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Abstract: The protection of active satellites from impactsdpace debris objects is a two-stage process which
requires, as first step, the identification and essment of conjunction events and, as secondtbmgesign and
execution of avoidance manoeuvres. In order tosagssA’s Space Debris Office (SDO) with these tdSlkeznor
Deimos has developed CORAM, a custom-made CollRisk Assessment and Avoidance Manoeuvre computatio
tool fully integrated within the SDO’s operatiorahvironment. CORAM implements the latest develofsnierthe
algorithms for computation of collision risk as Wa$ an avoidance manoeuvre algorithm for the desifjthe best
suited avoidance strategy. This paper describes AR architecture, algorithms and capabilities thatll help
ESA’s space debris analysts in the collision avoaa problem. It presents also some examples oisiooll
avoidance scenarios.
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1. Introduction

The CORAM SW package has been developed to supatatflite operators in the evaluation of
conjunction events regarding the computation ofisioh risk and the analysis of suitable
avoidance manoeuvres. CORAM is integrated in E®A4srational environment, and has been
designed and developed to be complementary topglaetonal Collision Risk ASSessment tool,
CRASS [1], which is the first stage in the conjuoictanalysis at ESA’s SDO. CRASS screens
the Two-Line Elements (TLE) received from the US&MKEOM, propagating the objects’
orbits along the analysis time interval and chegkih close encounters occur with the
operational satellite under study. In addition Is tgeneral screening, SDO receives specific
conjunction summary messages (CSM) from the JSpD@ ¢ operated spacecraft (obviously in
this case the screening process is not needed) SSRplements the risk algorithm developed
by Alfried and Akella [2].

CORAM complements CRASS’ functionalities, sincease hand, it implements additional risk
computation algorithms for a refined assessmenthef collision risk. On the other hand,
CORAM can analyse different manoeuvre avoidancgegres in order to help in the selection
of the most suitable strategy. These two main faonetities are implemented in two different
SW modules:

« CORCOS (COllision Risk COmputation Software) is aed to the computation of
collision risk between two objects: a piece of delwith an operative satellite, an
operative satellite with another satellite, or elsmtween two pieces of debris (this last
case will not allow any avoidance strategy to beéenmtaken). CORCOS can analyse
orbits with high relative velocity (where some asgtions in the risk function allow fast
computation algorithms), but also for low relativelocities (which require more
complex algorithms). Depending on the input sef#in@ORCOS can analyse an
identified conjunction event, or can be configutedsearch for all close encounters of a



target-chaser pair in a given time interval andlys®athe collision probability of each
encounter afterwards.

« CAMOS (Collision Avoidance Manoeuvre Optimisatiomf@vare) is devoted to the
evaluation of different mitigation strategies thgbuthe optimisation of avoidance
manoeuvre parameters. The optimisation problembeadefined in a very flexible way,
e.g., the risk function can be minimized for a gi{@x) manoeuvre size, or the minimum
delta-V can be computed such that a defined rig#d lis achieved.

In the following sections both tools will be desad in terms of architecture, algorithms, and
capabilities. After that, some interesting exammésbe presented.

2. Software Architecture

The CORAM SW suite is made of two main modules, @O and CAMOS. Both tools are
expected to be used in the risk mitigation of acoenter event. A typical operational sequence
is (see Fig. 1):

* CRASS detects an encounter between the operatelitsand a piece of debris, or a
conjunction summary message (CSM) is received tfteSpOC.

» CORCOS is used to refine the risk value compute@RASS.

» If the collision probability is too high, CAMOS executed to analyse different avoidance
strategies.

* The mission analyst selects one case in the amhhtsategies to be further studied for
implementation. CAMOS is run for a second time, nfow this selected case only,
producing manoeuvre information used by CORCOS.

» The new conditions of the conjunction event/s, @ering the designed manoeuvre/s are
analysed with CORCOS.

Output files from
CORCOS/ Input
files for CAMOS

Output files from
CAMOS/ Input files
for CORCOS

Figure 1. Operational relationship between CORCO%nd CAMOS

The second CORCOS execution is required not onlgale CORCOS provides more
information of the encounter/s, but also becauseesisk computation algorithms not available
in CAMOS (e.g., Monte Carlo) can be used to asgeseffect of the manoeuvre/s.

In addition to the operational relationship, thexen important dependence between CORCOS
and CAMOS, in the sense that CAMOS re-uses sevVenationalities from CORCOS (orbit



initialisation and propagation, probability compiga function, etc), as will be explained
hereafter.

2.1. CORCOS Architecture

The CORCOS execution flow is shown in Fig. 2, whatlows the main functions, called in a
sequential way to perform the risk computationhwtite following steps:
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Figure 2. CORCOS general structure chart

The CORCOS execution flow is shown in Fig. 2, whstlows the main functions, called in a
sequential way to perform the risk computationhwtite following steps:

» At process start the input files will be read ahditt data checked for consistency to
enable a successful software execution.

* Next, the Orbits Initialisation Function will beviaked, for preparation of the input data
in a consistent form for ulterior utilization withCORCOS.

* Once the state vectors and covariances are prepacetbcally computed ephemeredes
are calculated, the Risk Calculation Function (RG$)called. This is the main
functionality of CORCOS that may also be invokeddAMOS. Provided with the set of
input parameters previously described, RCF compttiesset of closest approaches,
which is the set of times of closest approachesA(T@istances at TCA, and the
corresponding collision probabilities. Differentlicgion probability algorithms, as well
as a Monte Carlo approach are available.

» Before ending the process, the outputs are detiver@ppropriate formats, and plotting
scripts are generated for a further visualizatibhe results, allowing the user an easy
understanding of the outcome.



2.2. CAMOS Architecture

The CAMOS general structure chart can be seengn Jilt shows the main SW modules in
hierarchical order from left to right. These are:

* Main program function. Performs process initial@atand termination activities, as well
as high-level process management.

» Strategy analysis module. Manages the strategiesabar of defined strategies,
configuration of each one: number of manoeuvreBnitien of each one, treatment of
parameters (strategy or optimisation parameters).

* Optimisation module. Gradient projection optimisatalgorithm.

» Optimisation parameter and function module. It he tink between the optimisation
algorithm and the physical world, i.e., the tragegtand probability functions.

» Trajectory module. Manages the trajectory: inigtdte and covariance, arc propagation
and storage.

* Probability computation function. Implements th#atent algorithms for computation of
collision risk.

* Propagation function. Orbit propagation, arc by arc
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Figure 3. CAMOS general structure chart

Probability computation and propagation functiosisovn as blue rectangles in Fig. 3) are re-
used from CORCOS. The Trajectory module uses dalser dunctions from CORCOS (orbits
initialisation and encounter time search and refieet).

3. CORCOS Module Description

CORCOS module is the tool responsible for inpuggautof scenario files, propagation, close
encounters searching and collision risk assessrtei$o contains all the supporting libraries for
reference frame transformation and mathematicdines.

CORCOS has been designed as a versatile tool, gigpdifferent types of inputs to configure
the scenario to be analysed using several collisgkalgorithms, with support for high-speed
and low-speed encounters involving spherical orglemobjects:

* Orbit information for each object can be given astate vector in one of the several
reference frames supported, ephemeris file to teepolated, a TLE file or using a CSM



as input. Each object can use a different input thaautomatically managed in the
software.

» Covariance information, used to compute the coltigisk, can be given as a covariance
matrix, a look-up table for TLE objects or read nroa CSM file. Covariance is
propagated together with the state vector for arputi type to the time of closest
approach, and its epoch may differ from the orpdch.

* Regarding the propagation capabilities, CORCOS adesce-model propagator with all
the perturbations needed to provide an accuraggagadion, configurable as input. It also
supports instantaneous and low-thrust manoeuvrigs,modelled execution errors. Both
Runge-Kutta 7(8) and Adams-Bashforth integratoes arailable, and the propagator is
used also for the covariance. In addition, SPG4sexd to propagate TLEs, switching to
the force-model propagator if a manoeuvre is coméd.

Once all conjunctions inside the configured timarspave been identified/detected, CORCOS
will evaluate the conjunction geometry and theismh risk associated. Several algorithms are
available, depending on the collision speed andjéwnetry of the objects.

3.1. Spherical Geometry
If both objects are spherical, there are sever#itkmewn algorithms that can be used:

» Alfriend & Akella (see [3]) a well-known method tmmpute collision risk that performs
the two-dimensional integration of the hard bodgjgetion in the encounter plane.

» Patera’s method [4] performs the contour integratd the projection, computing the
same result as the Alfriend & Akella method in stéa way.

* Maximum Probability, assuming spherical covariangging the maximum likelihood
approach [3]. Figure 4 shows the existence of smahaximum for every encounter
distance.

» Maximum probability according to Klinkrad’s algdrin [9].

» Covariance scaling, where the covariance is sclaedboth objects in a given interval
and for every scale factor, the covariance is atetli using the method in [4]. This
method preserves the shape and orientation ofav&i@ance matrix of each object and it
is useful when the covariance is not well-known.
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During CORAM development, these algorithms, andesother finally discarded (Chan, Alfano

and Foster), have been tested to check the penfmen®oth in terms of run-time and accuracy
(see Fig. 5). Additionally, extensive analysis drfprmance under different conditions of

geometry and covariance values was executed (geé)Fi
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Figure 5. Comparative results of some collision sk algorithms for spherical case

3.2. Complex Geometry

If one of the objects, or both, are complex (consposf oriented boxes), a new method to
calculate the collision risk has been devised.

While in the spherical case the hard-body objealii§ton volume) can be computed as another
sphere whose radius is the sum of the radii ofwleeoriginal spheres, in the complex case this
hard body computation is more complicated. It isoagplished by assuming constant attitude
and calculating the Minkowski sum [7] of the twojextis, and then projecting it onto the
encounter plane. Additionally, the collision volusteall be translated to the B-plane, by means
of the projection of the vertices of such volumeshown in Fig. 6.
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Figure 6. Representation of encounter plane withhie projection of the boxes forming the
collision volume (one satellite built by three box® and the other based on a unique box),
and the Z-buffer evaluation



The encounter plane is then discretized and sampledbuffer grid [8] is constructed where
every cell of the grid is a true/false indicatoitloé “shadow” of the hard body onto the encounter
plane. Every grid contains a small amount of cbation of the collision risk and the last step is
to compute the risk associated to every shadoweddagd sum them up.

The need of considering the actual objects geomestgad of assuming spherical case is very
much dependent on the miss-distance and the vafue covariances of the orbital data. The
following examples provide some graphical represtgont of a head-on encounter of two
satellites (one satellite built by three boxes, #re other based on a unique box). Geometry of
the encounter is shown in Fig. 7. Dashed line mgis the equivalent cross-section area
assuming spherical geometry whereas the greer ¢&rthe nominal encounter point.
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Figure 7. Example encounter geometry (left) and Blane representation (right)

In the case of accurate orbital data (small comagavalues, about 1 m), the miss-encounter
would be perfectly estimated with a high accuramyy considering the actual geometries of the
objects. Otherwise, the integration of the risknglthe spherical projection would provide a very
low collision risk. This case is represented in. Bigleft plot. The computed collision probability
with the complex-geometry algorithm here descrili@d0.9959, whereas the collision risk
computed by algorithms based on spherical assungpisol.49- 16,

In the case of larger uncertainties in the orlpasition of the two objects (about 100 m), the
probability density function is spread across largeeas of the B-plane (Fig. 8, right plot),

providing very similar results when integrating tiigk along the actual object geometries than
integrating the risk along the equivalent circlaeTcomputed risk is 2.14-#@or the two cases.
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Figure 8. Probability density function for the cag of very good orbit accuracy (~1m, left)
and low orbit accuracy (~100m, right) along the B-fane



3.3. Minkowski Sum

To easily compute the Minkowski sum of two comptibjects, it is better to divide the objects
in convex shapes and compute the sum by pairsalf@ombinations and then reconstruct the
final object. However, the actual 3D object caltiola is not required, only its projection onto
the encounter plane. It is possible to skip the r8Bonstruction of the Minkowski sum and
calculate the projection directly.

For that, the Minkowski sum is computed for everp thoxes (or box-sphere) of the objects but
only for the vertex points, without reconstructiaigy information about the faces. The resulting
sum will be also convex.

Those points are then projected onto the encoynéere, and the convex hull that the points
form is calculated. This convex hull is the contofithe projected Minkowski sum, represented
by convex closed irregular polygon.

The entire z-buffer is checked to evaluate whdsa#lthe grid are inside the polygon. Only cells
not previously shadowed by other polygon are chedkg means of a fast point-in-polygon
algorithm.

These steps are repeated for every box-box p#ireotomplex objects, and the resulting z-buffer
grid is evaluated to calculate the collision risk.

In order to do that, it is possible to use AlfriefdAkella or Patera methods on each cell. It can
be easily done by replacing every cell by an edantecircle in the encounter plane and applying
a collision risk method to them. The final sum pdas the total collision risk.

The z-buffer offers several advantages:

* ltisrelatively fast.

* It solves the problem of self-shadowing, where edéht parts of the objects can be
accounted several times in the computation of tiksmon risk. The z-buffer cells have
only two states (in shadow / not in shadow) ita$ possible to have overlapped sections
counting twice.

* It can be easily extended to include other basapes, as long as they are convex or
could be divided in convex shapes.

» Allows calculating the cross-section of a compledyp from a certain point of view,
which can be used to estimate the area exposetinaspheric drag or solar radiation
pressure.

3.4. Low Speed Encounters

The previously commented methods are in principlglieable only to high-speed encounters,
where a linear relative motion and constant origma cross section and position uncertainties
during the encounter can be assumed.



In a low-speed encounter, however, the conjungiemameters may change in time and it is not
possible to evaluate the risk just at the time los&st approach, it is necessary to take into
account the whole encounter interval.

An interval-slicing method based on Patera’s wékHas been employed. The method divides
the collision interval in slices, and the collisiask is evaluated for every slice. For each slice,
the same assumptions as in the high-speed encoargewalid (constant covariance and

orientation, linear motion) and the slices can baden as small as necessary for these
assumptions to be correct.

To calculate the collision risk of each slice, atlyer high-speed collision risk algorithm can be
used, with a scaling factor to take into accourly ahe contribution of the slice, and not the
whole encounter. This means that this method cansked with spherical objects and also for
complex geometry objects.

The instantaneous risk (red curve in Fig. 9) coregiat each slice may be larger than the final
computed risk along the interval, since it accousitsevery slice as if the out-of B-plane
component of the miss-distance is null. Once th® fs properly accounted to evaluate the
instantaneous Pc rate (green curve), the cumultetiedan be derived.
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Figure 9. Example of accumulated collision probality along an encounter interval in the
case of low speed

3.5. Monte Carlo

In addition to the analytical or semi-analyticalthes previously described, CORCOS can also
simulate the encounter using a Monte Carlo approgahd for low-speed and high-speed
encounters and with any geometry combination. Shmaulation, however, is much slower than
other methods and the main use is to check thdtsesti other methods or to avoid the
propagation of the covariance matrix. An exampl&ohte Carlo use in included in Fig. 5 with
the rest of algorithms.



The collision detection problem involving complexognetries has been solved using the
separating axis test, [6], a very fast test vaddarbitrarily oriented boxes.

The user may select the number of steps for thetdiGarlo simulation, or alternatively, the user
may configure the accuracy and confidence valuestonate the number of runs automatically.
A Wilson score test is used to determine the cenfte interval of the result.

4. CAMOS Module Description

As already mentioned, the computation of the ogdtewaidance manoeuvre is performed by the
CAMOS module. CAMOS uses most of the functionaitiieveloped for CORCOS:

» Trajectory initialisation (state vector and covada).

» Orbit acceleration modelling and propagation.

* Object properties initialisation.

» Encounter time search and refinement.

» Collision risk computation, both for low and highegd encounters. Only the analytical
methods are used, due to the requirements of ttimisption algorithm described in the
following paragraphs. Monte Carlo cannot be used @AMOS, while complex
geometries can be used only if the probability fiorcis evaluated just as output (not as
cost function or constraint).

Operationally, CAMOS is usually run once a closecemter between two objects has been
analysed by CORCOS, and the obtained collisionissgkigh enough to deserve the study of an
avoidance strategy.

CAMOS can be run in two modes:

» Parametric analysis mode This mode can assess one or several strategysasalvhere
strategy analysisshould be understood as a one-dimensional or tweerdsional
parametric execution of a manoeuvre optimisatiabl@m. This mode allows the user to
evaluate, e.g., the effect of the manoeuvre exacuiime on the collision risk, with
optimised manoeuvre direction for each selectedevaf the manoeuvre execution time
in the grid. As example, Fig. 10 shows the effdca d-cm/s manoeuvre on the distance
of closest approach (DCA) as function of the executime, and Fig. 11 shows the effect
of a manoeuvre on the distance of closest appr@@CiA) as function of manoeuvre size
and of the execution time.

» Evaluation mode It runs just one case within one strategy, amdlpces specific output
files to allow CORCOS to evaluate the selected c@siéh the newly designed
manoeuvres) with risk methods not available to CABAQhe user will usually run
CAMOS in evaluation mode for the most interestirges found by running CAMOS
previously in parametric mode. Only one case caeMaduated at a time. In addition, this
mode can produce optional information on the evwafus. time of certain trajectory
functions, like longitude, latitude, eclipse or&ion over the South Atlantic region. As
example, Fig. 12 shows the evolution of the lordgtwf a GEO satellite while Fig. 13
shows the location over the South Atlantic Anonfalya LEO satellite.
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Effect of 1 cm/s Manoeuvre on DCA
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Figure 10. Example of one-dimensional parametricraalysis results
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STRATEGY: STRATO1A

-100

on
Lower Limit
Upper Limit
-100.1
g
5, -100.2
] |
=1
=
g’ 100.3
S -0
a
-100.4
-100.5
7285 729 729.5 730 730.5 731 7315

Time [days from 2000/01/01]

Figure 12. Longitude of a GEO satellite vs. time
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The configuration of each strategy analysis is Vieible:

Manoeuvres can be low-thrust or impulsive
Manoeuvre directions can be provided in differefierence systems:

0 Mean Earth equator of epoch J2000.0

o True equator and equinox of date

0 Mean equator and equinox of date

o Local orbital (radial, in-track, cross-track)

0 Local intrinsic (along-velocity, momentum, binormal
Each manoeuvre parameter (manoeuvres central $imeg,azimuth and elevation) can be
defined as fixed, a parameter of the strategy aislgr an optimisation parameter
Bounds can be set on manoeuvre parameters, anticsp@ection constraints can be
configured
Within the optimisation, the cost function can ledested as the collision risk, the total
delta-V or the distance of closest approach (séiparaector modulus, or its projection
in along-track, cross-track or radial direction)
Constraints can be set-up in the resulting trajgcttongitude and latitude for GEO
satellites, and orbital period and ground track dor LEO satellites.

CAMOS uses a gradient optimisation package calleBT@GRA [10], developed by
ESA/ESOC/Flight Dynamics, to find the optimum mamae parameters in each configured
problem. The algorithm can deal with equality amequality constraints. It looks for the
optimum solution by moving the initial optimisatiparameters tangential to the constraints, and
in the direction of steepest descent of the casttfan.

Since gradient methods are local optimisation tepghes, the solutions found by the algorithm
must be understood as local optima and, therefoust be analysed critically by the analyst in
search of the global optimum. For example, manaewexecution times have an effect on
collision risk that can have a certain sinusoidahponent (with its period equal to the orbital
period). In that case, the gradient optimisatiggoathm would select the local optimum closest
to the initial manoeuvre time. In any case, siree tbol allows analysing several strategies in
one run, each with different selection of strategpptimisation parameters, the presence of such
local optima can be investigated by selecting tla@@euvre time as a strategy parameter instead
of an optimisation parameter.
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5. Example of Avoidance Manoeuvre Design with CAMOS

In this section several examples of manoeuvredesgiies analysed with CAMOS will be
presented, starting with simple cases and incrgasie difficulty to demonstrate CAMOS
capabilities.

5.1. One Encounter, one Manoeuvre Case

The first example is a simulated encounter betwe&nobjects, both on MEO orbit, co-planar,
with same semi-major axis and eccentricity, andadntra-rotating orbits, resulting in repetitive
frontal approaches. Both trajectories are contaimedhe Y=0 plane. The orbit size is
8000x10400km. The encounters occur at perigee arap@gee. A 2D and 3D view of the
trajectories can be seen in Fig. 14.
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Figure 14. Synthetic case target and chaser trajewries

To start with a simple case, let us focus on oreenter, corresponding to the ascending node
of the target at X=8000 km, corresponding to thegee of both orbits. We will define a strategy
with a 1-cm/s manoeuvre along the velocity vectg.( representing an operational case in
which only tangential manoeuvres are allowed, withinimum size of 1 cm/s). The manoeuvre
execution time is selected as parameter, with tiadyais interval spanning from one day before
TCA to just a few seconds before TCA. Fig. 15 shbevcollision risk (computed with Patera’s
algorithm) and distance at closest approach, réspgc This simple, one-dimensional case is
computed relatively quickly by CAMOS, and helps thession analyst in evaluating possible
manoeuvre locations for highest effectiveness.

The behaviour shown in Fig. 15 is easy to explavhen the manoeuvre is located around
apogee, it is most effective in changing the perigedius, and the DCA is highest. When the
manoeuvre is located at perigee, it has no effeathanging the own perigee radius, and the
DCA is lowest and collision risk highest. The effegpeats with the orbital period (around 146
minutes).
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Figure 15. Collision risk (left) and distance at losest ggs;gach (right)

CAMOS shows also other results of the parametradyais, like the change in the TCA and the
separation vector at TCA projected in the alongkraross-track, and radial directions. Fig. 16
left shows radial component of the separation veatoTCA. It can be seen that distance at
closest approach corresponds, almost entirelyheoradial component, with the negative sign
indicating that the chaser is bellow the target@A. On the other hand, since the target’s orbital
period is increased, the encounter is delayednme,tias can be seen in Fig. 16 right, where a
positive value signifies a delay in the TCA. A lametrend with a super-imposed periodic
component can be seen in this last figure. Thaliteend is obviously due to the fact that, the
earlier the manoeuvre is executed, the largerasattcumulated delay up to TCA for a given
change in orbital period. The periodic effect i:edo the fact that, for a fixed delta-V, the
highest orbital period change is obtained whemthaoeuvre is executed at perigee.
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Figure 16. Radial component of separation vectotéft) and chaTr;ge in TCA (right)
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Figure 17. Separation vector in inertial coordinaes
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A 3D view of the separation vector evolution is whoin Fig. 17 in inertial frame, for the
manoeuvre location up to two revolutions prior h@@unter. The separation vector is contained
in the Y plane, and is parallel to the X axis. BHagly manoeuvres produce a delay in TCA, that
is, the location of the closest approach moves tdsvaegative values in Z direction.

The second and third avoidance strategies analgsthis example consider manoeuvres normal
to the velocity. In one case, the manoeuvre ishen dut-of-plane direction, while in the other
case the manoeuvre is in the in-plane directio. fEsults can be seen in Fig. 18, where the out-
of-plane manoeuvre effect is shown in red. This oeanre produces a rotation of the orbital
plane around the line joining the orbital centréhwvihe manoeuvre execution point. The result is
a cross-track effect which is minimum (in absoltéems) when the manoeuvre is executed
around the encounter location and half a revolugarlier, and maximum a quarter and three
guarter of a revolution earlier. The manoeuvrert@sffect in radial direction.

On the other hand, the in-plane manoeuvre prodacasange in eccentricity and argument of
perigee, which translates into a radial effect @AT(see Fig. 18 right, in green), and no effect in
the cross-track component (left plot).
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Figure 18. Effect of manoeuvres normal to velocity

We can define a 2-dimensional strategy analysisdnsidering the manoeuvre size as second
analysis parameter. We can see the effect on tlisi@o risk in Fig. 11, where the selected
manoeuvre execution time interval (parameter heanalysis) corresponds to a complete orbit
revolution, and the delta-v interval from O to 5/snn increments of 1 cm/s. For the most
favourable manoeuvre location, and for the highesiysed delta-v, the risk is well below£p

but the program considers it negligible and retihas value as lowest limit.

5.2. Multi-Encounter Case

Both CORCOS and CAMOS can analyse several closeueters between a pair of chaser and
target orbits. In the presented case, we knowth@e is another close approach half revolution
after the first analysed one. This can be configuwery easily, simply extending the period for
initial encounter search. Figure 19 is the equivate Fig. 15, but now considering the second
encounter. It can be seen that, where the 1 crogjalelocity manoeuvre is best in avoiding one
of the encounters, it is worst for the other, asl@¢de expected.

15



Collision Risk

STRATEGY: STRATOL STRATEGY: STRATOL

1e-00!

0.1 T 0.07 T T
Total ncounter1 o
Encounterl o ncounfr2 e
Encounter2 e o008 |
X 1 .E §38 :- H H
:
0.01 PR PP S PR P P - H H H
S 005 3
g H
s H
2 .
5 oos 53
7 s
0.001 8
. e VG 5]
sie s o ® 003
HEER A N
: H s E
HA HER T gz ooz
0.0001 i3 EF IR Y H H s s s
vVVvVviyvuvuvuuwuw oo fod i Hid f-4
3
8
g
3

2011/09/30
00:00
2011/09/30
04:00
2011/09/30
08:00
2011/09/30
12:00
2011/09/30
16:00
2011/09/30 |
20:00
2011/10/01
00:00
2011/10/01
04:00
2011/09/30
00:00
2011/09/30
2011/09/30
08:00
2011/09/30 | ggesese
12:00
2011/09/30
16:00
2011/09/30
20:00
2011/10/01 | passetose®
00:00
2011/10/01
04:00

Manoeuvre Time Manoeuvre Time

Figure 19. Collision risk (left) and distance at lIbsest approach (right) for first strategy

A similar conclusion can be reached from the 2-@lggis with time and delta-v as strategy
parameters. Figure 20 is now the equivalent to Eig. showing that the areas with lowest
collision risk in the one-encounter case correspoo@ to the least favourable areas for the
second encounter and vice-versa.
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Figure 20. Two-dimensional parametric analysis radts for the two encounter case: total

collision risk (left) and collision risk for the second encounter (right)

Repeating the analysis with the out-of-plane mamaewve can see in Fig. 21:

The 1-cm/s manoeuvre produces a maximum changémmftd?2 m in the cross-track

direction of the separation vector when the manaeus executed a quarter of a
revolution prior to the encounter, considering titlzt component of the separation
vector is close to 0 without manoeuvres. The maxrinalbsolute cross-track separation,
but with negative sign, occurs when the manoeusrexecuted three quarters of a
revolution before the encounter. In total, this duces a periodic behaviour of the
collision risk, with a period twice the orbital jeat.

In the case of the second encounter, the situagiahfferent: without manoeuvres, the

cross-track separation is -18 m. That increases34om executing the manoeuvre a
guarter of a revolution before, but reduces to -2hme quarters before. As result, the
effect on the collision risk of that encounter sogperiodic, but now with same period as
the orbit.

The 1-cm/s manoeuvre is much less effective forfitlsé encounter than the tangential
manoeuvre (see Fig. 19).
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» For the second encounter, the situation is the sipgoit is more effective the out-of-
plane manoeuvre.
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Figure 21. Collision risk (left) and distance at losest gpprroach (right)
for out-of-phase strategy

5.3. Multi-Encounter, Multi-Manoeuvre Case

In our example case, the presence of two encouimeliferent locations makes the mitigation
with one manoeuvre a sub-optimal solution from ploént of view of the fuel consumption. In
this respect, it makes very good sense to studpdBeibility of executing two manoeuvres, each
one targeting one of the encounters. The plots shiowhe previous sections give us a very good
indication of where to place each manoeuvre, whielps us in setting-up CAMOS for quick
results. In order to have a comparative analysesspresent here three different options:

 Two manoeuvres, both along-velocity (tangentialefasach one targeting one of the
encounters

* A tangential manoeuvre to mitigate the first endeuand an out-of-plane manoeuvre for
the second. A priori, this solution makes sensabse, for the same manoeuvre, Fig. 21
(out-of-plane case) shows a higher reduction ofcthiksion risk of the second encounter
than Fig. 19 (tangential manoeuvre)

* One manoeuvre case (just to assess if the two-mar®eolutions are worth the effort)

In the three cases, a one-dimensional parametatysis is configured, with the cumulative

collision probability defined as analysis parameldre cost function is the total delta-v, and the
manoeuvre locations are optimisation parameterhisirespect, this is the first real optimisation
analysis (i.e., there are degrees of freedom inofitemisation) shown in this paper, since in
previous examples there were no parameters to atiamd no optimisation was needed.

The results can be seen in Fig. 22, where theghlotvs the total delta-v of each strategy. The
strategies with two manoeuvres require almost tmaesdelta-v (in the plot, the tangential-
tangential case “TANG-TANG” overwrites the tangahbut of plane case “TANG-OUT”),
while the one manoeuvre strategy “ONE-TANG” regsir@.5-0.6 cm/s more. In this
hypothetical case, it would be up to the operatiadeam to decide if the gain is worth the
additional burden of the second manoeuvre.
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Figure 22. Total delta-V

6. Conclusion

The capabilities of CORAM have been presented is faper, both in terms of encounter
analysis (performed with CORCOS) to compute thdistoh risk, and in terms of avoidance
manoeuvre analysis (performed with CAMOS).

CORCOS is a powerful collision risk analysis tashich complements CRASS in several ways:

» It implements several collision risk algorithms &pherical geometry:

0]
0]
0]

0]
0]

Alfriend & Akella

Patera

Maximum Probability, assuming spherical covariancsjng the maximum
likelihood approach

Maximum probability according to Klinkrad’s algdrit

Covariance scaling, where the covariance is scldedoth objects in a given
interval

* It can calculate the probability of collision fooraplex geometry objects (composed of

boxes)

* It can analyse encounter with low velocity, whelne hypothesis considered for high
speed algorithms are no longer valid.

* Monte Carlo can be used in any of the scenariosidered

» ltis very flexible in terms of configuration analput options

* Not only collision probability is calculated for @aencounter, but also a great amount of
additional information (orbit geometry, encountezogetry, etc) is computed for a
complete assessment of the approach event.

On the other hand, CAMOS helps the space debriysiria the selection of the most adequate
collision avoidance manoeuvres:

» |t performs fast one-dimensional and two-dimendi@mealysis of manoeuvre avoidance
strategies
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» The treatment of the manoeuvre design parametedtseianalysis is very flexible: each
parameter can be treated as a parameter of theegstranalysis, an optimisation
parameter, or fixed.

» Constraints can be configured very easily: colfisfrobability, manoeuvre parameter
bounds, encounter geometry parameters (e.g., mmidistance)

 The cost function can be selected with a high degré flexibility: the collision
probability (to be minimized), total delta-v (to b@nimized as well), separation vector
(modulus or its components, to be maximized).

In summary, CORAM is a powerful suite supporting pace debris analyst in the mitigation of
collision events between operational spacecraftoabitial debris.
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