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Introduction 

  

Modern space missions inside Jovian system are not possible without multiple gravity 

assists (as well as in Saturnian system, etc.). The orbit design for real upcoming very 

complicated missions by NASA, ESA, RSA should be adaptive to mission parameters, such 

as: the time of Jovian system arrival, incomplete information about ephemeris of Galilean 

Moons and their gravitational fields, errors of flybys implementation, instrumentation 

deflections. Limited dynamic capabilities, taking place in case of maneuvering around 

Jupiter's moons, demand multiple encounters (about 15-30 times) for these purposes. Flexible 

algorithm of current mission scenarios synthesis (specially selected) and their operative 

transformation is required. 

 

Mission design is complicated due to requirements of the Ganymede Orbit Insertion (GOI) 

("JUICE" ESA) and also Ganymede Landing implementation ("Laplas-P" RSA [1]) 

comparing to the ordinary early ―velocity gain" missions since ―Pioneers‖ and "Voyagers‖. 

Thus such scenario splits in two parts.  

 

Part 1(P1), as usually, would be used to reduce the spacecraft’s orbital energy with respect to 

Jupiter and set up the conditions for more frequent flybys. Part 2(P2) would be used to lower 

the spacecraft’s Ganymede relative velocity to set up the correct conditions for the GOI. The 

technique of P1 implementation is well known: it is the sequence of resonant same-body 

transfers ―from Ganymede to Ganymede‖(the solution based on the Lambert solution 

technique). But the P2 implementation couldn’t be the same (in requirements of quasi ballistic 

gravity assist with low cost propellant consumption). The cause is the invariance of 

Tisserand’s parameter in a circular restricted three-body system (CR3BP) [2-3]. Therefore it 

is impossible to change the magnitude of the V∞velocity vector of the spacecraft with respect 

to the Ganymede. Furthermore, the same-body flybys sequence on the Tisserand-Poincare (T-

P) graph [2-3] falls according the V∞-isoline to the ―Extra Radiation‖ zone (XR-zone) with 

spacecraft’s orbit pericenter height 10p Jr R , JR - Jupiter’s radius (This height is critical for 

missions ―JUICE‖ ESA and ―Laplas-P‖ RSA. Approximately they shell have Total ionizing 

dose TID of 250-300 Krad behind a 10-ml Al spherical shell). So regular expensive 

corrections of pericenter’s height increasing are demanding in this case.  

 

But the other implementation of P2 can be used. They are- ―crossed‖ gravity assists 

from one small body G(―Ganymede‖) to the second small body G (―not Ganymede‖, 

generally for a not big TID it is Callisto) and then – in the opposite direction. We can ―to 

outwit‖ the Tisserand’s criterion like this. It allows us to build special effective ―phase 
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beam‖(PB) methods of orbit design synthesis for ―Laplas-P‖-mission in classes of encounter 

sequences-disjunctions 1G ^G ^ 2G  (or modified 1G ^…^ kG ^ mG ^…^ m nG  ^ 1kG  ^…). 

 

Tisserand-Poincare graph [2] allow to design mission dynamical maquette (but only in phase-

free form). Algorithms with utilizing the real satellites configurations at the real time of close 

approach are required for upcoming missions implementation. NAIF JPL NASA Ephemeris 

have been employed in our simulations. Patched Conics can not be applied immediately in the 

trajectory design. The rigid fixation of scenario’s conic points should be threat to the 

mission’s implementation. 

 

As the result, the idea of adaptive synthesis of mission design was constructed by 

authors. Then it was implemented by effective algorithm. The corresponding numerical 

scheme was developed with using Tisserand-Poincare graph and the simulation of hundreds 

of thousands of options formation of the calculation (Fig.1). The V-low cost searching was 

utilized also for trajectory design with help of multiple rebounds of phase beams modeling. 

The techniques developed by the authors specifically to the needs of the mission "Laplas P" 

RSA. In the selection of hundreds of thousands of options for each date selected only those 

chains that form closed loops on Ganymede gravity assist after intermediate Callisto's flybys. 

The adaptive scheme, which retains the flexibility to clarify or an unforeseen change in 

external conditions, also in the case of errors during encounters implementations is presented, 

that provides the reliability of the mission and its multi-variant flexibility. 

 

 
 

Fig. 1. T-P graph under a modified synthesis script with imposing requirements of 

multi rebounds. X-axis and Y-axis are spacecraft apocenter and pericenter height in 

JR (Jupiter radii) 

 

1. SPECIFIC FEATURES OF JUPITER MISSIONS TARGETING TO LAND ON 

ITS SATELLITE 

The flight to the Jovian system can be performed in various ways, in particular, using 

gravity assist maneuvers [4- 8]. An efficient way is to use the VEEGA (Venus--Earth--Earth--

Venus Gravity Assist) route. This route is proposed to be used as the reference trajectory in 

the ESA JUICE mission to Jupiter aimed at entering a Ganymede artificial satellite orbit [6-8]. 

The flight should take six years on the average. 

In the first approximation, the heliocentric spacecraft trajectory in the Jovian frame of 

reference is a flyby hyperbola. In order to enter a Jupiter artificial satellite orbit, a Jovian 

Orbit Insertion (JOI) braking impulse is needed. After this maneuver, the spacecraft will stay 
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on a highly elongated elliptical near Jupiter orbit. The JOI impulse can be applied in the 

pericenter of the flyby hyperbola both before and after the gravity assist maneuver near one of 

the Jovian moons. The execution of the gravity assist maneuver immediately after the 

completion of the interplanetary part of the flight is more energy efficient; however, it is 

strictly coupled with the time of arriving in the Jovian system. 

To make the mission more flexible and stable, Jupiter tours that begin with a JOI are 

preferable. A specific feature of the JOI maneuver is that it must ensure the subsequent 

rendezvous with the Jupiter moon (Ganymede) and such a flyby of it that reduces the period 

and orbital velocity of the spacecraft. 

Upon the spacecraft becomes a Jupiter artificial satellite on a highly elongated elliptical orbit, 

a series of gravity assist maneuvers using the gravitational fields of Galilean moons must be 

performed; this series consists of two phases [5,9-10]. In the first phase, the orbital velocity is 

reduced and the orbital period is decreased down to several Ganymede orbital periods (about 

7.155 day). Thereby, the total mission duration is controlled and frequent flybys near natural 

Jupiter moons are performed to execute multiple gravity assist maneuvers. 

In the second phase, the spacecraft's orbital velocity is reduced to a magnitude comparable 

with the Ganymede orbital velocity to be able to land on its surface. 

Before each Jupiter moon flyby as a result of which a gravity assist maneuver is performed, 

the spacecraft's trajectory must be corrected to ensure the desired parameters of this moon 

flyby. The expenditure of the characteristic velocity for such corrections should not exceed 15 

m/s for one correction. Such corrections can be combined with the maneuvers aimed at 

increasing its periapsis. Note that there are alternative methods for increasing the periapsis, 

which will be discussed below. 

To summarize, we list the main phases of a Jovian space mission intended to land on 

Ganymede. 

1. Spacecraft injection from the flyby hyperbola into a highly elongated Jupiter elliptical orbit 

using JOI. 

2. Reducing the spacecraft's orbital period and decreasing its major semiaxis using an initial 

series of long but decreasing gravity assists. 

3. Approaching the target Jupiter moon (e.g., Ganymede). 

It is necessary to make the orbital velocities of the spacecraft and the target close to each other 

and, taking into account the fact that the parts of the spacecraft trajectory between reflections 

are elongated and the target moon's orbit is close to a circle, to reduce the eccentricity of the 

spacecraft's orbit using a series of shortened gravity assist maneuvers. 

4. Phasing the spacecraft with Ganymede. 

5. Execution of the Ganymede Orbit Insertion (GOI) braking maneuver that injects the 

spacecraft to a Ganymede artificial satellite orbit. 

6. Execution of a series of maneuvers to form the pre-landing orbit. 

7. Turn the autonomous landing system on. 
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2. MODEL OF THE GRAVITY ASSIST MANEUVER 

The patched conics method [11] that is often used to design gravity assist maneuvers 

represents the trajectories of a celestial body with negligible small mass (in our case, this is a 

spacecraft) in piecewise Keplerian form with kinks at the points where the gravity assist 

maneuvers are executed. The domains where the maneuvers are performed (from the time 

1t when the spacecraft enters the sphere of influence of the second gravitating body up to the 

time  2t when the spacecraft leaves this sphere) are assumed to be negligibly small compared 

with the Keplerian parts of the trajectory near the central body; these short parts of the 

trajectory are replaced with patched points (Fig. 2). 

 

 

 

 

Fig. 2. Geometry of the gravity assist maneuver. 

 

The pumping angle   is determined by the "internal geometry" of the patched point 

based on the angle between the branches of the flyby hyperbola "packed in this point" relative 

to the flyby celestial body. The magnitude of the spacecraft velocity relative to the moon does 

not change. 

The variation of the spacecraft velocity  V relative to the central body is (see [11]) 
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Depending on how the spacecraft moves near the flyby body, the gravity assist (GA) 

maneuvers can be V increase GA or V  decrease GA maneuvers. 

It can be easily verified that the asymptotic velocity is related to the planet velocity 

plV  and the spacecraft arrival velocity 1( )V t  as (see [11])  

 
1/2

2 2

1 1( ) ( ) 2 ( ) cospl plV V t V V t V 
       

 

In the case of the cranking gravity assist maneuver, the maximum change in the 

inclination I of the spacecraft's orbit plane after a single flyby can be written as 

sin2
sin

pl pl

V V
i

V V

    ,  
plV V  . 

 

3. CAPABILITIES OF GRAVITY ASSIST MANEUVERING 

It can be shown (see [11]) that the maximum variation in the magnitude of the velocity 

maxV  is achieved at 

1/2

pl
V

r




 
  
 

 

and the magnitude of the increase in the hyperbolic velocity cannot exceed the planet's escape 

speed: 

1/2

max pl
V

r

 
   

 
 Here, plr is the planet radius. 

The table shows the capabilities of gravity assist maneuvers using flybys of influence 

spheres of planets and large dwarf planets of the Solar system; we completed and improved 

this table compared with the data provided in [11, 12] using the latest space observation data 

[13-15]. 

If we change to model dimensionless variables, the gravity assist maneuvering in the 

vicinity of any celestial body will be determined by the model normalized spacecraft speed 

coefficient 
plV V   Therefore, the intensity of any gravity assist maneuver can be 

described by the dimensionless parameter mod max

plV V   the greater this parameter, the 

greater is the possible deformation of the beam of dynamically feasible spacecraft phase 

trajectories in the maneuver. The corresponding values of mod max

plV V    are also 

presented in the table. 

4. BRIEF ANALYSIS OF POSSIBLE MANEUVER PARTICIPANTS IN THE 

JOVIAN SYSTEM 

The four biggest Jupiter satellites-Galilean moons Io, Europa, Ganymede, and 

Callisto-care the first candidates for the partnership with the spacecraft in gravity assist 

maneuvering in the Jovian system. 

Io. The Galileo mission used all four Jupiter moons for maneuvering; however, this 

mission was very unfavorable from the radiation point of view. In the Io flyby, a part of the 
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research hardware was damaged. The total absorbed dose exceeded 650 krad by the year 

2004. Taking into account the fact that the currently planned ESA and Russian Space Agency 

Roskosmos missions [7-10] should be performed under more moderate radiation conditions 

(the total absorbed dose should be about 100--260 krad), which requires lighter protection of 

the spacecraft body and excludes spacecraft flybys lower than the Europa orbit, Io could be 

eliminated from the initial list of candidates. However, NASA and Jet Propulsion Laboratory 

also examine other "impenetrable" approaches to the radiation safety problem when flying 

near the Jupiter close moons. In particular, the severe Europa tour [16] is designed so as to 

operate until the research hardware fails. This mission allows for lower periapses and, 

respectively, higher radiation doses from 80 krad for 1000 mm Al shield to 2.1 Mrad for 100 

mm Al shield. 

Table. Maximally possible variations of a spacecraft speed in the flyby of large 

celestial bodies of the Solar system 

Planet Speed variation  maxV , km/s  max
mod pl

V

V



  

Central body  

Mercury 3.005 0.063 Sun (S) 

Venus 7.326 0.209 S 

Earth 7.912 0.265 S 

Mars 3.557 0.147 S 

Ceres 0.101 0.056 S 

Jupiter 42.57 3.257 S 

Saturn 25.52 2.634 S 

Uranus 15.12 2.22 S 

Neptune 16.67 3.07 S 

Pluto 0.85 0.18 S 

Haumea 1.16 0.26 S 

Makemake 1.11 0.25 S 

Eris 1.09 0.3 S 

Moon  1.680 1.6 Earth 

Io  1.809 0.1 Jupiter 

Europa  1.433 0.1 Jupiter 

Ganymede  1.949 0.17 Jupiter 

Callisto  1.725 0.21 Jupiter 

Titan  1.867 0.3 Saturn 

 

 

Europa. The importance of scenarios of Europa flybys, rendezvous with it up to  

orbiting it [5,9-10] (and, possibly, landing on it) is high. Europa is one of the most attractive 



 

 7 

research targets because it has an ocean covered with ice, which is heated by Jovian tides. 

Even though Europa is smaller than the Moon, it is still the sixths-size natural satellite in the 

Solar system. Therefore, gravity assist maneuvers near Europa are theoretically effective (see 

table). However, as in the case of Io, the high radiation level near Europa significantly 

complicates the implementation of such scenarios. Note that the ESA JUICE mission assumes 

two Europa flybys, and the dose absorbed in this phase is about 200 krad if the Al body 

protection shield is 10 mm thick. Landing on Europa gives the dose many times higher; 

therefore, it cannot be planned for near future. When designing missions with the total 

absorbed dose below 150--250 krad with protection not thicker than 10 mm Al, Europa should 

also be excluded from the list of candidates, which significantly cuts down the list of feasible 

scenarios and complicates their design. 

  Ganymede. Ganymede is the largest satellite in the Solar system. The interest in the 

exploration of this giant is very high, as in the case of Europa. 

The design of space missions that plan Ganymede rendezvous and landing on its surface is a 

priority line of research in ESA and Roskosmos. On the one hand, the radiation conditions of 

Ganymede landing are fairly benign. On the other hand, the Ganymede gravitational constant 

is 9887.8 км3/с2, which makes the landing on it from the orbit more difficult than in the case 

of Europa. 

Callisto. The gravity assist maneuvering near Callisto is very efficient in itself and as 

an alternative in the case when maneuvering near other moons is impossible (due to the phase 

configuration of the system, radiation safety, etc.). 

Landing on Callisto is also promising. Moderate radiation conditions near it make it possible 

to lighten the spacecraft by decreasing the radiation protection of its body (the limiting total 

dose is 150 krad). 

 

5. STRATEGY OF DESIGNING TOURS IN THE JOVIAN SYSTEM: THE FIRST 

PHASE (DEBUT) 

Each feasible chain of gravity assist maneuvers requires that the tempo be preserved, 

the spacecraft flight from one rendezvous to the next one must be quasi-ballistic and almost 

inertial, the fuel consumption must be minimized, and the characteristics of the escape from 

the preceding maneuver must be used to aim at the next target. This recurrent energy saving 

of the designed chain can cut off if the spacecraft caught in a deadlock when there is no 

attainable goal at the exit from the current gravity assist maneuver. The well-designed 

scenario must ensure that the goals for the spacecraft are timely provided. 

The technology of next goal provision in the initial phase of the planetary mission is 

fairly clear. This technology consists of the solution of the initial Lambert problem [11] based 

on the condition that the spacecraft reaches Ganymede after performing JOI and 

implementing the subsequent series of solutions of the Lambert problems such that the 

spacecraft's orbital period at the end of each gravity assist maneuver is a multiple of the 

orbital period of the satellite chosen as the maneuvering partner. The resonance of periods 

thus formed ensures a new rendezvous with this partner in a certain amount of time in a 

vicinity of the true anomaly of the last rendezvous. For this purpose, it is sufficient to perform 

a low cost correction immediately before the planned gravity assist maneuver; this correction 

should control the distance from the target moon, and it is typically performed in the vicinity 

of one of the last orbit periapses before rendezvous. 
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Improving Correction of the Solution to the Lambert Problem by Parameterization of 

the Distance to the Target Moon 

To improve the correction impulse based on the desired distance from the target moon, 

the spacecraft equations of motion in the Jovian reference frame is integrated taking into 

account the gravitation of its natural satellites (see [17, 18]). The correction impulse is 

calculated in three steps. 

At the first step, the impulse is found from the condition of minimizing the difference 

between the prescribed altitude of the periapsis of the flyby hyperbola and its realized value 

due to the impulse. The minimum is sought under the condition that at the time when the 

spacecraft is at the minimum distance from the moon on the flyby hyperbola, its distance to 

the baricenter of the Jovian system is greater than the distance from the target moon to the 

baricenter. This condition ensures that flyby is on the outer side of the moon orbit, which 

corresponds to the decrease gravity assist maneuver. If the flyby were on the inner side of the 

orbit, the velocity would increase. The minimum is sought using the combined gradient and 

coordinate descent method [17, 18]. To this end, along with the gradient, feasible directions 

are determined. A direction is feasible if baricenter condition is fulfilled when the component 

of the velocity varies in this direction. If all the directions are feasible, the gradient descent 

method with step control is used. If there are prohibited directions, then the descent follows 

the most effective coordinate. 

At the second step, the multiplicity coefficient is determined as the minimum integer 

greater than the ratio of the spacecraft's orbital period to the Ganymede orbital period. The 

target value of the spacecraft's orbital period after the gravity assist maneuver is equal to the 

product of the multiplicity coefficient and the Ganymede orbital period. 

At the third step, the impulse is calculated more precisely based on the minimization 

of the functional equal to the difference between the target value of the period and its actual 

magnitude. As in the case of designing the flyby at the prescribed altitude, the minimum is 

sought under the condition that the flyby is on the outer side of the moon orbit. 

In the case of the cranking gravity assist maneuvers, a parameterization with respect to 

the flyby cross range is needed. The two-dimensional parameterization of the flyby altitude 

makes it possible to design both pumping gravity assist (PGA) and cranking gravity assist 

(CGA) maneuvers, where the latter intend to change the spacecraft's orbit inclination. 

The design of the first phase (debut) was performed under flexibly specified 

conditions of arrival in the Jovian system using improved ephemeris of the Solar system and 

Jovian system NAIF JPL NASA and the program package ESTK of BC (Ballistic Center) of 

the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences (BC of 

KIAM RAS). 

Figure 4 shows a typical trajectory of the spacecraft in the first phase. 
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Fig. 3. The first phase of the mission in the Jovian system (debut). 

The implemented sequence of decreasing periods of the spacecraft can be written in 

terms of the Ganymede periods as 6→5→5→4→3→2.5→2. 

Even though the orbit periapses are localized with respect to the true anomaly, they 

nevertheless drift from one maneuver to another. The a priori fixing of the line of apsides of 

the spacecraft's orbit, which is used for designing mission scenarios in some studies, results in 

losing the actual spacecraft motion when the Keplerian trajectories are replaced with actually 

observed ephemeris of the Jovian celestial bodies. The trajectories are destroyed under small 

variations of the parameters. A similar pattern is observed when the patched conics method 

[11, 19-21] is used, which replaces the gravity assist maneuver domain with a reflection point; 

this is a representative example in this case. 

 

6. STRATEGY OF DESIGNING TOURS IN THE JOVIAN SYSTEM: 

PRECONDITIONS OF THE SECOND PHASE IMPLEMENTATION 

The gravity assist maneuvering procedure described above cannot be repeated 

infinitely for a number of reasons. 

The first reason is that the gravity assist maneuvers lose their efficiency as the 

asymptotic velocity of the spacecraft relative to the moon decreases while the expenditure of 

the characteristic velocity for these maneuvers increases [19]. 

The endgame problem in the case of a single partner is analyzed in a number of 

modern NASA and ESA studies, For example, a thorough survey can be found in [19]. 

The second, more fundamental cause is due to the properties of trajectories in the 

restricted three body problem. In the case of low cost corrections in the course of gravity 

assist maneuvering in the vicinity of the target moon, they have the Jacobi integral (and the 

Tisserand parameter) as their invariant; correspondingly, the magnitude of the asymptotic 

velocity V  [2-3,19] is also preserved in the series of any resonance gravity assist maneuvers. 
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In the case of cranking gravity assist maneuvers, the possible values of V  cannot be 

arbitrary either-they lie on an invariant surface - the pseudo-sphere « V -Globe» [21]. 

As a result, the spacecraft cannot approach the target moon without significant 

additional expenditure of the characteristic velocity; furthermore, it is destined to slide into 

the ―death zone‖ (the zone with low periapses and extra radiation, XR radiation) on an 

asymptotic velocity isoline. 

Let us discuss these reasons in more detail.  

 

7. JACOBY INTEGRAL AND THE TISSERAND CRITERION 

Let us write out the dimensionless Jacobi integral for the restricted three body problem 

(the central body is Jupiter with the gravitational constant 1 , the small body is its natural 

satellite (moon) with the gravitational constant 2 1  and the third body is the spacecraft 

with an infinitesimal mass). We introduce the rotating barycentric reference frame BXYZ, 

where the axis BX passes through the central and the small bodies, the axis BY is 

perpendicular to BX in the plane of the small body orbit, and the axis BZ completes the 

reference frame to the positively oriented one. Let sata  be the major semiaxis of the Jupiter 

satellite orbit. Change to the dimensionless  3

sat 1 2a     the dimensionless spacecraft 

coordinates BX, BY, BZ and distances 1R , 2R  from the spacecraft to Jupiter and its satellite 

normalized to sata . The spacecraft velocity BscV  in the reference frame BXYZ is written in the 

dimensionless form as Bsc sat/V V V , where  sat 1 2 satV a   . Then, the dimensionless 

Jacobi integral can be written as the double difference of the potential and kinetic energy of 

the mechanical system divided by the spacecraft mass (see [19, 2-3]): 

               
2 2 2 2

1 2

1
2 ( ) 2 2 (1 )J U V X Y V

R R

 
 


         , (1) 

             2

1 2

1



 




 .  (2) 

With regard to eq. (1), (2), we have in the inertial reference frame Oxyz fixed to the 

central body that 

             
2 2 2 2 2 2 2( ) 2 cosV X Y Z v x y h i         , 

             
2 2 2 2

1

1 2

1
(( ) ) 2 2 (1 ) 2 cosJ x y v R h i

R R

 
  


          , (3) 

where sc satv V V , scV   is the spacecraft velocity in the reference frame Oxyz, x and y are 

the spacecraft coordinates normalized to sata , i  is the inclination of the spacecraft's orbit, 

and h is the dimensionless area integral constant. Let e  be the eccentricity of this orbit and 

sc sata a a ,  where sca  is its major semiaxis. Then, using the relation for energy and the 

equation for the angular momentum about the axis Oz 
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             2

1

2(1 ) 1
v

R a

  
  , 2(1 ) (1 )h a e   , 

 we derive from (3) the Jacobi integral in the form 

2 2

2

1
2 (1 )(1 ) cos 2 2 (1 )J a e i x

a R

 
    


         . (4) 

Formula (4) is a correction of formula (A17) presented in the detailed paper [3], which 

(as in formula (A9) in the same paper) contains errors (which, however, do not affect the 

further calculations). 

In papers [22-23], which cite [3], these errors are reproduced (formulas (7) and (3), 

respectively) degree ―two‖ of the velocity in the formula for the Jacobi integral is omitted. 

The situation with errors in formulas of the restricted three body problem is not new - these 

formulas have been corrected beginning from Poincare's works [24,25]. 

Passing to the limit as 0  and assuming that 2R  is not small, we obtain the local 

equivalence of the Jacobi integral J and the Tisserand parameter T [26]: 

21
2 (1 ) cosJ a e i T

a
     

In particular, for an orbit with zero inclination, we have 

2
21 2

2 (1 ) 2
a p

a p a p

r r
J T a e

a r r r r
     

 
 

where  ar , pr   are the apocenter and pericenter of the spacecraft orbit normalized to sata . 

Consider the configuration of the spacecraft flyby of a Jupiter moon. In the framework of the 

conics method, we have in the case of the gravity assist maneuver 

2 2 2

sc sat sc sat2 cos cosV V V V V i           (5) 

where   is the angle between the branches of the flyby hyperbola. 

In dimensionless form normalized to satV , sat/v V V  ,  (5) is written as 

2 2 1 2 cos cosv v v i     

Then, using the relation   21 2 2 1a v    we obtain 

              21
2 1 2 cosv h i

a
    ,   cosh v  , 

hence, we immediately obtain the following  relation between the Jacobi constant and the 

Tisserand parameter with the asymptotic velocity: 

2 23(1 ) 3J T v v               (6) 



 

 12 

In dimensional units, the Jacobi constant dimJ  and the Tisserand parameter dimT  are 

written as 

2 2

dim dim sat3J T V V    

Thus, the Tisserand parameter provides a link between the models of motion in the 

two body problem and the restricted three body problem [19]: since the Jacobi constant of the 

three body problem is preserved in the gravity assist maneuver, the asymptotic velocity on the 

flyby hyperbolic orbit in the Kepler problem for the same maneuver is also preserved.  

 

8. TISSERAND CRITERION AND "COMET INVARIANTS" OF THE JOVIAN 

SYSTEM 

It is known that the Tisserand condition for the system Sun--Jupiter--small body is 

written in terms of the astronomical unit au (1 au = 0Еr  = 149 597 870.7 km, where 0Еr  is the 

average radius of the Earth orbit) as the comet invariant [27] 

2

sc 0

sc 0

1
0.16860 ( / )(1 ) cos

( / )

au

H J Е

Е

T a r e i
a r

          (7) 

For the Jovian system, the local model "comet invariants" in the case of the spacecraft 

flyby through the influence spheres of large moons with the average orbit radii 0 satr   can be 

written in terms of the dimensional value of the spacecraft's major semiaxis dima  as 

2

dim 0 sat

dim 0 sat

1
2 ( / )(1 ) cos

( / )
T a r e i

a r




        (8) 

Also, they can be conveniently written as analogs of the classical version of the comet 

invariant in terms of the local "Jupiter astronomical units‖ jau, where 1 jau is the average 

radius of the orbit of the third Jupiter moon Ganymede 0r  (1 jau = 1 070 400 km, 

1 jau=14.97 RJ in terms of the average Jupiter radius RJ ): 

sc dim 0/a a r   , 

dim 2

sc

sc

1
8.09092 (1 ) cosJ i iT a e i

a




 



      – spacecraft invariant for the Io flyby   (9) 

dim 2

sc

sc

1
4.03053 (1 ) cosJT a e i

a
  



 



      – for Europa, (10) 

dim 2

sc

sc

1
2 (1 ) cosJT a e i

a
  



 



      – for Ganymede, (11) 

dim 2

sc

sc

1
0.85739 (1 ) cosJ c cT a e i

a




 



      – for Callisto . (12) 
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Thus, when the spacecraft performs a gravity assist maneuver with a Jupiter moon, the 

"Jupiter comet invariant" of this very moon is fixed. 

 

9. STRATEGY OF DESIGNING TOURS IN THE JOVIAN SYSTEM: THE SECOND 

PHASE 

Strategies for designing chains of gravity assist maneuvers are actively developed in 

NASA and ESA. However, the technology of designing asymptotic velocity reducing series 

(relative to the target moon) is not formulated as an individual problem. Typically, only the 

results are described. We believe that the formalization of the asymptotic velocity reduction 

algorithm is a necessary element for the construction of a flexible mathematical model of a 

moon orbit insertion and landing on its surface. 

Upon the spacecraft's orbital period is decreased, the phase of reducing its asymptotic 

velocity must be performed (middlegame). This phase is impossible to implement using 

gravity assist maneuvers near the same celestial body. This phase can be designed using 

various approaches that differ in the complex multicriteria "cost"-expenditure of the 

characteristic velocity, maneuvering time, and absorbed radiation dose. In any case, to move 

away from the extra radiation zone, the spacecraft's orbit periapsis must be increased. The 

standard method for this operation---corrections in the apocenter (which costs 50--100 m/s)---

requires such a correction to be performed almost before every gravity assist maneuver, which 

consumes much energy. 

However, there is a more energy efficient solution. It is based on the idea of leaving 

for the time being the concept of Lambert construction of period resonance moon flybys that 

ensure the new rendezvous with it. One can try to use low cost techniques to involve other 

participants of the Jovian system by "changing the line of the comet invariant." This naturally 

implies the necessity of developing techniques for performing criss-cross maneuvers in 

which, upon executing a gravity assist maneuver with one partner, the spacecraft goes to a 

trajectory on which it can perform a gravity assist maneuver with another partner. However, 

such a condition cannot be ensured using direct methods similar to the construction of 

completion of gravity assist maneuvers that are resonance with respect to orbital period. 

The analysis of the event table (Jovian Tour Overview) of the JUICE Ganymede 

mission designed by ESA [7] shows that its developers follow a similar path. 

The inclusion of velocity decreasing criss-cross gravity assist maneuvers was also 

used in the NASA Galileo mission [28]. The calculation procedure of the spacecraft trajectory 

assumed the involvement of a lot of experts to look through possible situations and draw the 

so-called porkchop plots containing asymptotic velocity isolines for all potential participants 

of the gravity assist maneuver. 

 

10. TISSERAND—POINCARE GRAPHS 

Recently, the design of such missions has been using different approaches. First of all, 

this is related to the introduction of the so-called Tisserand—Poincare diagrams called ―T-P 

graphs‖ [29, 30]. In the initial modification, the orbital altitude of the spacecraft's pericenter 

was plotted on the vertical axis, and the spacecraft's orbital period was plotted on the 

horizontal axis [29,30]. Due to the energy invariance described above, the position of the 

spacecraft after executing a gravity assist maneuver with the moon lies on a curve of the 
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Tisserand-Poincare graphs. In particular, this curve is an isoline of the spacecraft's asymptotic 

velocity as it flybys the moon (this curve will be called isoinfine from the term V-infinity). 

The characteristics of the spacecraft orbit are depicted on the T-P graph by a point (note that 

the orbit inclination is close to zero, the longitude of the ascending node is an indetermined 

parameter, and the argument of the pericenter is determined by the flyby hyperbola). One can 

design the chain of gravity assist maneuvers with the moon as a sequence of points on the 

isoinfine. This sequence is constructed given the initial conditions of entering the Jovian 

system. The motion along the isoinfine makes it possible to decrease the spacecraft's orbit 

eccentricity and its orbital period, but it does not allow one to "reach" the moon itself. 

In the case of several partners, the situation becomes more flexible. Several crossing 

isoinfines can pass through each point representing the spacecraft state. This opens 

opportunities for modifying the asymptotic velocity of the spacecraft relative to the target 

moon by ―temporarily‖ changing the partner. 

Recently, more illustrative modifications of the Tisserand-Poincare diagram have 

started to be used. The relation of the orbital period with the major semiaxis makes it possible 

to transform it to the following form: the apocenter altitude is plotted on the horizontal axis, 

and the pericenter altitude is plotted on the vertical axis (see [7, 21-23]). This form of the T-P 

graph makes it possible to quickly estimate the flyby radiation safety because the major 

radiation dose absorbed in an orbital revolution is absorbed in the pericenter [10]. 

Figure 5 shows the T-P graphs for Ganymede and Callisto; different colors highlight 

the domains bounded by isoinfines with a fixed asymptotic velocity step. 

  

Fig. 4. Isoinfines on Tisserand—Poincare diagrams for Ganymede and Callisto; 

the apocenter and pericenter altitudes are given in terms of the Jupiter radius 

JR . 

 

11. PHASING PROBLEM 

Note that the Tisserand—Poincare diagram makes it possible to design only the 

dynamic pattern of the strategy. This graph does not reflect the mutual positions of the 

spacecraft and the moon in the planetary system (phase-free model). Here, we face the need 

for developing new phase search methods; a prototype of such methods is the search for start 

windows and mapping in the manner of  NASA porkchop plots. We adopted the use of beams 

of phase trajectories in the design. 
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Taking into account the fact that the geometry of the gravity assist maneuver is in 

essence the same as the billiard geometry [10-11, 31-35], we can generalize the optic-

mechanical analogy, which is valid for billiard trajectories, for the case of investigating the 

spatial localization of the spacecraft on various trajectories emanating from the gravity assist 

maneuver domain. 

With this purpose, the structure of the propagation of the variative beam of phase 

trajectories was simulated under the condition of imposing the requirements of "reflections" 

as the spacecraft flybys the moon and ―rereflections‖ when the spacecraft trajectories that 

return to the moon after the subsequent reflection from another moon are sought. 

This fact makes it possible to focus virtual beams and "sow" them on selected 

promising reflection segments in the refinement mode in order to form a more effective 

maneuver. Moreover, it becomes possible to form gravity assist maneuvers that follow after 

the planned one using the redirection of reflected beams. The procedure proposed in [5], 

which yields good uniformity of the distribution density of trajectories in the beams, turned 

out to be very effective. Note that the automatic use of search Monte Carlo methods without 

paying attention to specific features of variative localization of beam "segment-points of 

growth" cannot detect (using today's computational facilities) criss-cross maneuvers under the 

real-life conditions of the Jovian system; therefore, "pilot charts" are needed. Furthermore, 

fixing these points of growth and associating them with a specific domain of the planetary 

system results in losing details of the actual spacecraft motion when the Keplerian trajectories 

are replaced with actually observed ephemeris of celestial bodies. The trajectories are 

destroyed under small variation of the parameters. The patched conics method is a 

representative example in this sense because the gravity assist maneuver domain is replaced 

with a reflection point. The drift of the points of growth appearing when the complete model 

of the motion is used on the one hand makes the spacecraft's trajectory robust; but on the 

other hand, it complicates the design of multicomponent gravity assist maneuvering.  

 

 

Figure 5. Tisserand—Poincare diagrams. The apocenter and pericenter altitudes 

are given in terms of the Jupiter radius JR . 

12. COMPUTATIONAL RESULTS 

Radiation Conditions in the Jovian System 

The level of radiation in the Jovian system is very high (Fig. 6), this presents a severe 

difficulty, and it must be taken into account in designing flight scenarios to Jupiter satellites. 
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Figure 6. Radiation level in the vicinity of Jupiter [40]; the distance from the 

center of Jupiter in terms of its radius is plotted on the horizontal axis. 

The dependence of the radiation level obtained from the measurements performed by 

NASA missions was taken into account in the software designed by the authors of this paper 

for seeking chains of gravity assist maneuvers. As a result, one can interactively estimate the 

total dose absorbed by the spacecraft "on the fly." 
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Figure 7. Dynamics of radiation dose accumulation (TILD) in the vicinity of 

Jupiter in one orbital revolution for various protection levels (in g/cм2). 

Figure 7 shows a typical plot of the calculated dose absorbed by the spacecraft (TILD) 

in one orbital revolution depending on the distance to the center of the system. The 

calculation was performed using the model described in [36]. 

Figure 7 implies that the spacecraft absorbs the major part of the dose in the pericenter 

almost quasi-singularly because the major part of the orbital revolution lies outside this zone 

according to the property of the area integral.  

Figure 8 shows the numerically integrated function of the accumulated dose for the 

standard "moderate radiation level" chain of gravity assist maneuvers in the first phase of the 

tour (the computations were performed by the authors). 
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Figure 8. Dynamics of radiation dose accumulation in the debut of the Jupiter 

moons mission. 
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Figure 9. Dynamics of radiation dose accumulation in the debut of the Jupiter 

moons mission (zoomed in). 

 

Figure 9 illustrates the dynamics of the absorbed dose accumulation on a larger scale. 

In summary, we conclude that the total dose of radiation absorbed in the course of the 

entire mission in the vicinity of Jupiter can be very high; the high level is caused not so much 

by the total mission duration as by the number and altitude of the lowest periapses of the tour. 

Taking into account the high radiation level in the Jovian system, we conclude that if 

the total dose must not exceed 150-250 krad under the Al protection 10 mm thick, only 

Ganymede and Callisto are available as partners for performing gravity assist maneuvers.    
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Figure 10. The synthesis of typical  scenario of Ganymede Landing mission 

 

13. THE THIRD PHASE (―ENDGAME‖) 

There are various scenarios of a moon orbit insertion and landing on this moon. No 

gravity assist maneuvers with J4 Callisto are possible below its orbit. Simultaneously, gravity 

assist maneuvers with Ganymede become inefficient. The ESA JUICE mission assumes the 

use of high altitude gravity assist maneuvers at this stage; these maneuvers employ fine 

effects in the behavior of solutions of the restricted three body problem in this phase. In fact, 

here we are dealing with maneuvering in the vicinity of the Lagrangian libration points [3,7]. 

Formally, this is reflected in flybys of the partner moon at high altitudes (of an order 10-50 

thousands of km) above its sphere of influence. 

The gravity assist maneuvers of this type can also be found using the visual design 

software; they also can be used to design a low cost near Jupiter endgame. However, in the 

current version developed by the authors of this paper, which takes into account the features 

of the Laplace-P mission of the Russian Space Agency Roskosmos (in distinction from 

JUICE mission, Laplace-P plans to land on a Jupiter moon). In the endgame phase, the 

expenditures of the characteristic velocity are exchanged for the endgame duration. An 

example of a long but low cost endgame is provided by a version of JUICE. However, in 

order to reduce the total duration of the mission and improve the accuracy of guiding to the 

moon landing point, a version including the Ganymede orbit insertion maneuver (with a break 

impulse of about 0.6-0.85 km/s) after a series of gravity assist maneuvers can be used. Then, 

the spacecraft is brought in phase with Ganymede, and a deorbiting break impulse is given. 

The mission goes to the phase of landing on the Jupiter moon. 

 

CONCLUSIONS 

The design of missions to the Jovian system meets a number of difficulties that 

increase when constraints on resources, total absorbed radiation dose, and the tour duration 

are imposed. However, the variety of feasible gravitational interactions in the Jovian system 

on the one hand complicates the mission ballistic analysis and on the other hand makes it 

possible to adapt the scenario design algorithms to the interests of specific space missions. In 

particular, landing on a Jupiter moon is possible under reasonable expenditure resources and 
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time (the near planet tour can last about two years with the total absorbed radiation dose being 

about 250 krad under 10 mm Al protection). On elliptic Jupiter orbits of the spacecraft, the 

major radiation dose in one orbit revolution is absorbed quasi-singularly in the vicinity of 

periapsis. 
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