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Abstract: The Multi-circle Elliptic Halo (ME-Halo) orbit is a special kind of symmetric periodic 

orbits generated in Elliptic Restricted Three-Body Problem (ERTBP). Its special properties, 

including long period and redundant stable manifold, make it a promising nominal orbit in space 

mission design. In this paper the direct transfer to lunar ME-Halo orbits with two impulsive 

maneuvers is investigated. At first perigee transfers are constructed, then different orbit injection 

points are surveyed and the manifold injection point is optimized. At last the redundant stable 

manifold of the ME-Halo orbit is demonstrated to have great impact on the transfer trajectory 

design. Results in this paper enriches the preliminary space mission design options by providing 

feasible strategies to reach ME-Halo orbits in Earth-Moon system. 
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1. Introduction 

 

Since Euler first found three collinear libration points of Circular Restricted Three-Body 

Problem (CRTBP) in 1767 and Lagrange found the other two triangular libration points in 1772 

[1], many mysteries in this fascinating field have been revealed and fruitful applications in space 

exploration have been yielded. In 1967 Szebehely comprehensively surveyed both analytical and 

numerical outcomes until his time [2]. Then spatial halo orbit was discovered [3] and constructed 

analytically [4] and numerically [5]. Modern methods including WSB theory [6] and dynamical 

system theory [7–9]. Recently Parker and Anderson gave a comprehensive summary of the lunar 

transfer trajectory design in their book, which covers the transfer to all kinds of libration orbits 

and low lunar orbits by both direct and low-energy transfer under CRTBP, patched CRTBP and 

JPL ephemeris models [10]. Most results in the book is developed in CRTBP and they claimed 

that the most notable influence is the lunar eccentricity. 

 

The motion of planets in the solar system is better described by Keplerian orbits with eccentricity 

e  ranging from 0.0086 to 0.2488 [11]. Results in CRTBP are extended to the Elliptic Restricted 

Three-Body Problem (ERTBP) model. Moulton stated the strong periodicity criteria of 

symmetric periodic orbits in planar ERTBP [12] and Broucke constructed libration periodic 

orbits under this criteria and investigated their stability systematically [13]. Sarris then extended 

this study to spatial ERTBP and divided the stability region analytically [14]. But the periodic 

orbit they studied is less likely to be useful in practical mission design. Recently Hou and Liu 

constructed series expansion of collinear libration point orbits in ERTBP by Lindstedt-Poincare 

method [15]. The result is lengthy and complex because the appearance of eccentricity greatly 

increases the number of terms. Mission design under ERTBP draws attentions as well. 

Campagnola et al. designed the Mercury capture stage of the BepiColombo mission in ERTBP 

model by ergodic search and then he found the resulted ballistic capture shadowed the manifold 

of a halo like orbit around the libration region of the Sun-Mercury ERTBP [16]. Qi and Xu 

applied Lagrange coherent structure method to construct lunar transfer trajectory shadowing the 
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time-dependent manifold in ERTBP model [17, 18]. Their study gives a clear view of the effect 

of eccentricity e on the transfer trajectory and handle other perturbations but the computation 

cost a lot of time. Recently Qi, Xu and et al. had studied the ballistic capture in mercury ERTBP 

and their results focus on the near Earth launch conditions [19]. Peng and Xu systematically 

investigated the stability of Multi-circle Elliptic Halo (ME-Halo) orbits in ERTBP [20], which 

was complex and greatly different from halo orbits in CRTBP. 

 

In this paper ME-Halo orbits are derived and numerically generated first, with a review of that 

ME-Halo orbits can possess two stable manifold direction. The author constructs direct transfer 

to lunar ME-Halo orbits with two impulsive transfer in ERTBP. The energy cost is analyzed by 

the velocity cost during the transfer. Then the manifold injection point is optimized within a 

bounded interval and optimal transfers are found to occur around apogees of stable manifolds. At 

last the impact of the redundant stable manifold of ME-Halo is discussed. The result in this paper 

demonstrated the feasibility of arriving ME-Halo and provides new options for future mission 

design. 

 

2. Backgrounds 

 

2.1. ERTBP and CRTPB 

 

The full three body problem has no complete solution because there are 18 first order differential 

equations but only 10 general integrals. An intuitive approach is to study the restricted three body 

problem (RTBP), where the mass of one body tends to zero and does not affect primaries’ motion. 

In RTBP the motion of the infinitesimal third body under the attraction of two primaries’ gravity 

fields is of interests. In this section a brief review of the equation of motion for the spacecraft in 

the ERTBP and the CRTBP model is given.  

 

 
Figure 1. Barycenter Inertial coordinate frame  , ,X Y Z  and Barycenter Synodic 

coordinate frame  , ,x y z . The z-axis finishes the right handed system by pointing out of 

the paper. In ERTBP the primary orbit (dashed arc) is elliptical while in CRTBP it is 

circular. 

 

In ERTBP primaries rotate each other on a Keplerian elliptic orbits with eccentricity e around 

their common barycenter (dashed ellipse in Fig. 1). The distance between primaries 12r  is 

changing with true anomaly f thus with time t, and is given by 
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where 
12a  is the semimajor axis of primaries. The synodic pulsating coordinate frame is 

introduced as illustrated in Fig. 1. The origin locates at the primary barycenter. The x-axis points 

from the larger primary 
1m  to the smaller one 

2m . The z-axis is parallel with the angular 

momentum (pointing out of the paper) and the y-axis finishes the right-handed system. The 

system is instantaneously scaled by the primary distance  12r f , the total primary mass 

 1 2m m  and the reciprocal of the mean angular velocity n . In this frame primaries are fixed 

at 1x    and 2 1x    and the frame is pulsating. Furthermore, the independent variable of 

the system is transformed from time t to true anomaly f by the chain rule 
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In this way, equations of motion of the third body in ERTBP is given by [2] 
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with 2 2 2

1 )(r x y z    and 2 2 2

2 )( 1 y zr x    . Primes over x, y and z indicate 

the differential respect to true anomaly f. The epoch when primaries are at their periapsis is set to 

be 0 0f   as illustrated in Fig. 1. It is worth noting that ERTBP implicitly depends on time t 

through Eq. 1. And because of the trigonometric function introduced by Eqs. 1, 3 and 4, ERTBP 



4 

is a non-autonomous system with period 2 . There is no Jacobi constant in the system anymore. 

Multiplied Eq. 2 by x , y  and z  respectively, add them up and integrate, we have 

 

  2 2 2 d d d2 x y zx y z x y z        (6) 

 

Since   depends also on the true anomaly f, the expression under the integral is not a total 

differential. Instead we have 
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Substitute it into Eq. 6 and we have 
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The term 2  is the amended potential of the third body in synodic frame. The integral term is 

caused by the pulsating of the system. The integral constant  0C f  depends on the initial 

anomaly f now. For the CRTBP model where the eccentricity e is zero, equations of motion is 

obtained by substitute 0e   into the ERTBP model. Then Eqs. 3, 4 and 5 degenerate to one 

equation, and the integral term in Eq. 7 vanishes and  0C f  degenerates to the traditional 

Jacobi integral C  in CRTBP. 

 

2.2. ME-Halo Orbits 

 

In CRTPB, the halo orbit is numerically constructed from the third order analytical 

approximation by differentially correction method. Because of terms with e in the equation of 

motion in ERTBP, circular halo orbits are not strictly periodic anymore, though they can be close 

up by differential correction for certain duration. Campagnola stated the periodicity criteria that 

symmetric periodic orbits in ERTBP must perpendicularly cross the x-z plane twice when 

primaries are at their apsis [16]. Therefore periodic orbits in CRTBP surviving from the 

eccentricity perturbation must obtain a commeasurable period with the primary system. Then 

they can be continued into ERTBP by gradually increasing the eccentricity e. The planar and 

vertical Lyapunov orbit with large amplification have period large enough to be integral multiple 

of the primary period 2  [13, 14], but halo orbits usually have period less than 3/ 4 . So only 

halo orbits with rational multiples of 2  is possible. The measurable constrain can be 

expressed as 

 

 / 2 / , ,ECT M N M M NT       

 

where CT  is the circular halo orbit period and ET  is the period of the continued periodic orbit 

in ERTBP. They are referred to as Multi-circle Elliptic Halo (ME-Halo) orbits hereinafter since 

the emphasis is paid on their multi-circle property. For clarity halo orbits in CRTBP are referred 

to as circular halo orbits. ME-Halo orbits can be classified into four groups according to their 
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starting states and they have different stability properties [20]: 

 

 Periapsis Group: Odd M; Primaries at Periapsis; Start from left side of orbit. 

 Apoapsis Group: Odd M; Primaries at Apoapsis; Start from left side of orbit. 

 Left Group: Even M; Primaries at Periapsis; Start from left side of orbit. 

 Right Group: Even M; Primaries at Periapsis; Start from right side of orbit. 

 

It is noteworthy that ET  is M times of CT , so the integral time will be large. The traditional 

differential correction method can be failed by an inaccurate initial guess. Considering the 

method is essentially a Newton’s method and borrowing the idea of multiple shooting method [5], 

the generation of ME-Halo can be rewritten into an multi-segment optimization problem [20], 

which is less insensitive to the initial guess and easier to program.  

 

The stable direction of ME-Halo orbits is obtained through their monodromy matrix  . It is 

obtained by integrate the transition matrix  0,f f  for a full period, which satisfies 
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where  ,EA X f  is the Jacobian of the equation 2 
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Six eigenvalues of   come in reciprocal pairs as 

 

 1 1 3 32 2,1/ , ,1/ , ,1/        

 

In CRTBP circular halos have 1 1  , real 2 1   and complex unit 3 , but in ERTPB the 

situation is much more complex and ME-Halo orbits can have two pairs of real eigenvalues as 

discussed by Peng and Xu [20]. Each real eigenvalue smaller than one indicates a stable direction 

spanning the stable manifold asymptotically approaching the periodic orbit. So if the redundant 

direction exists, the ME-Halo orbit will span a three-dimensional manifold, which is different 

from the two-dimensional manifold of circular halo orbits. According to their study, Earth-Moon 

1L  Perigee ME-Halo with M5N2 has two real pairs of eigenvalues. 

 

2.3. Lunar ME-Halo Orbits and Parameterize 

 

The target orbit of the transfer in this paper is the Earth-Moon 1L  Perigee ME-Halo with M5N2, 

as demonstrated in Fig. 2. The orbit is generated by choosing a set of (M,N) from the whole 

circular halo orbit family in CRTBP, gradually increasing the primary eccentricity e and 

adjusting the initial condition by the multi-segment optimization method [20]. Points on 
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ME-Halos are parameterized by  0,1   where 0   is the starting point and 1   is the 

returning point after one period which should close up the orbit. As shown in the right plot, the 

separation for each circle is not equal but roughly 0.2  . 

 

 
Figure 2. The Earth-Moon 1L  Periapsis ME-Halo orbit with M5N2 and the illustration of 

point parameterization by  0,1  , where 0   is the starting point and 1   is the 

returning point after one period. 

 

The stable direction of point   is given by the characteristic eigenvector of the monodromy 

matrix   . Then a position perturbation of  is applied along this direction, and the velocity 

perturbation is applied proportionally. The stable manifold is generated by backward integration. 

Attentions should be paid that according to the previous discussion the target orbit have two 

stable directions. Only the major direction with smallest eigenvalue will be considered in the 

following transfer trajectory design. The significant impact of the additional stable direction is 

discussed in section 4. The stable direction and its reverse can lead the spacecraft to opposite side 

of the ME-Halo. To be consistent with Parker and Anderson the direction leading to the Moon is 

referred to as internal direction and the one leading to the Earth as external direction. In Fig. 3, 

external and internal major stable manifolds with same perturbation and duration of the ME-Halo 

orbit are demonstrated. Cautions should be paid that the duration is measured by the independent 

variable f  here. 

 

 
Figure 3. Internal and external manifolds associated points 0.46 0.56   on the lunar 

1L  periapsis ME-Halo orbit with M5N2.  
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3. Direct Transfer with Two Impulsive Maneuvers 

 

The period of ME-Halo orbits ET  is M times of the circular halo period CT  and N times of the 

primary period 2 , so once a spacecraft is accurately injected into a ME-Halo orbit it will drift 

for a long time. Even in real Earth-Moon system the ME-Halo orbit will diverge slower than 

circular halo orbits since it has taken the lunar eccentricity into consideration, which perturbs the 

motion of the spacecraft most [10]. Therefore it is of value to find out a way to arrive such an 

orbit. In this section the strategy to design a direct transfer to the ME-Halo orbit with two 

impulsive maneuvers in ERTBP is presented and the transfer is optimized as well. 

 

3.1. Modeling the Transfer 

 

The stable manifold of libration periodic orbits has been used as a fruitful approach to design 

direct low-energy transfer. In this paper the author follows similar ideas and processes Parker and 

Anderson used to investigate lunar libration point orbit transfer in CRTBP [10]. Since the 

non-autonomous ERTBP governs the motion, both periodic orbits and their manifolds are 

time-dependent now. This feature leads to that any transfer designed is attached to a specific 

Earth-Moon phase which cannot be delayed or preceded. For example if primaries are at the 

epoch *f , the spacecraft can only be located at the point corresponding to * 2f n   on 

ME-Halo or its manifolds. 

 

The transfer trajectory is divided into two parts: first from the parking LEO to the stable 

manifold of target ME-Halo orbit, named bridge segment since it connects the two trajectories; 

second along the manifold to the ME-Halo named manifold segment. During the designing the 

trajectory is integrated backwardly. The strategy can be summarized as following: 

Step 1. Construct the desired ME-Halo orbit. 

i. Generate the whole circular halo orbit family. 

ii. Choose an appropriated circular halo orbit with 2 /CT MN . 

iii. Continue the chosen orbit to the ME-Halo orbit with 2ET N  in Earth-Moon 

ERTBP. 

Step 2. Construct the manifold segment. 

i. Choose a target point   on the ME-Halo orbit. 

ii. Set the transfer direction (internal or external), and generate the stable direction. 

Then apply a position perturbation  along the chosen direction to obtain the orbit 

injection (OI) point  OIX X  . 

iii. Backward integrate from the OI point until the manifold injection (MI) point MIX . 

Step 3. Construct the bridge segment. 

i. Define the manifold injection maneuver MIV  to be tangent with MIV . 

ii. Apply the maneuver and backward integrate until reach the LEO parking orbit with 

height LEOr . 

Step 4. Repeat process 3 and adjust MIV  until a tangent arrival at the LEO obtained. 

Step 5. Define the LEO departing maneuver LEOV  to be tangent with the LEO. Calculate it. 
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The process of Step 4 is solved as an optimization problem here, whose initial guess is 

constructed by Hohmann transfer in two-body problem. For simplicity the LEO is chosen as a 

circular orbit. In this way a successful three-dimensional direct transfer from the parking LEO to 

the point   on the given ME-Halo orbit in ERTBP model is constructed. 

 

3.2. Perigee Transfer  

 

An intuitive way is to choose the MI point MIX  as the first perigee near the Earth, where the 

velocity and position vectors should be orthogonal in Earth-centered Inertial coordinate frame. 

The pulsating of the ERTBP synodic frame should also be taken into consideration. Then 

following the strategy described above, exterior and interior transfer trajectory examples leading 

to different OI point   on ME-Halo are constructed and demonstrated in Fig. 4 and Fig. 5 

respectively. Parameters used in this paper can be found in Tab. 1. The external transfer 

trajectory approaches the ME-Halo orbit after MIV , while the internal transfer trajectory 

encounters a lunar flyby before the final approach. This indicates that an internal transfer can be 

more efficient if the lunar flyby is carefully chosen. However, companied lunar flybys make the 

trajectory very sensitive to initial conditions and some even escape through 2L  region after 

flyby, so only the exterior transfer trajectory is surveyed in the following study. The sharp turn at 

the maneuver point is a visual effect in synodic frame. It is worth noting that the manifold is 

measured by true anomaly interval, hence these illustrated manifolds do not guarantee same time 

duration but depending on df/dt.  

 

 
Figure 4. External transfer from the parking LEO to orbit injection points 0.06 0.12   

on 1L  Perigee ME-Halo with M5N2.  
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Figure 5. Internal transfer from the parking LEO to orbit injection points 0.14 0.2   

on 1L  Perigee ME-Halo with M5N2.  

 

Table 1. Parameters and tolerance used to construct direct transfers in the paper. 

Parameters Value / Unit 

Earth-Moon semimajor axis a 384400 km 

Earth-Moon period 27.5 days 

Earth-Moon mass ratio   0.0122 

Earth-Moon eccentricity e 0.0554 

Target orbit 1L  ME-Halo with M5N2 

Transfer direction External 

Position perturbation  100 m 

Parking LEO height LEOr  185 km 

Max integrate interval maxf  6  

Integration tolerance 101 10  

Optimization tolerance 71 10  

 

Different target points   on the same ME-Halo orbit are surveyed. 500 OI points along the 

orbit are chosen uniformly along the orbit and external transfers to these points are constructed. 

In Fig. 6 the resulted velocity cost is depicted with respect to the orbit injection point  , where 

V  ranges from 3.791 km/s to 4.676 km/s. There is a five-interval periodicity corresponding to 

the multi-circles properties of ME-Halo. In each interval the curve is smooth but fluctuates 

slightly differently, which justifies that ME-Halo is not a simple repeat of circular halo orbits. 

Their connections are discontinuous. Transfers around the discontinue region (framed thin region) 

around 0.3   are illustrated in Fig. 7, which explains that this discontinuity is caused by the 

max distance restriction (0.7 normalized length) of the perigee during calculation. When the first 

manifold perigee locates too far, the program automatically jumps to the next perigee and the 

transfer is constructed there. 
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Figure 6. Velocity cost curves of external direct transfer to different orbit injection points 

on ME-Halo. Transfers in the framed thin region is demonstrated in next figure. 

 

 
Figure 7. Transfer trajectories to points 0.31 0.32   around the discontinuous point 

(framed thin region in previous figure). The discontinuity is caused by the max distance 

restriction of the perigee. 

 

3.3. Optimize the Manifold Injection Point 

 

In the previous discussion orbit injection points with least velocity cost can be extracted from the 

survey on OI points. However it is not quite reasonable to choose the perigee as the MI point. Let 

the MI point parameterized by s, which is the true anomaly of the MI point counting from the OI 

point   backwardly. Vary s and the transfers should be different. For example, vary the MI 

point s on the manifold associated with OI point 0.22  , direct transfers are constructed as 

presented in Fig. 8 and the corresponding V  is presented in Fig. 9. It can be observed that all 

MI points can be reached and the velocity cost varies smoothly. The perigee transfer (marked by 

dashed vertical line) costs nearly the most V  and the optimal transfer occurs around 

12.5s    which is almost at the apogee. Also there tends to be other local optimal MI points if 

let s stretch broader. 
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Figure 8. Transfer to different manifold injection point s on stable manifold associated with 

0.22  . The black thick arc is the perigee transfer. 

 

 
Figure 9. Velocity cost curves of different manifold injection point s on stable manifold 

associated with 0.22  . 

 

From this point of view the optimal MI point transfer to different OI points   on ME-Halo can 

be constructed. The procedure is only different from the perigee transfer at the choice of the MI 

point, which is determined through an optimization process here. Then two tangent maneuvers 

are established for the bridge segment to glue the parking LEO and the optimal MI point in 

similar way. But there will be many local extremes since the manifold will rotate the Earth for 

many circles. In this paper, the MI point s is limited between the first epoch when 0.8x   and 

the second epoch when 0x  , the same as that of Fig. 8, during which the manifold passes at 

least one perigee and one apogee. The velocity cost of the external optimal transfers are 

illustrated in Fig. 10. The V  ranges from 3.388 km/s to 3.934 km/s, which is much less than 

that of perigee transfers. There is clear periodicity for the MIV  curve but not for other two 

curves. The discontinuity is as well caused by the restriction on the MI point. 
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Figure 10. Velocity cost curves of different orbit injection points   by optimal external 

direct transfer. 

 

4. Redundant Stable Direction 

 

As has been discussed, the lunar ME-Halo orbit can possess two pairs of real eigenvalues and 

hence two stable manifold directions for each point on the orbit. In this section a preliminary 

study of this redundant stable direction is expressed through the 1L  Periapsis ME-Halo orbits 

with M5N2. The monodromy matrix   has two eigenvalues smaller than one, 5

1 4.07 10   

and 2 0.978  . Although eigenvalues are invariant along the ME-Halo orbit, the characteristic 

directions varies. The OI point 0   is chosen and fixed for the demonstration. At this point, 

the smaller 1  gives the main stable direction 1

sv  and the smaller one gives the redundant 

direction 2

sv . Their positive directions are set to be consistent with the synodic frame. It is 

important to understand that they span a hyperplane tangent to the orbit at   in phase space, 

and they form a skew-coordinate frame with an angle 40.2    as illustrated in Fig. 11. Four 

quadrants are given by  0,  ,  ,180  ,  180 , 180    and  180 ,0   . Only the first 

and the third quadrant are determined to give internal manifolds and external manifolds 

respectively because they have same positive directions. In other two quadrants the tendency 

changes at a certain angle. In Fig. 12 manifolds generated by from different quadrants are 

demonstrated. The green arc represents the main manifold given by 1

sv  and the magenta arc 

represents the redundant manifold given by 2

sv . It is clear that in the first and third quadrant 

manifolds given by 1

sv  and 2

sv  are boundaries of all possible manifolds. However, in the 

second and fourth quadrant the main direction manifold (green) is not the boundary anymore but 

some other manifolds can reach further. The Floquet theory cannot explain it since the main 

stable manifold occupies the smallest eigenvalue and hence should reach the furthest during 

backward integral. 
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Figure 11. Hyperplane spanned by two stable manifold directions of the fixed point on the 

ME-halo orbit. They form a skew-coordinate frame. Only the first and third quadrant can 

be determined to generate manifolds towards the right and left side of the orbit. 

 

 
Figure 12 Four quadrants of the two-dimensional manifolds associated with orbit injection 

point 0  . The black arc is the ME-Halo orbit. The green arc represents the main stable 

direction. The magenta arc represents the second stable direction. They are boundaries in 

the first and the second quadrant but not in the third and the fourth. 

 

This redundant direction can great benefit the direct transfer design. The ME-Halo in ERTBP has 

a strict constrain on the epoch and the primary phase because of its non-autonomy, so the transfer 

trajectory is also strictly constrained to each time epoch. But this redundant dimension frees this 

limitation to some extent since at any epoch a small bias can locate the spacecraft on another 

nearby transfer trajectory. However, the optimization space is increased by one dimension as 

well, thus computational time greatly increased and even worse more local minimums could 

arise. Moreover, from this point of view it can be more helpful in station-keeping strategy design 
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since the manifold of ME-Halo orbits is three-dimensional and intersections nearly always exist, 

which can be used to guide the spacecraft.  

 

5. Conclusion 

 

ME-Halo orbits are strict periodic orbits only exist in the non-autonomous ERTBP model. Its 

period are M times of a traditional circular halo orbit and it can possess two-dimensional stable 

manifold at each point, which makes it a promising nominal orbit in space mission design. In this 

paper the direct transfer to lunar ME-Halo orbit with two impulsive maneuvers is constructed 

and optimized. The transfer trajectory is constructed by backward integration along stable 

manifold to the manifold injection (MI) point and a bridge segment connecting the parking LEO 

and the MI point. The MI point is first set to be the perigee and then freed to be optimized. 

Results show that different orbit injection points give different V  and optimal transfers occur 

around the apogee of manifolds. At the end the redundant stable direction is studied and its 

possible applications are discussed. It provides more allowance on trajectory design and possibly 

a new station-keeping strategy. Practically the ME-Halo orbit may serve as a relatively stable 

nominal orbit for observation missions or a nature formation fly orbit utilizing its multi-circle 

property. Its properties are complex and further studies are required. As a conclusion, the 

ME-Halo orbit is of potential practicing value and it can be reached by direct transfer with two 

impulsive maneuver.  
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