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Abstract: In this paper, nonlinear observability criteria are presented for the relative orbital
dynamics represented by the solutions of the two-body problem. It is assumed that a chief is on a
circular orbit with a prescribed orbital radius, and it measures line-of-sight toward a deputy. A
differential geometric method, based on the Lie derivatives is used to derive sufficient conditions
for observability of the orbital properties of deputy. It is shown that under certain geometric
conditions on the relative configuration between the chief and the deputy, the nonlinear relative
motion is observable from angles-only measurements. An extended Kalman filter is also developed to
numerically illustrate the observability of nonlinear relative orbits with angles-only measurements.
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1. Introduction

Space-based surveillance or relative navigation is desirable for many spacecraft missions, such as
formation control and rendezvous. Spacecraft maneuvers based only on on-board measurements
reduce the total operating cost significantly, and it improves safety against communication interrup-
tions with ground stations. Relative navigation between spacecraft in close-proximity essentially
corresponds to space-based orbit determination. In particular, vision-based navigation and estima-
tion of relative orbit have received attention recently, since optical sensors have desirable properties
of low cost and minimal maintenance, while providing accurate line-of-sight measurements.

Relative navigation based on angles-only measurements has been investigated in [1, 2, 3]. The
problem is to determine the relative orbit between a chief spacecraft and a deputy spacecraft by using
the line-of-sight between the two objects, assuming that the orbit of the chief is prescribed exactly.
Reference [1] shows that the relative orbit is unobservable from angles-only measurements when
linear relative orbital dynamics are assumed, unless there are thrusting maneuvers. Reference [2]
investigates observability by using a relative orbit model linearized in terms of spherical coordinates.
Reference [3] introduces the concept of partial observability to determine a basis vector representing
a family of relative orbits, and an initial orbit determination technique is developed for this method.

All of these results are based on linear relative orbital dynamics. It is straightforward to see that
the relative orbit is not observable with angles-only measurements through its linearized dynamics,
due the homogeneity property of linear dynamics implying that any solution of linear systems is
directly proportional to its initial conditions. In other words, there are infinite number of relative
orbits that yield the identical line-of-sight measurements, and the orbital distance between a deputy
and a chief cannot be determined by angles-only measurements. As such, it is required to study
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the nonlinear relative orbital dynamics to determine observability with angles-only measurement.
Linear observability analysis is performed numerically for a particular case in [4]. However, there
have been no comprehensive analytic in nonlinear observability of relative orbits.

In this paper, the authors derive observability criteria for the nonlinear relative orbital dynamics
represented by the solutions of the two-body problem without linearization. Assuming that a
chief is on a circular orbit with a prescribed orbital radius, nonlinear equations of motion for the
relative orbital motion of a deputy with respect to the chief are presented. A differential geometric
method, based on the Lie derivatives of the line-of-sight from the chief to the deputy, is applied to
obtain sufficient conditions for observability. It is shown that under certain geometric conditions
on the relative configuration between the chief and the deputy, the nonlinear relative motion is
observable from angles-only measurements. We also develop an extended Kalman filter to illustrate
the observability properties numerically.

The main contribution of this paper is analytically confirming that the relative orbit is observable
via line-of-sight measurements if its nonlinear dynamic characteristics are properly incorporated.
To the authors’ best knowledge, the sufficient conditions for nonlinear observability presented in
this paper have not studied in prior publications.

This paper is organized as follows. The nonlinear dynamics of relative orbit is presented at Section
2, and observability criteria are developed at Section 3. These are followed by numerical examples
of extended Kalman filtering and conclusions.

2. Nonlinear Relative Orbital Dynamics

Consider two satellites orbiting around the Earth, and each satellite is modeled as a rigid body.
Suppose that a chief satellite is on a circular orbit with a pre-determined orbital radius of a ∈ R.

Define a local-vertical, local-horizontal (LVLH) frame as follows. Its origin is located at the chief
satellite. The x-axis is along the radial direction from the Earth to the chief, and the y-axis is
along the velocity vector of the chief. The z-axis is normal to the orbital plane, and it is parallel
to the angular momentum vector of the chief. The LVLH frame is rotating with the angular
velocity of ω = [0,0,n]T ∈ R3, where n =

√
µ

a3 is the mean motion of the chief satellite, and µ

denotes the gravitational parameters of the Earth. Note that the velocity of the chief is given by
vchie f = [0,na,0]T ∈ R3. Let the relative position of a deputy satellite with respect to the chief
satellite be given by r = [x,y,z]T ∈ R3 in the LVLH frame.

2.1. Nonlinear Equations of Motion

Nonlinear equations of motion for the relative motion of the deputy with respect to the chief can be
derived as follows based on Lagrangian mechanics.
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Lagrangian Considering that the LVLH frame is rotating with the angular velocity of ω =
[0,0,n]T , the inertial velocity of the deputy satellite is given by

vdeputy = vchie f + ṙ+ω× r =

 0
na
0

+
ẋ

ẏ
ż

+
−ny

nx
0

=

 ẋ−ny
ẏ+nx+na

ż

 .
Therefore, the (normalized) kinetic energy of the deputy satellite is

T =
1
2
‖vdeputy‖2 =

1
2
{
(ẋ−ny)2 +(ẏ+nx+na)2 + ż2} .

The location of the Earth from the chief is given by [−a,0,0]T in the LVLH frame. Therefore, the
position vector of the deputy from the center of the Earth is given by ra = [x+a,y,z]T ∈ R3. The
gravitational potential energy is

U =− µ√
(x+a)2 + y2 + z2

=− µ

‖ra‖
.

From the above equations, the Lagrangian of the deputy satellite is expressed in terms of (x,y,z) as

L = T −U =
1
2
{
(ẋ−ny)2 +(ẏ+nx+na)2 + ż2}+ µ√

(x+a)2 + y2 + z2
. (1)

Euler-Lagrange Equations Using the Euler-Lagrange equations, given by

d
dt

∂L
∂ q̇
− ∂L

∂q
= 0,

for q ∈ {x,y,z}, we obtain the nonlinear equations of motion for the relative orbit as follows.

ẍ−2nẏ−n2x = n2a− µ(x+a)
((x+a)2 + y2 + z2)3/2 , (2)

ÿ+2nẋ−n2y =− µy
((x+a)2 + y2 + z2)3/2 , (3)

z̈ =− µz
((x+a)2 + y2 + z2)3/2 . (4)

These can be written as the standard form of the state equation,

ẋ = f (x), (5)

where the state vector is x = [x,y,z, ẋ, ẏ, ż]T ∈ RN with N = 6, and

f (x) =

[ ṙ
−2ω× ṙ−ω× (ω× ra)−

µra

‖ra‖3

]
. (6)
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2.2. Line-of-sight Measurement

We assume that the line-of-sight from the chief to the deputy is measured by an onboard sensor,
such as optical sensors. The measurement is represented by the unit-vector of the relative position
vector, i.e.,

y = h(x) =
r
‖r‖

, (7)

where y ∈ RM with M = 3, and it satisfies ‖y‖= 1.

3. Nonlinear Observability Criteria

Based on the nonlinear dynamic model presented at the previous section, here we present analyze
the observability of the relative orbit with line-of-sight measurements.

3.1. Observability Criteria for Nonlinear Systems

Observability of nonlinear systems has been studied in [5], and it is summarized as follows. For a
given nonlinear dynamic system (5) and (7), a pair of points x0 and x1 are called indistinguishable if
the outputs of the corresponding solutions starting from each of x0 and x1 are identical for a certain
time period. The systems is locally weakly observable at x0, if there exists an open neighborhood
V of x0 such that for every open neighborhood U of x0 contained in V , the only indistinguishable
point to x0 is the point x0 itself.

Let the Lie-derivative of the output h(x) along f (x) as follows:

L f h(x) =
∂h(x)

∂x
f (x) ∈ RM×1,

which corresponds to the directional derivative of h(x) along f (x). For a non-negative integer i,
the i-th order Lie-derivative is defined by induction as Li

f h = L f (Li−1
f h) with L0

f h = h. Define an
observability matrix O ∈ RNM×N as

O(x0) =
∂

∂x


L0

f h(x)
L1

f h(x)
...

LN−1
f h(x)


∣∣∣∣
x=x0

.

It has been shown that the system is locally weakly observable at x0 if the rank of the observability
matrix O(x0) = N. When applied to linear dynamics, this yields the well-known observability rank
condition for linear systems. Note that when there are more than a single measurement, i.e., M > 1,
the observability rank condition can be satisfied without need for computing the higher-order Lie
derivatives up to the N−1-th order.
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3.2. Observability Criteria for Relative Orbital Dynamics

Observability Matrix We apply the above observability criteria for the nonlinear relative orbital
dynamics. Using the fact that x = [rT , ṙT ], the observability matrix of the relative orbital dynamics
can be written as

O =


∂y
∂r

∂y
∂ ṙ

∂ ẏ
∂r

∂ ẏ
∂ ṙ

∂ ÿ
∂r

∂ ÿ
∂ ṙ

,

O00 03×3
O10 O11
O20 O21

 . (8)

Here we consider the observability matrix obtained by up to the second order Lie derivatives of the
measurement due to complexity. But, this still provides sufficient conditions for observability.

After straightforward but tedious algebraic manipulations using the following identify repeatedly,

δ

(
1
‖r‖i

)
=−i

rT δr
‖r‖i+2 ,

for any positive integer i, we can show that each of the sub-matrices Oi j of the observability matrix
O is given by

O00 =
∂y
∂r

=
1
‖r‖

(I−yyT ), (9)

O10 =
∂ ẏ
∂r

=
∂

∂r

(
∂y
∂r

ṙ
)
=− 1
‖r‖2

{
ṙyT +yT ṙI +yṙT −3yyT ṙyT} , (10)

O11 =
∂ ẏ
∂ ṙ

=
∂

∂ ṙ

(
∂y
∂r

ṙ
)
=

∂y
∂r

= O00, (11)

O20 =
∂ ÿ
∂r

=−2ṙṙT + ṙT ṙI
‖r‖3 +3

2(rT ṙ)ṙrT +(ṙT ṙ)rrT +(rT ṙ)2I +2(rT ṙ)rṙT

‖r‖5 −15
(rT ṙ)2rrT

‖r‖7

− r̈rT + rT r̈I + rr̈T

‖r‖3 +3
(rT r̈)rrT

‖r‖5 +

(
I
‖r‖
− rrT

‖r‖3

)(
−[ω]2×−

µI3×3

‖ra‖3 +
3µrarT

a

‖ra‖5

)
, (12)

O21 =
∂ ÿ
∂ ṙ

=
∂

∂ ṙ

(
∂

∂r

(
∂y
∂r

ṙ
)

ṙ+
∂y
∂r

r̈
)
= 2

∂

∂r

(
∂y
∂r

ṙ
)
+

∂y
∂r

∂ r̈
∂ ṙ

= 2O10−2O00[ω]×, (13)

where [ω]× ∈ R3×3 is defined as

[ω]× =

0 −n 0
n 0 0
0 0 0

 .
These expressions were fully verified by the Matlab symbolic computation toolbox.

After some algebraic manipulations, we can show that the sub-matrices satisfy the following
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identities.

O10r =−O00ṙ, (14)

O10ṙ =− 1
‖r‖2

{
2ṙ(yT ṙ)+y(ṙT ṙ)−3y(yT ṙ)2} , (15)

O20r =−2O10ṙ+O00

{
−r̈+

∂ r̈
∂r

r
}
, (16)

O21r =−2O00(ṙ+ω× r), (17)
O21ṙ = 2O10ṙ−2O00[ω]×ṙ, (18)

which are useful to derive the observability criteria.

Observability Rank Condition Now we present sufficient conditions that the observability
matrix O has full rank.

Proposition 1. Define three vectors vrel , a1,a2 ∈ R3 as

vrel = ṙ+ω× r, (19)

a1 = r̈− ∂ r̈
∂r

r =−2ω× ṙ− [ω]2×ae1−
µa
‖ra‖3 e1−

3µrT
a r

‖ra‖5 ra, (20)

a2 = r̈− ∂ r̈
∂r

r− ∂ r̈
∂ ṙ

ṙ = a1 +2ω× ṙ =−[ω]2×ae1−
µa
‖ra‖3 e1−

3µrT
a r

‖ra‖5 ra. (21)

The nonlinear relative orbital dynamics is locally weakly observable at x = [rT , ṙT ] if

(i) when r× ṙ = 0, r×vre f 6= 0, r×a1 6= 0, and rT (vre f ×a1) 6= 0, (22)

(ii) when r× ṙ 6= 0, r×vre f 6= 0, r×a2 6= 0 and rT (vre f ×a2) 6= 0. (23)

Proof. We show that if the above conditions are satisfied, then the six columns of the observability
matrix are linearly independent. Suppose that for a constant vector c = [cT

1 ,c
T
2 ] ∈ R6, where

c1,c2 ∈ R3, we have Oc = 0, i.e.,

Oc =

O00 03×3
O10 O11
O20 O21

[c1
c2

]
=

 O00c1
O10c1 +O11c2
O20c1 +O21c2

=

03×1
03×1
03×1

 . (24)

We wish to show that there is no non-zero vector c satisfying (24). At the first three rows of (24),
we have

O00c1 =
1
‖r‖

(I−yyT )c1 = 0.

The matrix O00 has one-dimensional null space spanned by y. Therefore, without loss of generality,
we can choose c1 = 0 or c1 = r. Suppose c1 = r for the subsequent development.
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For the chosen value of c1 = r, we find the next three rows of (24) as

O10c1 +O11c2 = O10r+O11c2 = O00(−ṙ+ c2)

=
1
‖r‖

(I−yyT )(−ṙ+ c2) = 0, (25)

where we have used (11) and (14). Next, we consider two cases of (25), namely (i) when r× ṙ = 0,
and (ii) when r× ṙ 6= 0.

Case (i): r× ṙ = 0 In this case, ṙ can be written as ṙ = αr for some constant α as r is parallel to
ṙ. Then, (25) reduces to

1
‖r‖

(I−yyT )c2 = 0,

which implies that c2 = cr for an arbitrary constant c. For the given choice of c = [rT ,crT ]T , the
last three rows of (24) are given by

O20c1 +O21c2 = O20r+ cO21r.

Using (16) and (17), this can be rewritten as

O20c1 +O21c2 =−2O10ṙ+O00

{
−r̈+

∂ r̈
∂r

r
}
−2cO00(ṙ+ω× r).

But, from (15), we can show that 2O10ṙ = 0 when r is parallel to ṙ. Using (19) and (20), this further
reduces to

O20c1 +O21c2 =−O00(a1 +2cvrel)

=− 1
‖r‖

(I−yyT )(a1 +2cvrel) = 0. (26)

The matrix (I−yyT ) represents the orthogonal projection of a vector into the plane normal to y.
From the second condition of (22), namely r× a1 6= 0, we have (I− yyT )a1 6= 0, which implies
that the constant c cannot be simply chose as c = 0. Therefore, the only possible case to satisfy
the above equation is when a1 +2cvrel is parallel to r for some values of c. However, that is not
feasible since the third condition of (22), namely rT (vre f ×a1) 6= 0, implies that the three vectors r,
a1, and vrel do not belong to a common plane, i.e., there is no constant c such that a1 +2cvrel is
parallel to r.

Therefore, there is no c ∈ R6 satisfying (24) if c1 = r, under the given condition (22). This implies
that c1 = 0. Substituting this back to (24), we have O11c2 = O00c2 = 0, which follows that c2 = cr
for some constant c. However, when c2 = cr, the last three rows of (24) are given by

O21c2 = 2c(O10−O00[ω]×)r (27)
=−2cO00vrel = 0, (28)

7



where (14) is used. But, from the first condition of (22), we have O00vrel 6= 0, and therefore c = 0,
i.e., c2 = cr = 0.

In short, under the given condition (22), the equation (24) implies that c = 0. Therefore, the six
columns of the observability matrix O are linearly independent.

Case (ii): r× ṙ 6= 0 Next, we consider the second case of (25). It implies that−ṙ+c2 is parallel to
r, or equivalently, c2 = ṙ+ cr for an arbitrary constant c. For the given choice of c = [rT , ṙ+ crT ]T ,
the last three rows of (24) are given by

O20c1 +O21c2 = (O20r+O21ṙ)+ cO21r.

From (16), (17), (18), this can be rewritten as

O20c1 +O21c2 =−O00(a2 +2cvre f )

=− 1
‖r‖

(I−yyT )(a2 +2cvre f ) = 0.

By following the same argument given after (26), under (23), there is no c satisfying the above
equation.

This implies that c1 = 0. Then, by the same argument given at (28), we have c2 = 0. In short, under
the given condition (23), the equation (24) implies that c = 0. Therefore, the six columns of the
observability matrix O are linearly independent.

Remarks We consider the cases where the given sufficient conditions (22) and (23) are violated.
For both cases, we have r×vrel 6= 0. At (19), vrel corresponds to the relative velocity observed in
the inertial frame. Therefore, the given sufficient conditions for observability is violated when the
relative velocity vector is parallel to the relative position vector in the inertial frame.

The second condition of each of (22) and (23) is satisfied in general, as the expressions for a1 and
a2 are relatively arbitrary at (20) and (21).

The third condition of (22) implies that three vectors r, vrel and a1 do not belong to the same plane.
The third condition of (23) has similar structure as well. This condition can be easily violated if the
relative motion is planar, i.e., when z(t)≡ 0 for all t.

However, (22) and (23) are sufficient conditions for observability, and the fact that any of these
condition is not satisfied does not necessarily mean that the considered point is not observable. In
such case, the third or higher order Lie derivatives should be checked to determine observability.
The main contribution of this paper is showing that under certain geometric conditions, the nonlinear
relative orbital dynamics are indeed observable via angles-only measurements.
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Figure 1. Orbital trajectories when ideputy = 30◦

4. Numerical Examples

We illustrate the observability of nonlinear relative orbit by several numerical examples. A chief is
assumed to be on a circular equatorial orbit with an orbital altitude of 500km. The orbit of a deputy
is specified by orbital elements as follows. The eccentricity of the deputy is fixed at edeputy = 0.2,
and the semi-major axis of the deputy is chosen such that its orbital period is identical to the chief,
i.e., adeputy = (

Tchie f
√

µ

2π
)2/3. Both of longitude of the ascending node and argument of periapsis

are chosen to be zero. The inclination of the deputy is varied as ideputy = 0◦,10◦, . . .50◦. The
corresponding orbital trajectories for the case of ideputy = 30◦ is illustrated at Fig. 1.

4.1. Observability Test

For the varying inclinations of the deputy, the minimum singular values and the condition numbers
of the observability matrix are summarized as follows.

Table 1. Singular values and conditions number of observability matrix

ideputy min{σ(O)} cond{O}

0◦ 10−19.3041 1015.9893

10◦ 10−10.3766 107.0369

20◦ 10−10.2584 106.8603

30◦ 10−10.2290 106.7634

40◦ 10−10.2176 106.6873

50◦ 10−10.2155 106.6273

When ideputy = 0◦, the relative motion becomes planar. As discussed in the previous section, in this
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case, the sufficient conditions for observability are violated. Therefore, the minimum singular value
of the observability matrix O is close to zero. As ideputy is increased, out-of-plane orbital motions
are more excited, and as a result, the condition number of O is increased. This implies that the
relative motion is easier to estimate when the ideputy becomes large.

4.2. Extended Kalman Filter

To illustrate observability of nonlinear relative orbital dynamics, we develop an extended Kalman
filter. The estimate of the initial state is chosen as two times of the true state, i.e., x̂0 = 2x0.
This implies that there is a large initial error in the magnitude of the state, which is difficult to
estimate accurately using angles-only measurements. The initial covariance of the state is chosen as
P0 = diag[502I3×3,(50n)2I3×3]. The covariance matrices for the process noise and the measurement
noise are Qk = diag[10−8I3×3,10−10I3×3], and Rk = 1.3062I3×3 deg2. It is assumed that the line-of-
sight is measured at every ∆t = 0.47 seconds. It is simulated for ten orbits of the chief around the
Earth.

To compare the convergence property of each case, the following measures for estimation errors are
introduced.

edir =

√√√√ 1
N

N∑
k=0

(
cos−1

(
x(tk)T x̂(tk)
‖x(tk)‖‖x̂(tk)‖

))2

,

emag =

√√√√ 1
N

N∑
k=0

(
‖x(tk)‖−‖x̂(tk)‖
‖x(tk)‖

)2

,

emag,r =

√√√√ 1
N

N∑
k=0

(
‖r(tk)‖−‖r̂(tk)‖
‖r(tk)‖

)2

,

emag,v =

√√√√ 1
N

N∑
k=0

(
‖v(tk)‖−‖v̂(tk)‖

‖v(tk)

)2

,

where N is the total number of time steps. The error variable edir represents the mean squared
value of the angle between the true state and the estimated state, and the variables emag,emag,r,emag,v
correspond to the normalized magnitude error for the state vector, position vector, and velocity
vector, respectively.

These are summarized at Table 2. For all cases, the direction errors are fairly small, as the line-of-
sight is directly measured. Overall, the magnitude error decreases as the inclination of the deputy
increases. This is consistent with the condition number of the observability matrix summarized at
Table 1.

Estimation results are also illustrated at Figures 2–7. At Figure 7, the magnitude of the estimated
state becomes quite close to the true value after four orbits. This confirms the observability of
nonlinear relative orbital dynamics with angles-only measurements.
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Table 2. Estimation Errors

ideputy edir (rad) emag (unitless) emag,r (unitless) emag,v (unitless)

0 0.0211 0.3361 0.3361 0.3428
10 0.0172 0.2204 0.2204 0.2385
20 0.0187 0.1681 0.1681 0.1976
30 0.0248 0.1596 0.1596 0.1922
40 0.0421 0.1703 0.1703 0.1995
50 0.0599 0.1841 0.1841 0.2092

5. Conclusions

It is well known that the linearized relative orbital dynamics are not observable with angles-only
measurements. This paper shows that the nonlinear relative orbital dynamics are observable under
certain geometric conditions. Sufficient conditions for observability are derived based on the Lie
derivatives of the measurements, and they are illustrated numerically by an extended Kalman filter.
Future directions include formulating measure of nonlinear observability, and investigating less
conservative observability criteria by using higher-order Lie derivatives.
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Figure 3. Extended Kalman Filter ideputy = 10◦
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Figure 4. Extended Kalman Filter ideputy = 20◦
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Figure 5. Extended Kalman Filter ideputy = 30◦
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Figure 6. Extended Kalman Filter ideputy = 40◦
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Figure 7. Extended Kalman Filter ideputy = 50◦
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