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    This paper illustrates the full process of generation of quasi-satellite orbits (QSOs) through a parametric optimization 

of the initial conditions and control burns, and the selection of the best orbits for observation of the surface of the moons of 

Mars. QSOs are particular, short-term stable solutions to the three-body problem that can be exploited to remain in close 

proximity (< 100 km) to the Martian moons for periods in the order of weeks with very low control requirements. In the 

context of the joint ESA-Roscomos Phobos Sample Return (PhSR) mission, they are used to characterize the surface of the 

Martian moons Phobos and Deimos, where the dynamical environment is highly perturbed and dominated by the planet to 

the point that the Hill sphere of Phobos is below its surface at some points. The objective for the trajectory optimization is 

obtaining a high-resolution image map of both moons with different instruments and, in the case of Phobos, establishing the 

best landing site for the sampling procedure. 
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Nomenclature 

 

LOF : local orbital frame 

v : velocity 

r : position 

T : orbital period 

w : QSO amplitude, projection of the relative 

position on the target’s local orbital plane  

ω : angular frequency = 2𝜋 𝑇−1 

S/C : spacecraft 

 Subscripts 

0 : initial 

f : final 

M : Mars 

m : moon (Phobos/Deimos) 

 

1.  Introduction 

 

  Phobos Sample Return (PhSR) is a joint ESA-Roscomos 

mission that aims to characterize Phobos and to collect a 

sample of its surface to bring back to Earth
1)

. The main 

science goal of the mission is to understand the formation of 

the Martian moons Phobos and Deimos and to put constraints 

on the evolution of the solar system. To do this, samples from 

Phobos (the moon with the older expected surface) have to be 

returned to Earth and thus potential landing sites need to be 

studied beforehand to establish sampling usefulness. 

  The study of the Phobos surface takes place in a complex 

dynamical environment that is extremely dominated by Mars: 

due to the small size of Phobos and its proximity to the planet, 

even a semblance of Keplerian orbits around the moon is 

impossible
2)

. Given that the mission needs to return a sample 

to Earth, the usual mass constraints in space missions are 

much more stringent due to the need to carry the sampling and 

return vehicle. Thus, quasi-satellite orbits (QSOs) are used to 

provide a trajectory that remains in close proximity to the 

moons and maintains stability in the order of days/weeks, 

which results in a small number of control burns required 

during the full observation campaign.  

 

2.  Dynamical environment near the moons of Mars 

 

2.1.  Physical characteristics 

  Phobos and Deimos are small bodies, with dimensions in 

the order of 10 km and markedly non-spherical, see Table 1. 

They orbit extremely close to Mars, with Phobos even inside 

the areosynchronous radius: it orbits faster than Mars rotates, 

so it rises on the west and sets on the east. It is also getting 

closer to the planet, and will likely end up being torn apart by 

tidal forces in time scales of tens of millions of years. 

 

Table 1: Physical and orbital characteristics of Phobos and Deimos. 

Items Phobos Deimos 

Ellipsoid axes (km) 13.0x11.4x9.2 7.8x6.0x5.1 

GM (km3/s2) 7.07·10−4 9.62·10−5 

Equivalent-vol. radius (km) 11.35 6.25 

Semi-major axis (km) 9378 23458 

Eccentricity (-) 0.0150 0.0004 

Inc. w.r.t. Mars equator (deg) 1.07 0.94 

Source (physical data) Refs.3) and 4) Refs. 3) and 5) 

Source (ephemerides) JPL MAR097 

 

  Both moons are nearly tidally locked to Mars, although 

libration motions and small deviations from a perfect long 

moon axis-planet alignment exist. 

2.2.  Accelerations near Phobos 

  The preponderance of Mars in the system is so large that 

the centre of mass of the system is only a few metres off that 

of Mars itself – compared to about 4800km for Earth-Moon 

system. The gravitational parameters of Phobos and Deimos 

are 8-9 orders of magnitude smaller than that of Mars, which 

together with the close proximity to the planet makes it 

impossible to actually orbit them in a Keplerian sense. 
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  As an example, Fig. 1 shows the accelerations felt by a test 

particle on the Mars-Phobos axis, close to the latter. Only at 

radial distances below 20 km (corresponding to altitudes well 

below 10 km) does the Phobos gravitational acceleration 

surpass the Martian tidal term – that is, the Phobos-relative 

acceleration due to Mars’ gravity. 

 

Fig. 1.  Gravitational accelerations of Mars and Phobos on a particle on the 

Mars-Phobos axis. Note that the “Mars TB tide” is the effect of Mars’ 

gravity considered in a Phobos-centred, non-rotating frame. 

 

  It seems clear that, for altitudes well over the mentioned 

~10 km, it makes more sense to approach the problem from 

the point of view of co-orbital motion that remains close to the 

target moon, instead of trying to model a (heavily) perturbed 

“orbit” around it. The following sections will analyse the 

problem of relative motion between two co-orbiting objects, 

starting from the simplified case of rendezvous dynamics and 

arriving at quasi-satellite orbits. 

 

3.  Clohessy-Wiltshire motion 

 

3.1.  Dynamics 

  Considering only two bodies in orbit around a primary 

(“target” and “chaser” in the literature), the relative motion of 

the chaser w.r.t. the target can be obtained by writing the 

dynamics of the chaser in a frame centred at the target. If the 

target follows a circular orbit, a common choice is a frame 

where X points towards the target velocity and Z towards the 

planet, while Y is collinear with the orbital momentum and 

chosen to follow the right-hand rule. Note that, if the target’s 

orbit is not circular, either the X/V or the Z/R alignment needs 

to be broken. 

  The driving force in such a system is likely to be the 

“gravitational tide” term: the difference of gravitational 

acceleration between the chaser and the target. In this 

formulation, the tide caused by a point-mass primary is split 

off, leaving a differential acceleration ∆γ on the right hand 

side. This term represents all other influences (e.g. the 

non-spherical gravity influences, solar radiation pressure, 

atmospheric drag, thrust commands, etc.). If the distance 

between the two bodies is small compared to the size of the 

orbit, the equations can be linearized as follows
6)

: 
𝑥̈ − 2𝜔𝑧̇ = Δ𝛾𝑥

𝑦̈ + 𝜔2𝑦 = Δ𝛾𝑦

𝑧̈ + 2𝜔𝑥̇ − 3𝜔2𝑧 = Δ𝛾𝑧

 (1) 

  This is commonly described as “rendezvous dynamics”, 

since it was first developed to analyse the rendezvous of a S/C 

with a target in a circular orbit, like a space station in Earth 

orbit. Its applicability to the problem of orbits around other 

small bodies such as comets or asteroids in orbit around the 

Sun is usually limited, since the gravity of the small body 

needs to be taken into account from much further away due to 

the smaller influence of the Sun gravity tide term. However, 

in the case of Mars, the extreme proximity of the primary 

makes the equations applicable as a first approximation for 

orbits that are not too close to the moon. 

 

3.2.  Trajectory characteristics 

  A quick analysis of the equations shows that, in the 

unperturbed case with ∆γ = 0, the out-of-plane motion (the Y 

direction) is decoupled from the in-plane motion (X-Z). In 

particular, unperturbed motion in the Y direction is simply an 

oscillation about the X-Z plane with the same period as the 

target orbit. This is a positive discovery, since it means that 

any trajectory that describes a “pseudo-orbit” in the X-Z plane 

can be modified to have an arbitrary target-relative inclination, 

thus providing better global observability of the surface. 

  Focusing on the motion in the X-Z plane, it is readily 

apparent that there is a family of closed orbits which describe 

elliptical pseudo-orbits around the target with the same period 

of the target’s orbit around the primary. However, unlike 

Keplerian orbits, the target is in the centre of the ellipse and 

not in one of the focal points. The shape of the ellipse is fixed, 

with the major axis, aligned to the X direction, twice the size 

of the minor axis. There are no other families of closed orbits 

in the unperturbed problem. 

  Including the third dimension once again, three parameters 

define a closed trajectory: the size of the ellipse, the 

“inclination” and the phasing between the in-plane and 

out-of-plane motions, that is, the position of the nodal points 

on the local orbital plane of the target. The effect of varying 

these parameters can be seen in Fig. 2, which shows 

trajectories with a fixed size but varying inclinations, and Fig. 

3, which does the same with a fixed inclination but varying 

phasing parameters. From the figures, it is apparent that the 

orbits could provide a rather complete coverage for target 

surface observations. 

 

Fig. 2.  Closed trajectories in unperturbed Clohessy-Wiltshire motion 

around a tidally-locked ellipsoidal target, generated with a fixed node on 

the local orbital plane of the target and varying inclinations 0-45 deg. 
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Fig. 3.  Closed trajectories in unperturbed Clohessy-Wiltshire motion 

around a tidally-locked ellipsoidal target, generated with a fixed inclination 

of 30 deg and varying the in-plane/out-of-plane phase. 

 

  It is important to remark, however, that the orientation of 

the elliptical trajectory in the X-Z plane is fixed, with the 

largest axis oriented perpendicular to the target-primary line. 

This is a significant disadvantage of this family of trajectories, 

since a tidally-locked body like the moons of Mars would 

usually have its largest axis substantially aligned with the 

target-primary line. 

  Another important concern is that the formulation of the 

unperturbed C-W motion is disregarding important terms in 

the acceleration, mainly the gravity of the target itself and the 

non-sphericity of the primary (especially for Phobos, which is 

extremely close to Mars). Thus, unperturbed solutions can 

only be used as an initial guess for the trajectory design and 

optimization procedure. However, most of these terms could 

be taken into account if necessary through the ∆γ term, 

although the applicability of the linearization of the dynamics 

might be called into question. 

  Furthermore, as shown in Fig. 1, the influence of the moons 

falls off rapidly and the effect of Phobos’ gravity is overtaken 

by the Martian tidal term for altitudes over 20 km. Thus, real 

trajectories are expected to resemble unperturbed C-W closed 

orbits outside that area of high influence of the moon. 

 

4.  Quasi-satellite orbits 

 

4.1.  Dynamics 

  The assumptions used in the generation of quasi-satellite 

orbits (QSOs) are significantly relaxed from those in C-W 

dynamics. In particular, the target is not assumed to be in a 

strictly circular orbit, although the eccentricity is still assumed 

to be small (as it is in the case of Phobos and Deimos). Thus, 

the C-W local orbital frame is not well defined, and it is 

replaced by a VVLH frame – the X axis alignment with target 

velocity is kept, at the expense of the exact alignment of Z 

with the target-primary line. 

  The main difference from a mathematical point of view, 

however, is that the equations used to propagate the QSOs are 

not linearized – in order to generate trajectories at a wide 

range of distances to the target, the full system is used. 

  Additional perturbations are also introduced, although this 

is not a fundamental difference, since they could have also 

been represented in C-W dynamics through the ∆γ term as 

described above. In the particular case of the PhSR mission, 

all perturbations were gravitational in nature: from the target 

moon (either as a point mass or with expansions up to degree 

and order 3), from the Sun as a third body and from the 

non-spherical gravity field of Mars. 

  The expected results vary depending on the distance to the 

target moon: for close orbits below the limit mentioned in the 

section above, it is expected that the trajectories become more 

circular due to the influence of the gravity of the target. On 

the other hand, for large distances it is expected that 

trajectories will look significantly like the C-W solutions. 

4.2.  Design and optimization 

  The computation of the QSO trajectory is no longer 

possible through direct symbolic integration. Instead, the 

obtained orbits are the result of an optimization, in which the 

initial position is selected with parameters similar to the C-W 

case and the initial velocity is the optimization variable. 

  The objective for the optimization is, in abstract terms, the 

survival and stability of the QSO for a certain amount of time. 

Several functions to represent this objective were tested, 

falling in two categories: 

   Those that minimize the variation of some function of 

the moon-relative position, introducing a pressure to 

make the orbit more circular. 

   Those that minimize the variation of that distance at 

the crossings of a surface of section, thus leaving the 

distance at other points unconstrained. 

  In both cases, the function of the position could be either 

the 3D distance between the S/C and the target moon (the 

“radius”), or its projection on the local orbital plane of the 

target (the “amplitude” or w). Note that, unlike in the 

linearized case, there is a coupling between the in-plane and 

out-of-plane motions. 

  The initial guess for the optimization variable is the 

solution to the unperturbed C-W equations. However, for long 

integration periods >10 Tm, it was observed that behaviour of 

the orbit was sometimes too unstable for a direct application 

of the optimization algorithm. In particular, the use of a C-W 

initial guess did not provide a good enough starting point 

because the perturbations tended to move the S/C away from 

the vicinity of the target moon in a few periods, and in some 

occasions to crash into the moon. 

  In order to circumvent these problems, a grid-scan step in 

the initial velocity was introduced before the optimization 

itself. The result of this strategy can be seen in Fig. 4 for a 

very close pseudo-orbit, started with 50 deg of target-relative 

inclination and an initial position of 𝑧0 = 𝑅𝑚 + 20km where 

Rm is the largest radius of Phobos. Even in a case that is very 

perturbed by the low altitude and high initial inclination, the 

grid-scanning algorithm succeeded in finding an initial 

condition for the optimizer to refine into a trajectory that 

remained close to Phobos (between 28 and 150 km of central 

distance) for 30 days without any controls. 
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Fig. 4.  Results of optimization for a QSO around Phobos, with an initial 

altitude of 20 km over the largest Phobos radius and an inclination of 

50 deg. Red: failure to converge using the initial guess from the C-W 

solution. Blue: converged trajectory which remains in close proximity to 

Phobos for at least 100 Tm. 

 

4.3.  Trajectory characteristics 

  The converged trajectories obtained by the above procedure 

have a shape and properties that matches the behaviour 

expected by the addition of the mentioned perturbations to the 

C-W problem. In particular: 

   For “distant” orbits, the shape of the orbit is very 

similar to the unperturbed C-W solution. The main effect 

of the gravity of the target is a secular variation in the 

phase between the out-of-plane and the in-plane motions. 

This is shown in Fig. 5, where a single trajectory close to 

Phobos sweeps an elliptical cylinder in 20 days – in 

contrast, the phase is fixed parameter of the orbit in C-W 

dynamics, as seen in Fig. 2. The projection of the 

trajectory on the target LOF is very close to a 2:1 ellipse 

and remarkably stable (see Fig. 6), but the nodal point of 

the S/C on the local orbital plane of the target precesses 

as shown on Fig. 7. 

   High-inclination orbits are severely destabilized by 

the same effect. In particular, problems first appear at 

inclinations over 20-30 deg (depending on the amplitude 

of the orbit) and worsen progressively. 

  The resulting trajectories require more intermediate 

controls to survive for the same time as a similar but less 

inclined trajectory. The evolution of the distance to the 

target moon is more unstable even when the trajectory 

converges; see e.g. the “good” case Fig. 4. As a result, the 

usage of QSOs with inclinations larger than 50-60 deg 

was not pursued in the project. 

 

 

Fig. 5.  QSO around Phobos, for a 20-day trajectory case with w0 = 53 km 

on the Mars-Phobos line and an inclination of 20 deg. Four intermediate 

controls were introduced at fixed intervals of 5 days, all below 1.5 cm/s. 

The first revolution is highlighted. 

 

 

Fig. 6.  Instantaneous distance to Phobos in the previous QSO. The 

envelope is stable, with a superimposed oscillation due to the precession of 

the node in the local orbital plane of Phobos. 

 

 

Fig. 7.  Argument of the nodal points of the S/C on the Phobos local 

orbital plane for the previous QSO. Angles are measured from +Vm 

towards the Mars-pointing direction. 

 

   Finally, orbits very close to the target are even more 

distorted by its gravity. The projection of the trajectory 

on the local orbital plane is markedly less elongated, with 

an axes ratio as low as 1.75:1 for otherwise stable orbits, 

or even lower values of 1.35:1 for more controlled 

trajectories. Both cases are represented in in Fig. 8, which 

contains a 30-day uncontrolled QSO (in blue) and a 

20-day trajectory with controls every 5 days (in red). 

  The change is also very noticeable as a reduction of the 

pseudo-period (time between two crossings of the YZ 

plane of the LOF), as can be seen in Fig. 9. In the limit 

case, if the target was a point mass, the orbit would get 

more and more circular for lower altitudes, as the gravity 

of the target started dominating its vicinity. 

 

 

Fig. 8.  QSOs in extremely close proximity to Phobos. Blue: 30-day 

uncontrolled QSO with w0 = 33 km on the Mars-Phobos line and an 

inclination of 30 deg. Red: 20-day QSO with controls at 5-day intervals, 

w0 = 20 km and an inclination of 15 deg. 
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Fig. 9.  Instantaneous distance for the previous QSOs, limited to the first 

ten Phobos periods (around 3.2 days). Notice that the QSO pseudo-periods 

are shorter than Tm: 83% and 52%, respectively. 

 

5.  Application to the Phobos Sample Return project 

 

5.1.  Project requirements 

  In the context of the Phobos Sample Return (PhSR) mission, 

the scientific requirements
7)

 describe the study of the shape, 

structure and composition of the moons of Mars. In particular, 

this “global characterization phase” requires the measurement 

of the gravity field and the generation of detailed surface and 

elevation maps of Phobos and Deimos (although visiting the 

latter is optional in some mission scenarios) using a variety of 

instruments in the visible and infrared bands of the spectrum. 

In the case of Phobos, this phase allows the determination of 

up to five tentative landing sites that can be further studied in 

a subsequent local characterization phase. 

  The specific requirements for the global characterization 

phase are different for each instrument, and are detailed in 

Table 2, although the requirements for the IR instruments were 

invalidated during the project in favour of a redesign with 

performances similar to the NAC. The resulting surface maps 

need to cover at least 50% of Phobos and 10% of Deimos, 

while ensuring that possible landing areas (defined as the 

latitude band within 20 deg of latitude of the sub-solar point at 

landing) are fully covered. Other limitations also apply, e.g. 

the narrow-angle camera can only take images when the solar 

elevation is between 30 and 60 deg. 

 

Table 2: Phobos surface observation requirements for each instrument. 

  NAC VisNIR MidIR 

Resolution Req. [m] 3 30 30 

Pixel size [µm] 10 30 25 

Image size [px] 2048 320 315 

Field of view [deg] 1.8 4.6 9 

CCD size [mm] 20 10 8 

Focal length [mm] 652 120 50 

Max altitude [km] 97.78 59.75 30.02 

 

  Furthermore, indirect observational requirements specify 

that the coefficients of the gravitational field of Phobos up to 

degree and order 2 must be measured with a precision of 2%, 

and its libration around the tidally-locked alignment must be 

determined within 1%. For Deimos, only the point-mass 

gravitational parameter must be determined, to 1% precision. 

  These scientific requirements point to a trajectory for the 

global characterization phase with a substantial uncontrolled 

part, allowing the determination of the gravitational and 

rotational parameters. On the other hand, the surface 

observation requirements would be better achieved by using 

trajectories with less or even no variation in the distance to the 

target moon, in order to have a constant resolution and require 

less post-processing on the ground side. However, as stated in 

previous sections, the shape of a QSO is an ellipse with the 

target at the centre, and whose major axis is aligned to the 

target velocity, thus nearly perpendicular to the target-primary 

line for a quasi-circular orbit like that of Phobos or Deimos. 

  Thus, the summary of trade-offs for the choice of QSOs as 

for the global characterization phases in PhSR was: 

   In favour: QSOs can be generated as long arcs with 

no controls, leading to a small GNC ∆V cost. This is 

particularly important given the tight mass constraints. 

   In favour: the existence of long periods without 

controls makes it easier to determine the gravitational and 

rotational parameters of the moons because it means less 

thruster noise in the measurements. 

   Against: the shape and orientation of the QSO is ill 

suited for surface imaging, since the obtained data will 

necessarily have variable resolution. This implies not just 

that a smaller QSO size will have to be chosen to achieve 

the resolution requirements, but also that the data 

obtained will need more post-processing. 

  All in all, the choice was made in favour of the QSO 

because of the very tight mass requirements in the mission. 

5.2.  QSO design and choice 

  The design and optimization procedure was implemented 

using a custom toolbox built on top of the open-source Orekit 

framework. The orbit propagation used a Dormand-Prince 

integration scheme of order 8(5,3) in local extrapolation mode, 

although in specific cases this was modified to use a classical 

Runge-Kutta scheme of order 4 for performance. Due to 

limitations in Orekit, the dynamics equations were defined 

and integrated in a non-rotating frame centred at the target. 

  In order to determine the best QSO for each scenario of the 

mission, a two-dimensional map in the initial amplitude and 

inclination was generated, computing one trajectory for each 

point in the grid and for each scenario, so that the stability and 

performance of each QSO could be evaluated. The parameters 

for the generation are described in Table 3, where the initial 

size parameter is the amplitude w0 minus the largest spherical 

radius of the respective moon Rm. 

 

Table 3: Parameters for the generation of the QSO maps. 

Parameter Phobos Deimos 

Initial size parameter [km]  20‒50 22‒28 

Size parameter grid step [km] 2 2 

Initial inclination [deg] 40‒50 40‒50 

Inclination grid step [deg] 5 5 

Trajectory duration [days] 60 30 

Time between controls [days] 30 ‒ 

 

  Each trajectory begins at a scenario-specific date on the YZ 

plane, that is, the initial amplitude is given at the short axis of 
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the ellipse and the initial nodes are at 0 and 180 deg. The 

initial guess for the velocity was obtained from a grid-scan 

algorithm around the C-W solution, as stated earlier. From 

that result, the optimization was launched with a Nelder-Mead 

simplex algorithm
9)

, and the final results were evaluated in 

terms of the minimum/maximum distance to the target. In a 

later stage, the performance properties of the solutions in 

terms of other functions (finer coverage, Earth communication, 

etc.) were evaluated by other consortium partners, leading to a 

final trade-off in which a QSO was chosen for each scenario. 

5.3.  Results: Phobos surface coverage 

  The stability of each QSO in the map can be observed in 

Fig. 10 and Fig. 11 in terms of the minimum and maximum 

distance to the target respectively, before being filtered by 

observation and communications performance as described 

above. Note that blank areas represent trajectories that failed 

to converge to a stable QSO. 

 

Fig. 10.  Minimum distance to Phobos for each QSO in the map for the 

ESA-standalone scenario of the PhSR mission. 

 

 

Fig. 11.  Maximum distance to Phobos for each QSO in the map for the 

ESA-standalone scenario of the PhSR mission. 

 

  The trajectory that was finally chosen was the same for the 

ESA-Standalone and the ESA-Roscosmos joint mission 

scenarios. The trajectory size parameter (𝑤0 − 𝑅𝑚) is 38 km 

and the initial inclination is 45 deg, with a single control burn 

of just 1.2 cm/s. The resulting evolution of the range and solar 

elevation can be seen in Fig. 12 and Fig. 13, respectively, 

where the dashed lines show the observability limits of 98 km 

altitude (a radial distance of 107 km, since in the worst-case 

the altitude is measured over the smallest radius of Phobos) 

and the 30‒60 deg band of solar elevation. 

 

Fig. 12.  Instantaneous target range in first 30 days of the Phobos QSO. 

 

 

Fig. 13.  Instantaneous Sun elevation in first 30 days of the Phobos QSO. 

 

  Additionally, the ground track of the S/C was analysed 

together with the observability limitations in order to verify 

that the coverage of was adequately distributed in the bands of 

interest, without leaving zones with a particularly sparse cover. 

Results are shown in Fig. 14. 

 

Fig. 14.  Ground track of the orbit selected for the global characterization 

of Phobos, limited to points in which the NAC instrument can operate. 

 

5.4.  Results: Deimos surface coverage 

  The obtained Deimos QSO map is very similar to that of 

Phobos, but with an important difference: the much larger 

distance to Mars. The main effect of this change is a slower 

motion, since the period of Deimos is nearly four times that of 

Phobos. Since the time allotted for the observation of Deimos 

is also halved (30 days vs. 60), the total number of revolutions 
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around Deimos is approximately 
1
/8 than around Phobos, 

although this is compensated by the fact that only 10% of the 

surface needs to be covered per the requirements
7)

. 

  On the other hand, orbits near Deimos are inherently more 

stable due to the weaker perturbing gravity fields, both from 

the much further primary and the smaller moon. Only one 

case failed to converge to a valid 30 day ballistic arc. 

  The orbit finally chosen for the ESA-Roscosmos joint 

scenario has a size parameter of 38 km and an inclination of 

45 deg. As a consequence of the slower motion, the imaging 

coverage is sparser, as shown in Fig. 15. 

 

 

Fig. 15.  Ground track of the orbit selected for the observation of Deimos, 

limited to points in which the NAC instrument can operate. 

 

6.  Conclusion 

 

  Quasi-satellite orbits can be thought of a particular solution 

to the three-body problem, or conversely, as a generalization 

of rendezvous dynamics where the target is massive. Although 

difficult to generate without a rather precise initial guess, they 

are an interesting solution for close observation of small 

planetary moons which could not usually be orbited. 

  The major advantage of QSOs is the high stability of the 

trajectories, as visible in the uncontrolled 60 and 30-day orbits 

around Phobos (Fig. 16) and Deimos (Fig. 17). QSOs are able 

to provide coverage for all longitudes of a tidally-locked body, 

although the observation distance is necessarily variable. 

 

Fig. 16.  Plot of the Phobos QSO in the body-fixed frame of the moon. 

 

 

Fig. 17.  Plot of the Deimos QSO in the body-fixed frame of the moon. 
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