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Abstract: Knowledge of spacecraft orbit uncertainty is becoming increasing important for 

spacecraft operations and Space Situational Awareness. For cases where uncertainty is large, 

such as early orbit operations or anomaly situations, the manner in which orbit uncertainty is 

used and interpreted can be the difference between making correct or errant assessments of the 

effect of orbit uncertainty on spacecraft operations. The influence of coordinate selection on the 

proper utilization of orbit error covariance is examined and compared with the application of 

the unscented transform as a means to overcome issues of non-linearity. The use of preferential 

coordinates is seen to be of primary importance in the characterization of uncertainty while 

unscented transformations are seen to be effective at increasing the size of the uncertainty but 

are not able to overcome coordinate deficiencies to yield properly shaped uncertainty volumes. 
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1. Introduction 

 

Knowledge of the uncertainty in the trajectories of spacecraft is becoming increasingly important 

for use in spacecraft operations and Space Situational Awareness (SSA). Applications include 

verification of orbit accuracy requirements, automated tracking data validation, determination of 

statistical consistency between orbit trajectories, association of observations with specific 

spacecraft and conjunction assessment. Historical practices involving the exchange of orbit 

trajectory information often included only the nominal orbit solution with no information about 

the accuracy of the solution. The exchange of two line element sets is one very common example 

of this type of trajectory exchange. Modern standards for the exchange of orbit trajectory 

information reflect the increasing importance of accuracy knowledge and facilitate the inclusion 

of trajectory uncertainty information in the form of orbit error covariance [1].   

 

Actual error distributions associated with orbit estimates are described by an unknown 

probability density function. It is common practice, however, to assume that orbit errors have a 

zero mean and are Gaussian distributed. Under these assumptions, the set of all possible 

trajectories may be represented by a nominal orbit and an associated orbit error covariance 

matrix. When orbit errors are small as is typical for operational satellites under cooperative 

tracking, it is generally accepted that the assumption of a Gaussian error distribution is 

reasonable. Under conditions of larger orbit uncertainty, non-linear effects become important and 

the assumption that the errors are Gaussian distributed must be tested. While not typical in 

operations, such instances of large uncertainty can exist during early orbit operations and during 

anomaly situations. On the other hand, large orbit uncertainty is not at all uncommon in space 

surveillance where tracking data on small objects can be sparse and the need to generate an orbit 

from a small number of observations is common.  
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The goals of the following analyses are to demonstrate the effect of using different coordinates to 

represent uncertainty and to compare the covariance representations in those coordinates when 

computed via linear and non-linear transformations. Distributions will be represented as a mean 

and associated error covariance without the benefit of higher order moments. We assume that the 

estimate of the mean and the associated error covariance are produced by an orbit determination 

process. We further assume that the nominal trajectory and the associated error covariance have 

been provided via data exchange. The availability of a mean orbit trajectory and associated error 

covariance is consistent with the information content available from commonly used orbit 

estimation methods such as Batch Weighted Least Squares (BWLS) and the Extended Kalman 

Filter (EKF) [2].  More recently developed estimation strategies such the Unscented Kalman 

Filter (UKF) [3] and its variants which have grown in popularity are also based on knowledge of 

a mean orbit and associated error covariance. Other orbit determination strategies which are 

designed to handle cases where the orbit error distribution cannot be adequately modeled as 

being Gaussian, such as the use of the summed Gaussian distributions [4], are not considered 

since the additional information required to represent the orbit error uncertainty is not available 

in current trajectory exchange formats.     

 

The nominal trajectory and associated error covariance are typically provided in a single set of 

coordinates. Conversion of the trajectory to additional sets of coordinates is achieved through 

non-linear transformations. We assume that these non-linear transformations are exact and 

invertible such that the trajectory representation is equivalent in all coordinates. Conversion of 

covariance information between different sets of coordinates can be achieved in a linear 

transformation using the Jacobian [5] between the two sets of coordinates or through a non-linear 

technique such as the unscented transform [3]. Coordinate independence, such as that of the 

trajectory representation, does not generally exist for the covariance. The extent to which the 

covariance accurately represents the actual orbit error probability density function will strongly 

influence the validity of subsequent computations which require that covariance as an input. 

When orbit uncertainties are small as in normal operations, any set of coordinates can typically 

be used with equal validity and the problem is considered to be linear. As the orbit uncertainty 

increases, judicious coordinate selection can sometimes greatly expand the valid domain for the 

assumption of a Gaussian error distribution. For example, the comparison of trajectory 

differences to the orbit error covariance using orbital elements produces much more satisfactory 

results compared to performing the comparisons in Cartesian coordinates [6-8].  

 

Given that preferential coordinates exist for the representation of orbit uncertainty, we would 

always choose to work in these coordinates if possible. Unfortunately, particular computations 

which use orbit uncertainty information may require that the orbit uncertainty be expressed in 

coordinates which are natural for those applications. For example, the use of covariance 

information to provide probability based gating for observation acceptance during sequential 

orbit determination typically requires the orbit error covariance to be transformed into 

measurement space to enable the required accept/reject decision. The likelihood of making the 

correct accept/decision will depend on how well the covariance transformed to measurement 

space represents the actual orbit error distribution.  
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In this study, we examine coordinate effects on two common operational uses of orbit 

uncertainty information: trajectory comparisons and tracking data validation. Our analyses will 

include numerical and visual results which will promote intuitive understanding of the effects of 

coordinate selection on the studied problem set. In cases where the natural coordinate selection 

leads to poor representation of the orbit uncertainty, we will explore alternate formulations in an 

attempt to minimize the effects of non-linearity.  While other studies have provided means for 

numerical evaluation of covariance realism [9-12], the analyses presented here are primarily 

qualitative in nature with the intent of identifying recommended practices as opposed to 

providing specific metrics by which uncertainty realism can be measured. 

 

2. Analyses 

 

Under the assumption that the probability density function associated with an orbit error 

distribution is Gaussian, all possibilities for the true trajectory are represented by an orbit 

estimate and its associated orbit error covariance. As mentioned above and as we will 

demonstrate below, the validity of the Gaussian assumption is greatly dependent upon the 

coordinates in which the errors are represented. Since a user of orbit uncertainty information will 

typically have little influence on how that information is derived or delivered, the goal must be to 

utilize best practices in how the data is used. 

 

Different sets of coordinates are related via non-linear transformations. In the following analyses, 

transformations of covariance information will be performed linearly and through the Unscented 

Transform (UT). Let X represent the orbit state as expressed in Cartesian coordinates and alpha 

represent the orbit state as expressed in another set of coordinates (such as orbital elements). The 

non-linear transformations between the two sets of coordinates are given as 

 

 ( )αGX =  (1) 

and 

 ( )XU=α . (2) 

Small deviations from the nominal trajectory are linearly mapped between the different sets of 

coordinates using the Jacobian matrices 

 α
α
∆

∂
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and 
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α
α + H.O.T., (4) 

 

where H.O.T. represents higher order terms. The linear transformation of the covariance is 

achieved through the use of the same Jacobian matrices, 
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The linear transformations have the desirable properties of being independent of the sequence of 

coordinates used during the transformation process and being invertible, outside of coordinate 

induced singularities.  

 

Using the unscented transform, one converts a set of judiciously selected samples from the 

original error distribution to the new coordinates using the non-linear coordinate transformation 

and computes the mean and covariance in the new coordinates from the weighted samples [3]. 

As there are multiple ways to select the weights and associated sample (sigma) points, the reader 

is referred to Julier [3, 13-15] for details on particular point selection algorithms.  Let kX  

represent a set of M Cartesian sigma points (typically 2N+1 points where N is the dimension of 

the estimation state) and kW  represent the weights associated with those points. Then the 

unscented transformation form Cartesian to other coordinates alpha is represented as 

 ( )k
k

k XUW∑=α , (7) 

 ( )( ) ( )( )[ ]T

kk

k

k XUXUWP ααα −−=∑ . (8) 

The inverse transformation, from another set of coordinates to Cartesian coordinate is described 

as  

 ( )k
k

k GWX α∑= , (9) 

 ( )( ) ( )( )[ ]T

kk

k

kX XGXGWP −−=∑ αα . (10) 

 

We start our examination by looking at trajectory comparisons and leverage those results in the 

determination of measurement validity. In each case, multiple levels of orbit uncertainty will be 

examined to allow the reader to evaluate results in a context appropriate to his/her needs. We 

will show that selection of proper coordinates is of primary importance when orbit errors become 

large. 
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2.1. Orbit Uncertainty 

 

Orbit uncertainty information is commonly used in trajectory comparisons to determine if 

operational orbit accuracy requirements are satisfied and to evaluate consistency between 

multiple orbit solutions. It has been well documented that the specifying the uncertainty of an 

orbit in Cartesian coordinates does not provide a satisfactory representation as the uncertainty in 

the orbit grows [6-8]. It has also been shown that orbit uncertainty specified in Cartesian 

coordinates can be linearly transformed to orbital elements to provide a much more satisfactory 

result. The advantage gained in orbital elements is primarily due to ability to capture the 

dominant part of the uncertainty growth without approximation [5]. Based on improved 

estimation performance and an improved representation of the orbit error uncertainty, one can 

make a strong case for the use of orbit elements to express orbit trajectories and uncertainty.  

 

Most orbit accuracy requirements and downstream analyses, however, are not simply expressed 

in terms of orbital elements and therefore do not allow for direct use of orbit uncertainty 

expressed in this manner. Of particular interest is the ability to express orbit position uncertainty 

in terms of distances. We therefore desire to choose coordinates which are able to represent the 

uncertainty in position and velocity separately and which have a connection to the dynamics of 

the orbit trajectory. Curvilinear coordinates have also been developed for improved uncertainty 

modeling and have the desirable feature, as compared with orbit elements, that position and 

velocity uncertainty are readily examined independently. Hill defined a set of curvilinear 

coordinates based on normal/tangential/cross-track reference frame (referred to as cNTW 

coordinates) where the cN and cT coordinates follow the contour of the osculating orbit ellipse 

as you move away from the location of the spacecraft [7]. It was further approximated that 

covariance information mapped to NTW coordinates could simply be reinterpreted as being 

relative to cNTW coordinates. This mapping/interpretation of the covariance was seen to provide 

a much better representation of the actual orbit error distribution than Cartesian coordinates. 

Figure 1 is a reproduction of Fig. 2 from Hill and shows how the cNTW coordinate directions are 

defined relative to the instantaneous osculating ellipse associated with the nominal orbit 

trajectory [7]. 

 

 
Figure 1.  Hill Figure 2: cNTW Coordinates 
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Table 1 provides the orbital elements for a Low Earth Orbit (LEO) test case. The approximate 

initial uncertainties were extracted from a full orbit error covariance generated by processing 

simulated tracking data over a period prior to the start of the test. Tests at different levels of orbit 

uncertainty, as shown in Table 2, are facilitated by propagating the orbit and the full orbit error 

covariance into the future until the desired levels of tangential uncertainty were achieved. The 

values given for uncertainty in the normal and cross-track directions represent approximate 

averages of the oscillating values over one revolution at the prediction time for each test case. 

 

Table 1.  Approximate Orbital Elements for LEO Test Case 

Semi-major axis 7000 Km 

Eccentricity 0.005 

Inclination 98.7 Deg 

Right Ascension of Ascending Node 0.0 Deg 

Argument of Perigee 90.0 Deg 

Mean Anomaly 30.0 Deg 

 

 

 

Table 2.  Approximate 1 Sigma Position Uncertainties  

Axis Init. Cond. Case I Case II Case III Case IV 

Normal 0.004 Km 0.010 Km 0.023 Km 0.043 Km 0.064 Km 

Tangential 0.056 Km 1 Km 10 Km 100 Km 300 Km 

Cross-track 0.003 Km 0.003 Km 0.004 Km 0.020 Km 0.044 Km 

Prop Time 0 1 day 5.5 days 27 days 58.5 days 

 

 

The main driver in the growth of the orbit uncertainty during prediction was the uncertainty in 

the ballistic coefficient (nominal value of 0.044 with a 50% short term uncertainty). The orbit 

position uncertainty expressed in normal, along-track and cross-track components during the fit 

span are shown in Fig. 2, while Figs. 3-5 show the orbit uncertainty during the prediction period. 

During the prediction period, the tangential uncertainty grows in a secular fashion while 

uncertainty in the normal and cross-track directions grow more slowly with a strong oscillatory 

component. Due to how the end of the fit interval was places, approximately 3 hours of 

prediction occurs between the end of the tracking data and the end of the fit interval where the 

initial condition values are measured for the prediction. The fact that the initial covariance was 

generated by processing simulated measurements in an orbit determination program is extremely 

important when the growth rate of the uncertainty is considered. A much larger, but not realistic 

in an operational scenario, growth rate is achieved when starting with an ad-hoc covariance 

which does not contain proper correlations to manage the energy uncertainty of the orbit 

estimate. A small Monte-Carlo sample set of 250 draws was constructed based on the 7x7 

covariance (position, velocity and ballistic coefficient) at the end of the fit span. See Fig. 6 for a 

depiction of the initial sampling in relation to the 95% probability (2.795 sigma) position error 

covariance generated using Systems Tool Kit
®
 [16] by AGI. 
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Figure 2.  1 Sigma Orbit Position Uncertainty During Fit Span 

 

 

 
Figure 3.  1 Sigma Tangential Position Uncertainty Prediction 
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Figure 4.  1 Sigma Normal Position Uncertainty Prediction 

 

 

 
Figure 5.  1 Sigma Cross-track Position Uncertainty Prediction 
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Figure 6.  95% Monte-Carlo Initial Draws with 95% Probability Orbit Position Covariance 

Ellipsoid 

 

The initial covariance was generated and propagated forward in time using the EKF in the Orbit 

Determination Tool Kit
® 
(ODTK), a commercial off the shelf orbit determination capability 

produced by AGI [17]. Starting with the ODTK output of orbit error covariance in Cartesian 

coordinates, we linearly transform the covariance from test cases I-IV to cNTW coordinates and 

visually inspect the level of agreement with the Monte-Carlo samples. After verifying that the 

representation in the linearly derived cNTW coordinates properly captures the Monte-Carlo 

samples, we use the covariance in cNTW coordinates as the input to the unscented transform to 

compute a new mean and covariance in Cartesian coordinates.  We are then able to visually 

compare the three covariance representations (linear Cartesian, curvilinear, UT Cartesian) to the 

Monte-Carlo sample distribution. 

 

The simultaneous graphical depiction of the various position covariance representations allows 

us to draw attention to the difference between coordinates which have preferred properties in 

terms of the representation of orbit error uncertainty and the use of higher order techniques, such 

as the unscented transform. Figures 7-10 show the results for Cases I-IV. The cyan colored 

ellipsoids are the orbit error covariance represented in cNTW coordinates, the yellow ellipsoids 

are the orbit error covariance in Cartesian coordinates and the green ellipsoids are the orbit error 

covariance mapped from cNTW coordinates into Cartesian coordinates using the unscented 

transform. In Fig. 7, which illustrates 1 Km (1 sigma) of tangential uncertainty, the difference 

between the covariance ellipsoids is essentially indiscernible.  At a tangential uncertainty of 10 

Km (1 sigma) as shown in Fig. 8, the position covariance ellipsoids are extremely similar with 

the unscented transform having the effect of expanding the uncertainty in the normal direction by 

a small amount. 
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Figure 7.  Case I: Orbit Position Uncertainty 

 

 

 
Figure 8.  Case II: Orbit Position Uncertainty 

 

Figures 9-10 clearly demonstrate the preferential nature of the cNTW coordinates for the 

expression of orbit uncertainty for cases with large uncertainty. We note that the use of the 

unscented transform does not provide improvement in our ability to model the bending of actual 

error distribution. Instead the covariance is simply enlarged in the normal direction which allows 
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for more of the Monte-Carlo sample points to fall within the position error covariance ellipsoid. 

At this scale of error, the selection of coordinates in which the error is represented is much more 

important than the incorporation of higher order terms provided by the unscented transform. It is 

also worthy of mention that the mean of the distribution after the unscented transform is moved 

to a location off of the nominal orbit trajectory to a location of almost negligible likelihood based 

on the distribution in cNTW coordinates, see Figure 11.  

 

 
Figure 9.  Case III: Orbit Position Uncertainty 

 

 

 
Figure 10.  Case I: Orbit Position Uncertainty 
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Figure 11.  Case IV: Offset of Mean from Unscented Transform 

 

Techniques for matching probability density functions such as Gaussian mixtures are sometimes 

used to provide a better model of the shape of the actual error distribution [18-19]. In this 

technique, a sum of weighted Gaussian probability density functions would be used in an attempt 

to model a non-Gaussian error distribution in Cartesian coordinates. While this methodology is 

certainty adaptable to the problem at hand due to the fact that any number of Gaussian 

components can be used, it is often the case for realistic orbit estimation scenarios that the 

additional complexity of the Gaussian sum can be avoided through the use of preferred 

coordinates. 

 

2.2. Measurements 

 

The ability to use orbit error uncertainty to determine the validity of measurements is important 

for automated data editing during orbit estimation and for the proper association of non-

transponder based measurements, such as optical right ascension and declination or RADAR 

observations, when dealing with closely spaced spacecraft.  When orbit uncertainty is small, the 

orbit covariance can be mapped directly to the space defined by the native measurements without 

significantly affecting the shape of the error distribution. When orbit errors become large, 

however, we are interested to determine if a conversion of measurements to different coordinates 

might provide improved outcomes in determining measurement validity. 

 

To illustrate the effects of growing orbit uncertainty on the validity of covariance in 

measurement space, we leverage the test cases provided in Table 1. The orbit uncertainty is 

mapped into measurement space for an observation vector consisting of ground based azimuth, 
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elevation and range (AER). Similar to our analysis of orbit uncertainty above, the mapping of the 

covariance will be performed both linearly and through the unscented transform. The linear 

mapping will use the linearly generated result of the EKF in Cartesian coordinates as the input 

while the unscented transform will start with the covariance that has been linearly mapped to 

cNTW coordinates. We note that the linear mapping will produce the same final result in AER 

coordinates, regardless of the selection of intermediary coordinates. The result of the unscented 

transform, however, will be dependent upon the selection of intermediary coordinates. We 

choose to start the unscented transform in cNTW coordinates to ensure that the starting point of 

the transformation provides an accurate representation of the uncertainty. The AER measurement 

space has been selected since it is representative of common cooperative and space surveillance 

tracking while provides a measurement set that can be readily transformed to other coordinates. 

 

For the purpose of this analysis, ground station locations were selected to yield an elevation 

angle in the vicinity of 40 degrees for each test case. The reader is reminded that the conditions 

for each case were selected from an orbit prediction based on when particular levels of tangential 

uncertainty were achieved. After the covariance was transformed to AER coordinates, it was 

then visualized in position space in STK for qualitative comparison to the orbit uncertainty in 

cNTW coordinates. Results for all test cases are shown in Figs. 12-15 where the cyan colored 

ellipsoids are the orbit error covariance represented in cNTW coordinates, the yellow ellipsoids 

are the orbit error covariance mapped linearly into AER coordinates and the green ellipsoids are 

the orbit error covariance mapped from cNTW coordinates into AER coordinates using the 

unscented transform. In Fig. 12, we see that at a one sigma uncertainty of approximately one 

kilometer, all of the error representations appear to be effectively equivalent.  

 

 
Figure 12.  Case I: Orbit Uncertainty Mapped to AER Coordinates 
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Figure 13.  Case II: Orbit Uncertainty Mapped to AER Coordinates 

 

 

 
Figure 14.  Case III: Orbit Uncertainty Mapped to AER Coordinates 

 

Figure 13 shows that, at 10 kilometers of tangential uncertainty, the error volumes generated in 

AER coordinates are beginning to bend away from the cNTW representation which we trust to 

be accurate. By the time the tangential uncertainty reaches 100 kilometers, see Fig. 14, the bend 
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in the AER coordinate representation of the orbit uncertainty is very apparent and could easily 

lead to lead to incorrect evaluations of the validity of observation sets. Finally, Fig. 15 shows the 

severe distortion that occurs at a tangential uncertainty of 300 kilometers. In the cases with larger 

tangential uncertainty, the unscented transform results in a covariance which encompasses a 

larger percentage of the cNTW uncertainty volume which indicates a small chance of flagging 

good measurements as invalid. On the other hand, the UT generated covariance also 

encompasses a great deal of space where measurement rejection would be appropriate thus 

leading to an increased chance of accepting poor measurements. It is important to note that the 

level of distortion seen in these graphics is directly related to the ratio of the range between the 

ground station and the satellite. Similar levels of uncertainty would produce smaller amounts of 

bending in the AER coordinate representation of the uncertainty for satellites at higher altitudes. 

 

 
Figure 15.  Case I: Orbit Uncertainty Mapped to AER Coordinates 

 

 

The good news, in the case of AER measurements, is that this problem can be avoided to a large 

degree by performing a non-linear transformation of the AER measurement set into a Cartesian 

position. The resulting Cartesian position can then be evaluated against the orbit error covariance 

in cNTW coordinates, similar to how the Monte-Carlo samples were compared, to take 

advantage of the linear properties of these coordinates. 

 

3. Conclusions 

 

Coordinate selection is of primary importance in the representation of large orbit uncertainty. 

Coordinates which naturally conform to the shape of the trajectory such as the cNTW 

coordinates and orbital elements may be used in a very simple manner to provide covariance 

representations which adequately model the orbit error distribution to levels of at least several 
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hundred kilometers in LEO. The unscented transform has the effect of expanding the covariance 

to better encompass the range of samples generated from the Monte-Carlo analysis, but does not 

facilitate bending of the covariance in Cartesian or AER coordinates to provide improved 

conformity to the shape of the error distribution. Large orbit uncertainty can exhibit significant 

non-linear effects when mapped into measurement space. In some cases, it may be possible to 

perform a non-linear transformation on the measurements so that evaluations of measurement 

validity can be performed in preferred coordinates. 
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