-Sun region and far-Sun region. As we can see, 

those two regions are not symmetrical with respect to x axis. The deviation is about o20 . Thus, 

to make the special regions symmetrical, we choose   are o20 , o70 , o160  and o250  

respectively in the following numerical calculation. In addition, in order to study the optimal 

condition for the gravitational capture, we suppose   is o0  (in fact o30 ~ o40  is optimal for  , 

but the difference between them is very slight) based on the previous analysis. 

 

Figures 14 and 15 show the distribution of mine  on the sphere of capture. Figure 14 is the image 

of the near-Sun side, which is viewed along the x axis. Figure 15 is the image of the far-Sun side, 

which is viewed against the x axis. The yellow arrows in the dark blue regions indicate the 

velocity direction of capture points. 
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Figure 14.  The distribution of mine  on the near-Sun side 

 

 
Figure 15.  The distribution of mine  on the far-Sun side 

 

Summarizing the dark blue regions, we can get the distribution of the global minimum mine  on 

the sphere of capture. For these regions we have following conclusion:  
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1. There are two special regions, which are umbrella-shaped and locate in the near-Sun side 

and the far-Sun side of the sphere of capture (see Fig. 13). 
 

2. Only the direct orbit in those special regions corresponds to the global minimum mine . 

 

From Sect. 3.2, we know that the direct orbit possesses the larger k, which denotes the smaller 

radical force. It will be easier to escape (that is to be captured in the forward propagation). Hence 

the second conclusion can be explained. 

 

4.2. Corrected Minimum Capture Eccentricity 

 

According to Sect 3.2, we can also utilize the given state of capture point and eccentricity to 

correspondingly derive the corrected ratio of the radial force k. Then we can use Eq. 18 to obtain 

the corrected minimum capture eccentricity *

mine  corresponding to the state of the capture point in 

the ER3BP. *

mine  integrates the mechanical information of the capture point into mine  and can be 

regarded as another index of the gravitational capture. Numerical calculation for *

mine  is 

performed as follows. 

 

Let o0  , Figures 16 and 17 show the distribution of *

mine  on the sphere of capture, where   

are o0 , o90 , o180  and o270 , respectively. Figure 16 is the image of the near-Sun side. Figure 17 

is the image of the far-Sun side. The yellow arrows in the dark blue regions indicate the velocity 

direction of capture points. 

 

 
Figure 16.  The distribution of 

*

mine  on the near-Sun side 
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Figure 17.  The distribution of *

mine  on the far-Sun side 

 

As we can see from Figures 16 and 17, the dark blue regions are the special regions, where the 

global minimum *

mine  exists. There are still two special regions, which locate in the near-Sun side 

and the far-Sun side of the sphere of capture. However, comparing with Figures 14 and 15, the 

distribution of *

mine  on the sphere of capture is different from mine . Specifically, only the 

retrograde orbit in those special regions can correspond to the global minimum *

mine . Let’s recall 

a conclusion in Sect. 3.2: the retrograde orbits possess the smaller k. For the same mine , the less k 

the less *

mine . This fact can explain why the retrograde orbit in those special regions corresponds 

to the global minimum *

mine . 

 

5. Trajectory Design 

 

As an application of the previous results, in this subsection, the design of the gravitational 

capture trajectory will be investigated. 

 

From the conclusions in Sect. 4, we know there exist two special regions on the sphere of capture, 

in which the capture point possesses the global minimum mine  and *

mine . Therefore we can choose 

some capture points from the inside of those regions as the initial values. Then by backward and 

forward integration, we can get the corresponding capture trajectories. 

 

Firstly mine  is considered. Figure 18 shows a gravitational capture trajectory described in the 

nondimensional Sun-Mercury rotating frame. 

app:ds:corresponding
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Figure 18.  A gravitational capture trajectory without braking 

 

In Fig. 18, the capture point is chosen from the dark blue regions of Fig. 11, where   is o0  and 

  is o90 . The other parameters are set as: min 0.941698e  , i o0  and o250  . The black “*” 

mark denotes the capture point, the red dash line denotes the incoming trajectory from the 

outside of the SOI and the green solid line denotes the outgoing trajectory from the region of 

Mercury. Obviously, Fig. 18 shows the gravitational capture is temporary capture, after some 

revolutions the spacecraft finally fly away from the vicinity of Mercury. Then braking is 

necessary to accomplish permanent capture. If we take brake at capture point, where v  is 

0.3699m/s in the opposite direction to the motion, the spacecraft can stay in the region of 

Mercury within 250 days (see Fig. 19). Then we almost regard the capture as long-term capture. 
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Figure 19.  A gravitational capture trajectory with braking 
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Then 
mine  is considered. We choose the capture point from the dark blue regions in Fig. 17, 

where   is o90  and   is o0 . The other parameters are set as: *

min 0.947522e  , i o=180  and 

o=280 . The trajectory is showed in Fig. 20. The black “*” mark denotes capture point, the red 

dash line denotes the incoming trajectory from the outside of the SOI and the green solid line 

denotes the section after the gravitational capture. As we can see from Fig. 20, even though the 

braking is not conducted at the capture point, the spacecraft still remain in the region of Mercury 

within 250 days. We can calculate that mine  of the capture point in this situation is 0.954066, 

which is a little larger than that in the situation of Fig. 19. But the fuel consumption in Fig. 20 is 

zero. Therefore the special regions of mine and *

mine  have both advantages and disadvantages. The 

radius of Mercury in particular is not considered in Fig. 20. Actually, the spacecraft has crashed 

into the Mercury after some revolutions. This fact can be used in the trajectory design of some 

intercept missions, such as Deep impact mission. 
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Figure 20.  A gravitational capture trajectory without braking 

 

6. Conclusions 

 

In this paper, the gravitational capture at Mercury has been investigated under the frame of Sun-

Mercury-spacecraft ER3BP. A new parameter k, the corrected ratio of the radial force, was 

proposed to establish the relationship between capture eccentricity ce  in two-body model and 

capture eccentricity *

ce  in the ER3BP. Numerical methodology revealed the influences of the 

parameters on the distribution of k and tangential force on the sphere of capture. 

 

Under the restriction of the time-of-flight and corrected ratio k, the minimum capture eccentricity 

mine  and the corrected minimum capture eccentricity *

mine  were proposed respectively as indexes 

to evaluate the quality of the gravitational capture in the ER3BP. Numerical calculation showed 

that when Mercury was at the vicinity of perihelion, the gravitational capture was easier. Besides, 

the capture points in the near-Sun side and the far-Sun side of the sphere of capture possessed the 

global minimum mine  and *

mine . The direct and retrograde orbit in these region respectively 
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corresponded to the global minimum 
mine  and *

mine . At last, the results were used to design the 

gravitational capture trajectories. We find that mine  and *

mine  have both advantages and 

disadvantages as indexes to evaluate the capture point. 

 

The methods and results presented in this paper are made for the Sun-Mercury-Spacecraft system, 

but actually they can also be valid for any system of primaries. 
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